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FOREWORD 

The ACS SYMPOSIUM SERIES was founded in 1974 to provide a 
medium for publishing symposia quickly in book form. The 
format of the Series parallels that of the continuing ADVANCES IN CHEMISTRY SERIES except that, in order to save time, the 
papers are not typeset but are reproduced as they are submitted 
by the authors in camera-ready form. Papers are reviewed under 
the supervision of the Editors with the assistance of the Series 
Advisory Board and are selected to maintain the integrity of the 
symposia; however, verbatim reproductions of previously pub­
lished papers are not accepted. Both reviews and reports of 
research are acceptable, because symposia may embrace both 
types of presentation. 
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PREFACE 

THE EQUATION-OF-STATE APPROACH to model and correlate fluid-phase 
equilibria has been emphasized more and more in the eight years since the 
first symposium on this topic. In 1979, we edited the volume entitled 
Equations of State in Engineering and Research (Advances in Chemistry No. 
182), which was based on that symposium. Meanwhile, research activities 
have been continually robust, particularly in building new models and in 
extending established equations for new and improved applications. 

The present volume is based on the April 1985 equation-of-state 
symposium held to present a comprehensive state-of-the-art view of progress 
in this area. 

The term "equation of state" is used in a broad sense to include 
mathematical description of volumetric behavior, derived properties, mixture 
behavior, and phase equilibrium of fluids. The main thrust continues to be 
the description of fluid-phase equilibrium, a phenomenon of enduring 
interest because it is basic to mass transport and separation operations. At 
the present stage of development, nonpolar fluids are modeled almost 
exclusively with equations of state, and active research is extending to polar 
fluids. 

The twenty-eight chapters in this volume, reporting work and progress 
on a broad front, are arranged in seven sections. Contributions are made by 
authors from diverse disciplines, including chemical engineers, physical 
chemists, and chemical physicists. The division of the volume into sections is 
not rigorous; some papers can fit easily into more than one section. 
Nevertheless, the arrangement should serve as a helpful guide to readers in 
their initial encounter with this substantial collection. 

We greatly appreciate the encouragement and support of the Division of 
Industrial and Engineering Chemistry of the American Chemical Society in 
sponsoring the symposium. Special thanks go to the authors of the papers. 
In addition to the regular task of preparing their manuscripts, they have 
gone the extra mile by preparing them in a camera-ready form. Their care 
and devotion are clear from the quality of the finished product. Robin 
Giroux of the ACS Books Department worked with us throughout the 
development of the volume. 

K. C. CHAO 
School of Chemical Engineering 
Purdue University 
West Lafayette, IN 47907 

ROBERT L . ROBINSON, JR. 
School of Chemical Engineering 
Oklahoma State University 
Stillwater, OK 74078 

December 2, 1985 
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1 
Equations of State and Classical Solution 
Thermodynamics 
Survey of the Connections 

Michael M. Abbott and Kathryn K. Nass 

Department of Chemical Engineering and Environmental Engineering, Rensselaer 
Polytechnic Institute, Troy, NY 12180-3590 

Many contemporary researches in equation-of-statery 
focus on the representation of properties of liquid 
mixtures. Here, the connection with experiment is 
made through excess functions, Henry's constants, and 
related quantities. We present in this communication 
a review and discussion of the apparatus linking the 
equation-of-state formulation to that of classical 
solution thermodynamics, and illustrate the key ideas 
with examples. 

The correlation and prediction of mixture behavior are central 
topics in applied thermodynamics, important not only in their own 
right, but also as necessary adjuncts to the calculation of chemical 
and phase equilibria. Two major formalisms are available for repre­
sentation of mixture properties: the PVTx equation-of-state formu­
lation, and the apparatus of classical solution thermodynamics. It 
is well known that the two formalisms are related, that a PVTx 
equation of state in fact implies f u l l sets of expressions for the 
quantities employed in the conventional thermodynamics of mixtures. 
Only with advances in computation, however, has i t become possible 
to take advantage of these relationships, which are now used in 
building and testing equations of state. 

The formulations differ in at least two major respects: in the 
choices of independent variables, and in the definitions of special 
functions used to represent deviations of real behavior from stan­
dards of "ideality". In the equation-of-state approach, temperature, 
molar volume, and composition are the natural independent variables, 
and the residual functions are the natural deviation functions. In 
classical solution thermodynamics, temperature, pressure, and com­
position are favored independent variables, and excess functions are 
used to measure deviations from "ideality". Thus translations from 
one formulation to the other involve both changes in independent 
variables and conversions between residual functions and excess 
functions. 

0097-6156/86/0300-0002$ 10.75/0 
© 1986 American Chemical Society 
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1. ABBOTT AND NASS Classical Solution Thermodynamics 
3 

Simple as a l l this sounds, we have found i t frustrating not to 
have available a single source in which the connections between the 
two formulations are neatly laid out in purely classical terms. 
Particularly vexing is the lack of a flexible but clean notation. 
To meet our own needs, we have synthesized a system of definitions 
and notation, partially described in the following pages. The 
system seems adequate for both research and classroom use. 

Deviation Functions 

Rationale and Definitions. It is rarely practical to work directly 
with a mixture molar property M. For example, M may not be defined 
unambiguously, and may therefore not admit, even in principle, 
direct experimental determination. Thus, neither U nor S nor H nor 
G is defined at a l l , in the s t r i c t sense of the word. Both U and S 
are primitive quantities, and H and G are "defined" in terms of one 
or both of them. Moreover, property M by i t s e l f may not admit phys­
i c a l interpretations, except in a loose sense (e.g., entropy as a 
"measure of disorder"). For these and other reasons, one finds i t 
convenient to introduce such quantities as residual functions and 
excess functions. These quantities, themselves thermodynamic prop­
erties, are examples of a general class of functions which we c a l l 
deviation functions. 

Deviation functions represent the difference between actual 
mixture property M and the corresponding value for M given by some 
model of behavior: 

M(deviation) = M(actual) - M(model) 

The choice of a model is to some extent arbitrary, but to be useful 
the model must have certain attributes. Its molecular implications 
should be thoroughly understood, so that deviation functions defined 
with respect to i t can be given clean interpretations. Real behav­
ior should approach model behavior in well-defined limits of state 
variables or substance types, so that the deviation functions have 
unambiguous zeroes. Finally, to f a c i l i t a t e numerical work, i t is 
desirable that the properties of the model be capable of concise 
analytical expression. 

Once a model is chosen, the conditions at which the comparison 
(real vs. model) is made must be specified. There are several 
possibilities here, but two are particularly felicitous. Thus, we 
may define deviation functions at uniform temperature, pressure, and 
composition: 

M° = M - rf"od(T,P,x) (1) 

Here, the notation signals that mixture molar property for the 
model is evaluated at the same T,P, and composition as the actual 
mixture property M; superscript (capital) "D" identifies the devi­
ation function as a constant - T,P,x deviation function. Alterna­
tively, we may define deviation functions at uniform temperature, 
molar volume (or density), and composition: 
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4 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

mod 
M M mod, M (T,V,x) (2) 

Here, M is evaluated at the same T,V, and composition as the 
actual mixture property M; superscript (lower-case) "d" distin­
guishes this class of functions from that defined by Equation 1. 

The two kinds of deviation function are related. Subtraction 
of Equation 1 from Equation 2 gives 

d D mod, M - M - M (T,P,x) mod, v M (T,V,x) 

whence we find that 

Here, pressure P is the pressure for which the mixture molar volume 
of the model has the same value V as that of the real solution at 
the given temperature and composition. According to Equation 3, 
deviation functions and MD are identical for those properties M 
for which Mmoc* i s independent of pressure. 

Residual Functions. The simplest model of mixture behavior is the 
ideal-gas mixture: 

M m ° d = M i g 

Deviation functions defined with respect to the ideal-gas model are 
called residual functions, and are identified by superscript R or r. 
Thus, as special cases of Equations 1 and 2, we define 

MR = M - Mi8(T,P,x) (4) 

and 

Mr = M - Mi8(T,V,x) (5) 

Residual functions MR and Mr are related by Equation 3, with the 
assignments mod = ig and P* = RT/V. Thus 

(6) 

Ideal-gas properties U*§, H*8, C^S, and are a l l independent 
of pressure. Hence 

M r . MR (M U,H,Cv,Cp) (7) 

On the other hand, ideal-gas properties S^S, A*8, and G i8 are func­
tions of pressure. In particular, 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



1. ABBOTT AND NASS Classical Solution Thermodynamics 
5 

R 
P 

1£ 
3P T,x 

RT 
P 

and hence, by Equation 6, 

R£nZ (8) 

A + RTfcnZ (9) 

G r G R + RT£nZ (10) 

where Z = PV/RT is the compressibility factor. 
Expressions for either MR or Mr are found from a PVTx equation 

of state by standard techniques: see e.g. Van Ness and Abbott (1_)« 
If the equation of state is explicit in pressure, then T,V (or molar 
density p), and composition are the natural independent variables 
and the Mr are the natural residual functions. If the equation of 
state is explicit in volume, then T,P, and composition are the 
natural independent variables and the MR are the natural residual 
functions. Tables I and II summarize formulas for computing the Mr 

from a pressure-explicit equation of state, and the MR from a 
volume-explicit equation of state. Conversion from MR to Mr, or 
vice versa, is done by Equations 7 through 10. Note that V r and P R 

are identically zero. 

Residual Function Ar: a Generating Function. Most r e a l i s t i c 
equations of state are explicit in pressure; T,V, and composition 
are the natural independent variables. These are also the canonical 
variables for the Helmholtz energy A, so the constant - T,V,x resid­
ual Helmholtz energy A r plays a special role in equation-of-state 
thermodynamics. It can be considered a generating function, not 
only for the other constant - T,V,x residual functions, but also for 
the equation of state i t s e l f . The relevant working equations assume 
a pretty symmetry when the independent variables are chosen as 
reciprocal absolute temperature x ("coldness" = T~l), reciprocal 
molar volume p (molar density = V~*), and composition. They are 
summarized in this form in Table III. 

Application of these formulas may be illustrated by a simple 
example. We choose for this purpose the van der Waals equation of 
state, for which 

where parameters a and b depend on composition only. The residual 
pressure P r (= P-pig = P-pRT) is found from Equation 27: 

Ar(vdW) = - RT£n(l-bp) - a p (33) 

Pr(vdW) bp2RT 2 

so the equation of state is 
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6 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

P(vdW) pRT 
1-bp ap (34) 

The other residual functions follow from Equations 28 through 32, 
Two results are 

Sr(vdW) = R£n(l-bp) 

Ur(vdW) - - ap 

(35) 

(36) 

Equations 35 and 36 support the common interpretations of the 
hard-sphere (repulsive) term as representing an "entropic" contribu­
tion to the equation of state, and of the van der Waals "a" as an 
energy parameter. The material of this section can in fact be taken 
as a point of departure for the development of a classically-
inspired generalized van der Waals theory, motivated by Equations 33 
through 36, but unrestricted by the assumptions attendant to the 
original van der Waals equation of state (2_). 

Excess Functions, The conventional standard of mixture behavior for 
condensed phases is the ideal solution. Deviation functions 
reckoned against this model are called excess functions, and are 
identified by superscript E or e. We define 

M - Mid(T,P,x) 

and 

M - Mid(T,V,x) 

(37) 

(38) 

where superscript id identifies the ideal solution. Equations 37 
and 38 are special cases of Equations 1 and 2, with the assignment 
mod = id. Excess functions M and Me are related by 

M6 = ME + / (-3Ml<1 

P 
3P >*T,x dP (39) 

which is a special case of Equation 3. Unlike the ideal-gas case,^ 
no simple general closed-form expression can here be written for P . 
By definition, P is in this case the pressure for which the ideal 
solution has the same molar volume V as the real solution at the 
given temperature and composition. Since 

this pressure must be found as a solution to the equation 

Jx V (T,P*) - V(T,P,x) (40) 
i 

Clearly, numerical relation of M6 to ME via Equations 39 and 40 
requires equation-of-state information, both for the real pure com-
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1. ABBOTT AND NASS Classical Solution Thermodynamics 
1 

Table I. Residual Functions from a Pressure-Explicit Equation of 
State 

P r - pRT(Z-l) 

„r = _R T2 ;
P
(|Z d^ 

H r - -RTZ ^ + RT(Z-l) 

dp. 
p 

A r - RT / (Z-l) dp. 

G r = RT / ( Z - l ) ^ + RT(Z-l) 

C„ = 

Cp
r = C v

r-R + R[ Z + T ( | f ) p ) X ] 2 [Z + p ( { f ) T . x ] _ 1 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18)  P
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8 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

Table II. Residual Functions from a Volume-Explicit Equation of 
State 

(19) 

"R t 2 / (H)Pix f " ^ Z ' » (20) 

RT i UTJP.X P (21) 

"R / [T(|f)p,X

 + ^ f (22) 

A* = RT / ( Z - l ) ! ^ - RT(Z-l) (23) 

RT / ( Z - r f (24) 

-RT ;P[T(̂ )P.X - 2(H)P,x] f (25) 

CR + R . R [ Z + T (|| ) p ) x ]2 [ z . p (j!) T jj - i (26) 
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1. ABBOTT AND NASS Classical Solution Thermodynamics 
9 

Table III. Residual Functions from A] 

r r = Ρ2 (|4 

r _ 2 ,3Ar, 
S " τ (ϊΓΪρ,χ 

„Γ = |~3(τΑΓ) 1 
L 3τ Jp,x 

G r . l~3(pAr)] 

Γ Γ 

H
r = A

r + τ f-^-) + ρ (fM 
ν3τ -'ρ,χ μ *-3ρ ;τ,χ 

c{ - - , ' Μ 
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10 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

ponents and for the real mixture. Hence the relation between Me and 
ME is not as "clean" as that between Mr and MR. 

Rough closed-form approximations to Equation 39, appropriate 
for applications to condensed phases, may be found however. We 
write Equation 39 as 

Me » ME + ( ! | H T ) X(P-P*) (41) 

where the derivative is evaluated at the pressure Ρ of the real mix­
ture. An expression for Ρ follows from Equation 41 by the assign­
ment M = V, because V e = 0 identically. Thus we find that 

p " p ' Τ ^ Λ < 4 2 ) 

J ι ι i 

where is the isothermal compressibility of pure i : 

1 3 V i 

A l l quantities on the right side of Equation 42 are evaluated at 
pressure P. According to Equation 42, the sign of V e determines 
whether Ρ is less than or greater than P. 

Combination of Equations 41 and 42 gives 

i 
which is the required approximation to Equation 39. Particular 
cases of Equation 43 are generated on specification of M and of the 
corresponding derivative (3Μ^^/3Ρ)χ x . Table IV summarizes 
expressions for this derivative in terms of the volumetric proper­
ties of the species composing the mixture. To demonstrate i t s 
application, let us take M = A. Then, by Equations 43 and 48 we 
find that 

Ε 

But 

A e « A E + PV] 

G E - A E + PVE 

and hence we have rationalized the approximation 

A e « G E 

a result frequently used in molecular modeling of the constant -
Τ,Ρ,χ excess Gibbs energy. 
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1. A B B O T T A N D Ν ASS Classical Solution Thermodynamics 11 

. x,id 3M Table IV. Expressions for — 

^3P ;T,x 

V " [ ¥ i V i (44) 

u p I x i < i v i " T I V i v i ( 4 5 ) 

H I x i v i - ^ W i ( 4 6 ) 

i 
S - Σ χ . β ^ (47) 

i 

Α Ρ Ι χ 1 κ ΐ ν ΐ ( 4 8 ) 

G Yx.V. (49) 
i 1 1 

2 3 β 1 
C p - - T j x 1 ( i T - ) p V 1 (50) 
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12 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Relations between Excess Functions and Residual Functions. Excess 
functions and residual functions are related. The relationships are 
most easily established through ME and MR. By Equations 4 and 37, 
we have 

But 

and 

Ξ MR - (M i d - M i g) 

Λα 
i i 1 

? x i M i 3- Jx.£nx 
i 1 1 

(51) 

where 

0 (M = U,H,Cp) 

R (M - S) 

-RT (M = A,G) 

Hence Equation 51 becomes 

ME = MR - (|xiM1 - I x ^ / 8 ) 

(52) 

i 1 1 

(53) 

Equation 53 is a basis for relations connecting ME or Me to MR or 
Mr. It provides a link between excess functions and the equation of 
state and i t suggests how physical interpretations applying to par­
ticular residual functions are carried over to the corresponding 
excess functions. 

Experiment provides values of the constant - Τ,Ρ,χ excess func­
tions Μ , whereas the constant - T,V,x residual functions Mr, par­
ticularly A r, are most cleanly related to a pressure-explicit 
equation of state. By Equations 7 through 10, we have 

MK - Mr + 3- Jin Ζ (54) 

with 3- defined by Equation 52. Combination of Equations 53 and 54 
produces an expression relating ME to Mr: 

(55) 
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1. ABBOTT AND Ν ASS Classical Solution Thermodynamics 
13 

Table V summarizes formulas for the constant - Τ,Ρ,χ excess 
Ε Ε Ε Ε r functions Η , S , G , and C p in terms of A and i t s temperature 

derivatives. These recipes are useful for testing the a b i l i t i e s of 
a PVTx equation of state to represent liquid-mixture properties. 
Consider as an example the van der Waals equation of state, Equation 
34, for which A r is given by Equation 33. Application of Equations 
56 through 59 gives 

HE(vdW) 

SE(vdW) 

GE(vdW) 

cJ(vdW) 

Here, VE(vdW) is the excess volume implied by the equation of state. 
Unsubscripted quantities are mixture properties, and subscripted 
quantities refer to the pure fluids. 

P a r t ial Properties 

Rationale and Definitions. The partial-property concept is central 
to applied solution thermodynamics. Fi r s t , i t represents a formal 
(but arbitrary) basis for apportioning a mixture molar property M 
amongst the constituents of a phase. Second, i t provides an elegant 
apparatus for describing infinitely-dilute solutions. Finally, i t 
serves as a unifying concept in formulating mixture equilibrium 
problems, because the chemical potential and i t s relatives stand to 
the Gibbs energy and i t s relatives as partial properties: see Table 
VI. _ 

The conventional definition of a partial property i s 

where by implication temperature, pressure, and composition are 
favored independent variables. This choice is entirely appropriate 
in the laboratory frame of reference, because temperature and 
pressure are the variables susceptible to precise measurement and 
control. There are instances however where i t is useful to broaden 
the partial-property concept, to accommodate alternative choices of 

( a p - ^ X i a i i P i ) + PV^vdW) 

- R l x . £ n 
p ^ ~ b i i p i ^ 

HE(vdW) - TSE(vdW) 

(60) 

(61) 

(62) 

R < 11 - ( 1 - bP ) 2p 
2a i i 
RT ( l - b i i P i ) P i 

-1 
(63) 
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14 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

T a b l e V . E x c e s s F u n c t i o n s a n d t h e R e s i d u a l H e l m h o l t z E n e r g y 

H = (ΑΓ - | χ ι Α ι
Γ ) 

+ PV 

V,x 

,Ε (56) 

S" = 3T V4 

+ Rjx 1 Jn(V/V 1) (57) 

(ΑΓ - Jx.A?) 
i 1 1 

R T ^ j m i v / v ^ 

+ PV (58) 

Cp = -τ 
3T2 

3 \ r 

•I - Σ * · Η Γ ) 
/v.x i M j T 2 V j 

(59) 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



1. A B B O T T A N D Ν ASS Classical Solution Thermodynamics 15 

independent variables. Foremost among these is the application of 
pressure-explicit equations of state to the calculation of chemical 
and phase equilibria. 

Table VI. Important Partial Properties 

M M. 
1 

G " i (65) 

G/RT in λ 1 (66) 

GR/RT Jin φ. (67) 

AG/RT Jin a± (68) 

GE/RT in y ± (69) 

Reis (3_) discusses the generalization of the partial-property 
concept to other sets of independent variables, and Abbott (4̂ ) has 
extended the definition of Equation 64 to higher-order derivatives 
with respect to mole numbers. A result common to both kinds of 
generalizations is that the "summability feature" of the M-̂, viz., 

M = Yx.M̂  
i 1 1 

(70) 

is in fact possessed by a very large number of "partial properties", 
in addition to M-̂. 

The generalization of Equations 64 and 70 for choices of inde­
pendent intensive variables other than Τ and Ρ is quite simply 
rationalized. We outline a development here. Let the total prop­
erty M1- = nM of a phase be a function of the set of mole numbers 
ηι,η2,···, and of two arbitrary intensive variables X and Y. Then 
the total differential d(nM) corresponding to an arbitrary change of 
state is 

d(nM) = 3(nM) 
3X dX 

JY,n 
3(nM) 
3Y dY 

X,n i 
3(nM) 
3 η i J Χ,Υ,η. 

(71) 

where subscript η denotes constancy of a l l mole numbers and nj 
denotes constancy of a l l mole numbers save n-̂ . The following iden­
t i t i e s apply to Equation 71: 

d(nM) ndM + Mdn 
dn, = ndx. + x^dn i ι i 

3(nM) 
3X 

)1 _ /3M\ 
"JY,n -

 n
 H,x 
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16 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

- • ΦΙ 
where subscript χ denotes constancy of a l l mole fractions. 
Additionally, let us define the generalized partial property Η± as 

(72) 

Combining the last six equations and collecting coefficients of η 
and of dn, we obtain 

+ [Μ-ΣΧΑ] dn - 0 

But quantities η and dn are independent and arbitrary; the two 
bracketed terms must therefore separately be zero, and we find that 

dM 

and 

- I * A 

(73) 

(74) 

Equation 73 is merely a special case of Equation 71, with n=l. 
Equation 74 is "new" however;__it is the required extension of the 
"summability feature" of the to other classes of partial proper­
ties. 

Other analogs of the usual partial-property relations are found 
by straightforward mathematics. For example, according to Equation 
74, the total differential dM is 

dM = Yx.dM, + YM. dx, j i i L ι i 

But this expression must be equivalent to Equation 73; comparing the 
two gives immediately a generalized Gibbs-Duhem equation: 

dY 
χ 

(75) 

which is merely an extension of the familiar 
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1. A B B O T T A N D Ν ASS Classical Solution Thermodynamics 17 

! Ά • (S) « + (SL- (76) 
P,x 'Τ,χ 

Relations among Partial Properties of Different Types. Sometimes i t 
is necessary to convert one type of partial property to another. 
Let us define, analogous to ÎL, a second partial property M̂ : 

L 3 n i JX«,Y',n. 
(77) 

where intensive variables X1 and Y* may be different from intensive 
variables^X and Y. We wish to relate partial property Mj[ to partial 
property M̂ . By Equation 71 we find that 

|~3(nM)1 m fa (nM)l / 3X \ 
L 9 n i Jx',Y',n. " L 9 X J Y , n ^Vx',Y',n 

J 

[3(nM)1 J3Y \ + ~3(nM)"| 
L 9 Y Jx,n l 3Vx',Y',n. L 9 n i Jx,Y,n 

which becomes on simplification 

+ n ( l f ) X ) X ( l ^ ) x , ) Y ) ) n _ 

(78) 

Equivalent statements of Equation 78 are possible. For example, the 
derivative (3Χ/3η^)χΐ^yt>n may be written as 

111] . . (i2L] fâlL] 
\9ni>X',Y',n. ^ ' χ ' , χ \ aVx',X,n. 

/ax 1^1 - - <xf- x) 
9 ni'x',Y',n. 

The derivative (3Y/3n i) xi > γι >n.. may be similarly rewritten. 

Only two classes of partial properties are of importance to us 
here: those defined at constant Τ and Ρ ("laboratory" partial 
properties), and those defined at constant Τ and V ("equation-of-
state" partial properties). Thus we define, as special cases of 
Equation 72, 
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18 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

and 

a(nM) 
3n. (64) 

Τ,Ρ,η. 

M. ι 
3(nM)1 
• â n i JT.V.n. 

(79) 

Here and henceforth the tilde (~) is used to distinguish a con­
stant - T,V partial property from the conventional constant - T,P 
variety. Note that can equally well be considered a constant -
T,p partial property, where p is molar density. 

Both classes of partial properties obey the summability rela­
tion of Equation 74: 

and 
ί ι i 

M = Yx.M, 
i 1 1 

(70) 

(80) 

Each class of partial properties has i t s own Gibbs-Duhem equation: 

sir,+ 
(if). dP T.x 

(76) 

and 

i 
. m) d T + (if ι 

3TA 
dT 

V,x 
dV 

FT,x 
(81) 

Finally, by Equation 78, we find the following relations between the 
two classes of partial properties: 

(82) 

and 

(83) 
T,x^° i T,V,n. 

Equation 82 effects a conversion of laboratory partial proper­
ties to equation-of-state partial properties. Since 

V i ~ 
3(nV) 
3n4 
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1. A B B O T T A N D Ν ASS Classical Solution Thermodynamics 19 

we can rewrite i t as 

K± - M. + (V - V.) (If) (84) 
Τ,χ 

The conventional partial molar volume is thus a key quantity for 
this type of conversion. 

More common are applications requiring conversion of constant • 
T,V partial properties to constant - T,P partial properties. Here 
Equation 83 is appropriate; the analog of Equation 84 is 

* i = \ + ( P " V (If). Τ,χ 
where 

3(nP) 
9n, i jT,V,n j 

An equivalent result involving compressibility factors is 

— ~ , RT . ~ ν / 3M M± - M± + - (Z - Z ±) [ π 

Τ,χ 
(85) 

As an example of an application of this and earlier material, 
consider the following standard problem: to determine an expression 
for the component fugacity coefficient φ^, convenient^for use with a 
pressure-explicit equation of state. We know that £ηφ^ Is a 
constant - T,P partial property with respect to GR/RT: see Equation 
67, Table VI, Moreover, by Equations 10 and 16, we have the 
following recipe for GR/RT: 

ê · z - i - i i n z + / P ( z - i ) ^ 
ο μ 

Since density appears explicitly in this equation, an expression for 
Gj[R/RT is readily found. It is 

A l l that remains is to relate Ĝ /RT (= £ηψ 1) to C^/RT. Here, we 
apply Equation 85, with the assignment M = GR/RT. The pressure 
derivative of GR/RT is 
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20 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Hence 

and thus we find that 

ΐηφ± = Ζ - 1 - ί,ηΖ + f (ζ±Ί) ^ (86) 

Equation 86 can of course be obtained by other procedures. In this 
example we have attempted to make f u l l use of material presented in 
this and preceding sections. 

Suppose that Ζ is represented by the van der Waals equation of 
state, Equation 34: 

Z(vdW) 1 ap 
1-bp " RT (87) 

Then 

χ (S±-b)p Ρ 
Ζ (vdW) - T - . ? T 

1 1 b f > (1-bp) 2 R T 

and hence, by Equations 86 and 87, 

ΐ,ρ (a + a.)p 
JUcjj.CvdW) = -γζς^' R T - £n(l-bp)Z (88) 

Here, quantities a^ and are partial equation-of-state parameters: 

ϊ = Γ9 (na)1 
L i-ΐτ,ρ,η 

1 = L J T η 

Explicit expressions for ̂  and ί>̂  require explicit expressions for 
the mixing rules for parameters a and b. 
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1. ABBOTT AND NASS Classical Solution Thermodynamics 21 

Mixture Fugacity Behavior 

Fugacity Coefficients, Activity Coefficients, and Henry's Constants. 
Component fugacity coefficients are readily obtained from a PVTx 
equation of state. For developing and testing equations of state 
for phase-equilibrium applications, however, i t is sometimes useful 
to deal directly with quantities conventionally used for description 
of the liquid phase, e.g., activity coefficients and Henry's 
constants. We review in the following paragraphs the connections 
among these measures of component fugacity behavior, and illu s t r a t e 
how they are determined from pressure-explicit equations of state. 

The fugacity coefficient is defined as 

where f^ is the fugacity of species i in solution. The activity 
coefficient is 

ι x 1 t 1 

where f° is the standard-state fugacity. Two standard states are 
popularly employed: Lewis-Randall ("Raoult's-Law") standard stat< 
for which f? is the fugacity of pure i at the mixture Τ and P, 

(89) 

f°± (LR) - f. (91) 

and Henry's-Law standard states, for which 

f J (HL) = % ± (92) 

where Henry's "constant" . is defined as 

(93) 

the limit being taken at the mixture Τ and P. 
If we write Equation 90 as 

i Ρ Ρ 

then we see that a l l that is required to "convert" a fugacity coef­
ficient to an activity coefficient is an expression for the ratio 
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22 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

f°/P. For Lewis-Randall standard states, we have 

where φ± is the fugacity coefficient of pure i . Thus the conven­
tional Lewis-Randall activity coefficient is 

For Henry*s-Law standard states, we have 

(94) 

1 1 · ± 

— lim — Ρ n x. χ + 0 ι 
But 

lim — = Ρ lim φ. 
Xi*° X j L X±*° 1 

where φ ̂ ° is the fugacity coefficient at inf i n i t e dilution. Thus 

9f. = ?l±°° (95) 

and the Henry1s-Law activity coefficient i s 

(96) 

Conversion from fugacity coefficients to activity coefficients 
and Henry's constants is thus straightforward. One needs in addi­
tion to the component fugacity coefficient one or another of i t s 
limiting values, viz., 

φ ί Ξ lim φ ± 

φ 1 Ξ lim φ̂ ^ 
x^+0 

For a pressure-explicit equation of state, both of these are found 
as limits of Equation 86. 
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1. ABBOTT AND NASS Classical Solution Thermodynamics 23 

Consider as an example the van der Waals equation of state, for 
φ^ is given 

as a special case 
which is given by Equation 88. For pure i , this equation yields 

b i i p i 2 a i i p i 
^ i ( v d W ) = T ^ T IP " ^ " " i l P i * ! ( 9 ? ) 

i i H i 
where the doubly-subscripted parameters refer to pure i . Equations 
94, 88, and 97 when combined produce an expression for the 
Lewis-Randall activity coefficient implied by the van der Waals 
equation. 

Evaluation of φι" (and hence of or y± ) requires a l i t t l e 
more care, because the state of infini t e dilution for a species in a 
multicomponent mixture can in principle be defined in many ways. 
The natural definition of this state is as that state for which 
x^ approaches zero as the i-free mole fractions x^ remain constant. 
(H. 

J J k 

88 yields 
ere, χ'. Ξ X./^X, , where j,k ψ i.) By this definition, Equation 

b V (a'+â^ V 
£ηφ ± (vdW) = ^ , gj± in<l-bV)Z' (98) 

For the general multicomponent case, the primed quantities in 
Equation 98 are i-free mixture properties. Parameters â °° and b 
are partial equation-of-state parameters, evaluated at the same 
i-free composition as the mixture properties. For the binary case, 
say of i n f i n i t e l y dilute solute 1 in solvent 2, Equation 98 reduces 
to the simple result 

^1°°P2 ^22+3Ί°°)ρ2 
b 2 2p 2 

Here, the 1-free "mixture" is just pure solvent 2. 

* < ( v d W ) " T=b"ir - RT - *°(l-b 2 2P 2)Z 2 (99) 

Partial Equation-of-State Parameters. Composition is introduced 
into many analytical engineering equations of state via "one-fluid 
theory", in which an equation of state for a mixture i s assumed to 
have the same functional form as that for the pure species. 
Component mole fractions appear explicitly only in mixing rules for 
the equation-of-state parameters. As illustrated by the example 
just considered, evaluation of φ^, γ^, or γ^* then requires 
expressions for the partial equation-of-state parameters. Letting 
π denote a generic equation-of-state parameter, we define, analo­
gously as for any partial property, 
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24 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

= (IOO) 
3 

. Π) (nw)1 
L 3 n i j T , p > n , 

(101) 
3 

Usually, parameter ir is taken to depend at most upon temperature and 
composition; in such cases the restrictions to constant Ρ or ρ are 
superfluous in these definitions, and 

- _ ~ _ Γ3(ηπ)1 

Note however that Equation 101 accommodates the currently-popular 
concept of "density-dependent mixing rules". Since pressure-
explicit equations of state are favored for engineering applica­
tions, we henceforth consider only ϊ^. 

Development and testing of mixing rules is a major area of 
research in applied thermodynamics, and new formulations appear 
regularly: see other papers in this volume. For concreteness, and 
to illustrate procedures, we treat here only the familiar "van der 
Waals prescription", according to which parameter π is quadratic 
(or, as a special case, linear) in mole fraction: 

w = g W * ( 1 0 2 ) 

Application of Equation 101 to Equation 102 yields on rearrangement 
the simple result 

*i " 2JVki " * ( 1 0 3 ) 

k 
where π is the mixture parameter, given by Equation 102. In 
deriving Equation 103, we assume that the parameters remain 
unchanged on permutation of subscripts: πι^ ~ π^· 

For pure i , Equation 103 yields the expected result: 

lim w ± - „ 1 ± 

x. + l 
ι 

To evaluate π/50 (for i n f i n i t e l y dilute i ) , we f i r s t introduce i-free 
mole fractions into Equations 103 and 102, obtaining 

; i " 2 V i i + 2 ( 1 ^ i ) J , x k i r k i " 1 f 

k 
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1. A B B O T T A N D Ν ASS Classical Solution Thermodynamics 25 

where 
w = + 2 X i ( l - X i ) r ^ k i + ( Ι - χ / ΐ Τ ΐ ; » ^ (104) 

k ι 
Combination of these equations gives 

; = ^ ) . u + ( i - x t ) 2 n ' Y ; ( 2 . k i ^ k i ) <105> 

Here, the primed mole fractions are i-free mole fractions, and the 
primed sums specifically exclude species i . Equation 105 is 
entirely equivalent to Equation 103; taking the limit x̂ +0 we obtain 
directly an expression for at inf i n i t e dilution of i : 

V- n,xW(2,""V (106) 

Similarly, we find from Equation 104 in the limit as x̂ +0 an 
expression for the i-free mixture parameter π 1: 

*· - l'i'Wu ( 1 0 7 ) 

Equations 102, 103, 106, and 107 complete the apparatus required to 
evaluate φ^ and related quantities from a pressure-explicit equation 
of state, with mixing rules given by the van der Waals prescription. 
With respect to examples treated previously, they apply in par­
ticular to the van der Waals equation of state, where π is iden­
t i f i e d with parameters a and b. 

Numerical Examples 

We illustrate the use of preceding material with two numerical 
examples, both for the van der Waals equation of state. F i r s t , con­
sider the van der Waals excess functions, for which expressions are 
given by Equations 60 through 63. Calculation of numerical values 
of these quantities requires values for the equation-of-state para­
meters. For binary mixtures containing species 1 and 2, six parame­
ters are needed: a ^ , b^, &22> 2̂2> a12> a n c* b12 e The f i r s t four 
are found from information on the pure components; the interaction 
parameters a\2 and b^2 a r e estimated from combining rules or, pre­
ferably, from mixture data. 

Since the application is to the representation of excess func­
tions for liquid mixtures, i t is reasonable to determine the and 
b±± from data on pure liquids. Various combinations of properties 
are employed for this purpose; we choose here the liquid/vapor 
saturation pressure P^ a t, the molar density of the saturated 

ο ν 

liquid, and the molar heat of vaporization ΔΗ̂  . 

ο ν 
A molar property change of vaporization ΔΜ̂  of pure fl u i d i is 

defined as 
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26 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

AMj V Ε M^(T,P*at) - M*(T,P*at) (108) 

where the terms on the right side denote molar properties of pure i 
as saturated vapor and as saturated liquid. Since temperature and 
pressure are uniform, ΔΜ* is just a difference between constant -
Τ,Ρ,χ residual functions: 

ΔΜ A ν (109) 

Here, the terms on the right are constant - Τ,Ρ,χ residual functions 
for pure i as saturated vapor and as saturated liquid: 

M*'V = M^(T,P*at) - Mj 8(T,P^ a t) 

M*>* = M*(T,P*at) - Mj 8(T,P^ a t) 

Residual functions are readily determined from a PVTx equation of 
state by procedures reviewed earlier. Hence, by Equation 109, so 
also are property changes of vaporization. 

Consider the molar heat of vaporization Δ# 

Δ Η ' £v Η i i " i 

and, by the definition of H, 

H* = U* + PvJ 

where, by Equation 7, 

U ,R = u; i i 

Thus, by the last three equations, 

By Equation 109, 

(110) 

Equation 110 expresses the molar heat of vaporization in a form con­
venient for use with a pressure-explicit equation of state. 
Constant - T,V,x residual internal energies are found from Equation 
12, sat α ν and Ρ i s related to p. and ρ by the equation of state 
i t s e l f . 1 1 1 

For the van der Waals equation of state, we have by Equations 
110, 36, and 34 that 
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1. ABBOTT AND NASS Classical Solution Thermodynamics 27 

AHjV(vdW) = a u(pj " ρ*) + ?\Λ\-\ - -j-) (111) 
Pi Pi 

where 

Ρ 

and 
1 - b l l P l 

p S a t 
1 1-K v 

1 b i i p i 

a t l(pp <112> 

v 
P;RT 9 K i , v N2 a^Cpp" (113) 

Given experimental values for P* , p*, and ΔΗ~ at specified T, one 
solves Equations 111, 112, and 113 for p^, a ^ , and b ^ . The value 

γ 

of p^ so obtained is merely an intermediary quantity; because the 
equal-fugacity requirement for liquid/vapor equilibrium i s not 
invoked, p^ is not necessarily the "true" saturation vapor density 
implied by the equation of the state at the specified T. (The 
equal-fugacity requirement would provide a fourth equation; vapor 
pressure P^ a t would then be treated as an unknown, to be determined 
along with p^, a ^ , and b^.) 

The above-described procedure when applied separately to pure 1 
and to pure 2 provides values for ^H> a22> a n c* ^22' ^° ̂ *-n(* 
a\2 and bj^ w e assume the availability of data for H E and V E , each 
at a single composition. The working equations follow from 
Equations 60, 34, and 102, applied to the liquid phase: 

HE(vdW) - - (ap-x 1a 1 1p 1-x 2a 2 2p 2) + PVE(vdW) (114) 

PivdW) = - ap 2 (34) 

VE(vdW) - ρ"1 - x ^ " 1 - χ 2 ρ 2
Χ (115) 

2 2 
a - x^a^ + x2 a22 + 2 x l x 2 a 1 2 (116) 

b = x i b n + x2 b22 + 2 x i x 2 b i 2 (117) 

Here, liquid molar densities pi, p2> and ρ are found as solutions to 
Equation 34, under appropriate assignments for the equation-of-state 
parameters. Agreement with experiment is forced for H^ and V E at 
the single states from which a^2 a n (* b12 a r e determined; calculations 
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28 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

of H and V at other states, or of other excess functions at any 
states, constitute extrapolations. When compared with experiment, 
these extrapolations provide tests of the van der Waals mixing rules 
and (to a lesser degree) of the ab i l i t y of this equation of state to 
represent properties of the liquid phase. 

The literature abounds with such comparisons and i t is not our 
purpose to survey them here. Instead we show in Figure 1 predicted 
values of the scaled excess functions V E/xiX2» GE/x^X2RT, HE/x^X2RT, 
S E/xiX2R> and Cp E/x 1x 2R for the system argon(l)/krypton(2). Pure-
component parameters were estimated as described above from satura­
tion data compiled by Vargaftik (5_). Parameters a i 2 and b ^ w ^ r e 

estimated from equimolar values of H E and V e at zero pressure, as 
given by the correlations of Lewis et a l . (6_) for H E at 116.9 Κ and 
Da vies et a l . (7_) for V e at 115.77 K. 

Both pressure and temperature effects are illustrated in Figure 
1. Particularly to be noted are the essential equivalence of the 0 
bar and 1 bar isobars at 120 K. This justifies the frequent use of 
the zero-pressure liquid state in calculations of excess functions 
from equations of state. For example, one obtains for the van der 
Waals equation at zero pressure an explicit expression for the 
liquid density: 

P*(vdW;P=0) - ^ ( 1 + f 7 ^ ) 

Moreover, the expression for the excess enthalpy simplifies to 

HE(vdW;P=0) - - ( a p - ï x
1

a i i p i ) 

Next we examine the composition dependence of Henry's constant 
^1;2,3 f° r solute species 1 in a mixed solvent containing species 
2 and 3. Here, the solute-free mole fractions x^ and x^ are 
appropriate measures of composition. Subtleties of behavior are 
nicely displayed through the "excess" quantity ^ n r r ^ . 2 3» defined as 

* n^;2,3 -= *-«%Z,3 " X 2 ^ 1 ; 2 " x 3 ^ 1 ; 3 ( 1 1 8> 

where ' ^ ^ 2 a n c * ^ 1 . 3 a r e Henry's constants for species 1 in pure 
solvents 2 and 3. The comparison in Equation 118 is made at uniform 
T,P, and composition, and £η^/ί 9 „ is identically zero i f the three 

* ' Ε 
species form an ideal solution; however, £n^f. # 9 ^ is not a true 
excess function as defined by Equation 37, because ζηΊψ^^ 3 i - s n o t 

a mixture molar property. ' ' 
According to Equation 95, Henry's constant is proportional to 

the fugacity coefficient at infinite dilution. Combination of 
Equations 118 and 95 thus yields the general result 
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I. A B B O T T A N D Ν ASS Classical Solution Thermodynamics 29 

Figure 1 (A,B). Scaled van der Waals excess functions for liq u i d 
mixtures of argon( 1 ) and krypton(2). (The 10,000-bar isobar is 
not shown i n A) . 
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G /x^x^RT vs. x^ 
at T= 120 Κ P=0 bar_ 

"p^Too" 

P=1000 

P=10000 

0.0 0.2 0.4 0.6 

(C) 

0.8 1.0 

Figure 1 (C,D). Scaled van der Waals excess functions for liqu i d 
mixtures of argon( 1 ) and krypton(2). 
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0.30 

0.25 

0.20 

0.15 

0.10 

0.05 

0.00 

P=10000 

H /x^x^RT vs. x^ 
at T= 120 Κ 

0.0 0.2 0.4 0.6 0.8 1.0 
(Ε) 

0.20< T=115K 
0.16, 

0.12 

0.08 Τ=14θ"κ ^ · 

0.04 H*Vx^x^RT vs. 
at P = 0 

X i ^ ^ ^ - -

0.00 0.00 
0.2 0.4 0.6 0.8 

-0.04 (F) 

Figure 1 (E,F). Scaled van der Waals excess functions for liq u i d 
mixtures of argon( 1 ) and krypton( 2) . 
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P=10000 bar 

P=1000 

-0.30 
at T= 120 Κ 

0.0 0.2 0.4 0. 

(G) 

-0.15 

-0.20 

-0.25 

-0.30 

-0.35 

-0.40 

-0.45 
0.0 0.2 0.4 0.6 

(H) 

0.8 

1.0 

T=115 Κ 

T=140 

S^/x^x^R vs. X l 
at Ρ = 0 

X l 

1.0 

Figure 1 (G,Η). Scaled van der Waals excess functions for li q u i d 
mixtures of argon( 1 ) and krypton( 2) . 
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0.10· 

o.oo. 

-0.10. 

-0.20-

-0.60J 

P=1000 bar 

P=100 

P=10 

C /x-.xnR vs. Ρ 1 2 1 N \ 
at T= 120 Κ 

\ 1 
0.0 0.2 0.4 0.6 0.8 1.0 

(I) 

T=115 Κ 

0.8 1.0 

Figure 1 (I,J). Scaled van der Waals excess functions for liquid 
mixture of argon (1) and krypton ( 2 ) . 
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* n ^ l ; 2 , 3 Γ;2,3 ~ Χ2^Γ;2 " χ3Αη*Γ;3 (119) 

For the van der Waals equation, £ηφ" is given by Equation 98. 
quadratic mixing rules for parameters a and b, we find from 
Equations 98, 99, 106, and 107 the following expressions for 
fugacity coefficients: 

With 

the 

* < ; 2 , 3 ( v d W ) 
2(xj>b12 + Φ ι 3 Η > ' , 

1-b* 

2 ( x2 a12 + *3*13W 
RT md-b'p'jz 1 (120) 

Λ» j î î N ( 2 b 1 2 - b 2 2 ) p 2 

£t^, 9(vdW) - — : r 
1 ; Z b22 p2 

2 a12 p2 
— £n(l-b 2 2p 2)Z 2 

(121) 

Λοο » ( 2 b13" b33 )P3 £ηφ, .(vdW) = — — 
' b33 p3 

2a 13p3 — — - £n(l-b 3 3p 3)Z 3 (122) 

Solute-free mixture parameters a 1 and bf are given by 

2 2 a* = (xp a 2 2 + (x^) a 3 3 + 2x£x^a 2 3 

2 2 b' = (xp b 2 2 + (x^) b 3 3 + 2 x ^ b 2 3 

(123) 

(124) 

and liquid densities and compressibility factors are found as solu­
tions to the equation of state. 

For the present exercise, ten parameters are needed: &22* b22> 
a33> b33> a12> b12> a13> b13> a23> a n d b23* Ideally, the pure-
component parameters would be estimated from liquid-phase data 
(e.g., as in the excess-function example), and the interaction para­
meters from liquid/vapor equilibria and gas-solubility data. We 
adopt for this example a more straightforward approach. Parameters 
an a n c* b i i a r e estimated from c r i t i c a l constants Τ 0^ and Vc^ via 
the classical relations 
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1. A B B O T T A N D Ν ASS Classical Solution Thermodynamics 35 

a,, = *jT RT V i i 8 c.̂  (125) 

(126) 

Interaction parameters are determined from the conventional com­
bining rules 

a i j - " - ' i j X ' i i - j / ' 2 ( 1 2 7> 
bij - ( 1^i 3

) ( bii + V'2 (128) 

where parameters k^j and £jj are pure numbers, of absolute value 
less than unity. We wish to illu s t r a t e the effects of varying 

• Ε 
k . and £ on the "excess" quantity fcn^f-, 9 ~, i.e., the sen-
s i t i v i t y of mixed-solvent Henry's constants to the numerical values 
of the interaction parameters. 

The parametric study is done for a simulated ternary system at 
300 Κ and 1 bar, in which hydrogen(l) is the solute, and n-heptane(2) 
and n-decane(3) compose the mixed solvent. Parameters for the pure 
fluids are obtained from Equations 125 and 126 and parameters a23 
and b23 are fixed once and for a l l by setting k23 = £23 = 0 
Equations 127 and 128. Assignment of numerical values to 
k^ 3 and £ ^ then permits calculation of An^f-j^ 3 from Equations 119 
through 124. 

Numerical results are displayed on Figure 2. Figures 2A and 2B 
il l u s t r a t e the effects of independently varying the energy interac­
tion parameters; here, we have set £ 1 2 * &13 ~ 0· Figures 2C and 2D 
similarly show the effects of varying £ 1 2 and £ 1 3 , with k\2= ^13 = 0. 
The results confirm that mixed-solvent Henry's constants, like excess 
functions for liquid mixtures, can serve as probes for assessing 
mixing rules and combining rules for PVTx equations of state. 

Closure 

Connections between the PVTx equation-of-state formalism and 
the conventional apparatus of classical solution thermodynamics are 
cleanly exposed through a few unifying concepts, e.g., generalized 
deviation functions, generalized partial properties, and component 
fugacity coefficients. We have found the notion of partial 
equation-of-state parameters to be particularly helpful, because i t 
allows one to postpone questions relating to composition dependence 
u n t i l they really need to be addressed. 

Much of the substance of this communication resides in defini­
tions and generalizations, and in the summaries of working formulas 
collected in the tables. To keep the paper to a reasonable length, 
we have provided examples and illustrations for but a single 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



Figure 2 (C,D). van der Waals Henry's constants at 300K and 1 
bar, for hydrogen( 1 ) i n mixed solvents containing n-heptane(2) 
and n-decane(3). 
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equation of state: the van der Waals equation. The principles and 
procedures are of course easily applied to other, more r e a l i s t i c 
equations of state. 

Exercises in synthesis necessarily build on precedents, in this 
case too diffuse and numerous to cite in detail. We are however 
pleased to acknowledge as general sources of inspiration the 
published researches of P.T. Eubank, K.R. Hall, the late A. 
Kreglewski, M.L. McGlashan, K.N. Marsh, J. Mollerup, S.I. Sandler, 
R.L. Scott, K.E. Starling, and J. Vidal. To these and to other 
equation-of-state enthusiasts we acknowledge our indebtedness. 
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Legend of Symbols 

a,b = parameters in van der Waals equation of state 
a^ = activity of species i 
A - molar Helmholtz energy 
Cp,Cy = molar heat capacities 
f^ = fugacity of pure i 
f^ - fugacity of species i in solution 
f° = standard-state fugacity of species i 
G = molar Gibbs energy 
H = molar enthalpy 

= Henry's constant for species i 
M = arbitrary molar, or intensive (e.g. Μ = Ρ), property 
d 

M = constant - T,V,x deviation function 
D 

M = constant - Τ,Ρ,χ deviation function 
e 

M = constant - T,V,x excess function 
Ε 

M = constant - Τ,Ρ,χ excess function 
Μ Γ - constant - T,V,x residual function 
M s constant - Τ,Ρ,χ residual function 
M*" = total property Ξ nM 
M̂  = generalized partial property 
M̂  = constant - T,P partial property 

» constant - T,V partial property 
ΔΜ - constant - Τ,Ρ,χ property change of mixing 
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1. A B B O T T A N D Ν ASS Classical Solution Thermodynamics 39 

0 γ 

ΔΜ^ = molar property change of vaporization of pure i 
η • amount of substance ("mole number") 
Ρ • pressure 
p S a t _ liquid/vapor saturation pressure of pure i 
R = universal gas constant 
S = molar entropy 
Τ - absolute temperature 
U = molar internal energy 
V a molar volume 
χ - mole fraction 
X,Y - arbitrary intensive variables 
Ζ = compressibility factor Ξ PV/RT 

Greek Letters 

3 = volume expansivity = V ^aV/aT) 
r ,x 

γ = activity coefficient of species i 
κ = isothermal compressibility = -V (3V/3P) 

ι ,x 
= absolute activity of species i 
= chemical potential of species i 

π = arbitrary equation-of-state parameter 
ρ s molar density 
τ = "coldness" = Τ * 

= fugacity coefficient of pure i 
φ^ - fugacity coefficient of species i in solution 
Superscripts 

i d = denotes an ideal-solution property 
ig • denotes an ideal-gas property 
mod = denotes a model mixture property 

« = denotes a property of a species at infi n i t e dilution 

Literature Cited 
1. Van Ness, H.C.; Abbott, M.M. "Classical Thermodynamics of 

Nonelectrolyte Solutions: With Applications to Phase 
Equilibria," Appendix C, McGraw-Hill, New York, 1982. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



40 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

2. Abbott, M.M.; Prausnitz, J.M. "Generalized van der Waals 
Theory: A Classical View," manuscript in preparation. 

3. Reis, J.C.R. "Theory of Partial Molar Properties," J. Chem. 
Soc., Faraday Trans. II 1982, 78, 1595. 

4. Abbott, M.M. "Higher-Order Partial Properties," seminar pre­
sented at the University of California, Berkeley, 21 Sept. 1983; 
unpublished notes. 

5. Vargaftik, N.B. "Tables on the Thermophysical Properties of 
Liquids and Gases," 2nd Edition, Wiley, New York, 1975. 

6. Lewis, K.L.; Lobo, L.Q.; Staveley, L.A.K. "The Thermodynamics 
of Liquid Mixtures of Argon + Krypton," J. Chem. Thermodynamics 
1978, 10, 351. 

7. Davies, R.H.; Duncan, A.G.; Saville, G.; Staveley, L.A.K. 
"Thermodynamics of Liquid Mixtures of Argon and Krypton," 
Trans. Far. Soc. 1967, 63, 855. 

RECEIVED November 5, 1985 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



2 
The Collinearity of Isochores at Single- and Two-Phase 
Boundaries for Fluid Mixtures 

John S. Rowlinson1, Gunter J. Esper2,3 James C. Holste2, Kenneth R. Hall2, 
Maria A. Barrufet2, and Philip T. Eubank2 

1Physical Chemistry Laboratory, Oxford University, Oxford 0X1 3QZ, United Kingdom 
2 Department of Chemical Engineering, Texas A&M University, College Station, TX 77843 

Fluid isochores for mixtures of fixed overall compo­
sition generally change slope on passing across the isopleth 
(dew-bubble point curve, DBC) from the homogeneous to 
heterogeneous phase region on a pressure/temperature dia­
gram. A thermodynamic proof is given which shows the iso­
chores to be always collinear at the cricondentherm (or any 
temperature extremum), rather than at the mixture critical 
point. The proof agrees with a different, more mathematical 
proof given earlier by Griffiths. These thermodynamic 
proofs are supported by our new, high-precision density data 
for the CH4/CO2 and N2/C02 equimolar binaries in addition to 
previously published measurements for 3He/4He and for H2/CH4 

at Duke University and Rice University, respectively. 
Collinearity of the isentropes at the cricondenbar is 

also demonstrated and supported by recent calculations using 
our CH4/CO2 data. Because fluid isochores for both pures 
and mixtures in the homogeneous region are approximately 
linear, most accurate equations of state (EOS) begin with 
this premise and then add correction terms for curvature. 
The present results contain thermodynamic constraints for 
such EOS. 

Figure 1 illustrates a typical dew-bubble point curve (DBC) or iso­
pleth for a binary mixture of fixed o v e r a l l mol f r a c t i o n , Zy The 
mixture c r i t i c a l point (CP) i s shown to l i e between the point of 
maximum pressure, the cricondenbar (CB), and the point of maximum 
temperature, the cricondentherm (CT). However, i f the slope of the 
c r i t i c a l locus, (dP /dT ), is positive for a particular z^ (1 = more 
v o l a t i l e component?), £hen the CP w i l l l i e outside the CB/CT gap. 
This occurrence is usual for z^ > 0.8 causing a CP to the l e f t of the 

•Current address: Institut fur Thermo- und Fluid-dynamik, Ruhr-Universitàt, 
D-4630 Bochum 1, Federal Republic of Germany. 

0097-6156/86/0300-0042S06.00/0 
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44 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

CB b u t a l s o h a p p e n s f o r ζ < 0.1 when (dP / d T ) L P P > 0 c a u s i n g a CP 
b e l o w t h e CT ° ° 

T h e s a t u r a t i o n d e n s i t y i n c r e a s e s m o n o t o n i c a l l y as we t r a v e r s e 
t h e DBC a s i n F i g u r e 2 f r o m CT t o CP t o C B . T h e l o w d e n s i t y i s o -
c h o r e s a r e s h o w n t o have a s t e e p e r s l o p e o n t h e t w o - p h a s e s i d e o f t h e 
D B C . We p r o v e t h a t t h e l i m i t i n g s l o p e s a t t h e DBC f r o m t h e s i n g l e 
a n d t w o - p h a s e s i d e s a r e i d e n t i c a l a t t h e C T . A b o v e t h e C T , t h e 
i s o c h o r i c s l o p e f r o m t h e s i n g l e p h a s e s i d e i s s t e e p e r . T h e s e r e s u l t s 
a r e i n d e p e n d e n t o f t h e l o c a t i o n o f t h e C P , w h i c h i n d e e d f a i l s t o 
e x i s t f o r some m i x t u r e s o f f i x e d c o m p o s i t i o n . 

B A S I C I D E N T I T I E S 

I m a g i n e a f i x e d v o l u m e c e l l c o n t a i n i n g l i q u i d o f t o t a l v o l u m e V a n d 
gas o f t o t a l v o l u m e V g . T h e n , 

d V * = V * (dT) + V * (dP) + ( d n ^ + ( d n 2 ) (1) 

where 

V * = ( 3 V * 7 3 T ) _ I I , v j - ( 3 V * 7 3 P ) T I I 
Τ P , n 1 , n 2 Ρ T , n 1 , n 2 

0 cr 
a n d d n . = d n . . T h e a d d i t i o n o f a s i m i l a r e q u a t i o n f o r d V ° t o 
E q u a t i o n 1 p r o v i d e s 

(V* + VÎjp dT + (Vp + V*) dP = AV1 (dn , , ) + A V 2 ( d n 2 ) (2) 

- _ rr - 0 
w h e r e AV . = ( V ? - V . ) i s t h e d i f f e r e n c e o f p a r t i a l m o l a r v o l u m e s 
b e t w e e n t"ne t w o 1 p h a s e s . Two f u r t h e r e q u a t i o n s c o n n e c t i n g t h e f o u r 
v a r i a b l e s ( Τ , Ρ , η , η ) f o l l o w f r o m t h e e q u i l i b r i u m c o n d i t i o n s o f 
d i î 3 : = d y S [2]. F i r s t 

d y f = - sf ( d T ) + v j ( d P ) + (3μ /3η,) 0 ( d n , ) + 
1 1 1 Τ , Ρ , η * 1 

( 3 μ ι / 3 η _ ) ( d n 9 ) ( 3 ) 
Τ , Ρ , η * * 

w h e r e t h e sum o f t h e l a s t two t e r m s i s a l s o O i ^ / S x ^ (dx^) w i t h 
x^ t h e m o l f r a c t i o n i n t h e l i q u i d p h a s e . E q u a t i n f e a s i m i l a r 
e x p r e s s i o n f o r d y ^ t o E q u a t i o n 3 r e s u l t s i n 

( d T ) - AV1 ( d P ) = (3u 1/3y ( |) T p (dy1 ) - Ο ν / ^ Τ , Ρ (dx1 ) (4) 

w h e r e y^ i s t h e m o l f r a c t i o n i n t h e v a p o r p h a s e . T h e a n a l o g o u s 
e q u a t i o n f o r t h e l e s s v o l a t i l e c o m p o n e n t i s 
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2. ROWLINSON ET A L . Collinearity of Isochores 45 
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F i g u r e 2. A q u a l i t a t i v e d i a g r a m e x h i b i t i n g t h e n a t u r e o f i s o ­
c h o r e s a n d i s e n t r o p e s i n b o t h t h e s i n g l e a n d t w o - p h a s e r e g i o n s f o r 
a b i n a r y m i x t u r e o f f i x e d c o m p o s i t i o n . N o t e t h e c o l l i n e a r i t y o f 
t h e i s o c h o r e s ( l i n e s o f c o n s t a n t d e n s i t y , p) a t t h e C T . T h e 
i s e n t r o p e s ( l i n e s o f c o n s t a n t e n t r o p y , S) a r e c o l l i n e a r a t t h e C B . 
B o t h t h e d e n s i t y a n d e n t r o p y a r e m o n o t o n i e t r a c i n g t h e DBC a n d a r e 
s u b s c r i p t e d i n o r d e r o f i n c r e a s i n g m a g n i t u d e . I I L i s t h e i s o -
c h o r i c i n f l e c t i o n l o c u s . 
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46 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

AS2 (dT) - AV2 (dP) = Ο μ 2 / 3 γ 1 ) τ p (dy1 ) - ( δ μ ^ χ ^ ^ ρ (dx^) (5) 

Application of the Gibbs-Duhem equation to each phase yields 
x 1 O y y a x ^ p T =- x 2 Ο μ 2 / 8 χ 1 ) ρ T and y 1 ( 9 μ 1 / dy 1 ) p ^ T = 

-y 2 (3y 2/3y 1) p τ· Multiplication of Equation (H) by x1 and Equation 
(5) by x 2 followed by addition yields 

<x.AV.> (dP) - <x.AS.> (dT) - U x / y 2 ) O y - ^ y ^ p T ^ y - j ) (6) 

where <x..AV.> s X-.AV1 + x^àV2 and Δχ a (y 1 - χ ). Likewise, multi­
p l i c a t i o n or* Equation (4) by y and Equation (5) by y 2 followed by 
addition provides 

<y.AV.> (dP) - <y.AS.> (dT) = (Δχ/χ2> Ο μ Ί /9x1 ) p T (dx^ (7) 

Before combining Equations (2), (6) and (7), we modify Equation (2) 
by f i r s t noting that 

x 9 (dn/dT).. n = x, (dn_/dT)„ n + nl (dx?7dT)v n n (8) 2 1 ν,η^ ,n 2 1 2 V,n^ ,n 2 1 ν,η^ ,n 2 

and that a s i m i l a r equation can be written for the^gas phase. The 
reader i s reminded that dn^ = dn whereas n^ = n^ + n g. M u l t i ­
p l i c a t i o n of Equation (8) by y 1 and of the gas phase equation by x 1 

followed by subtraction yields 

(y - χ ) (dn /dT) = n*y (dx /dT) + n gx 1 (dy /dT) (9) 

where a l l total derivatives indicate a constancy of total volume V, 
n̂  and n^. Likewise, 

(y] - X ( |) (dn2/dT) = η δ χ 2 (dy^dT) + n'y2 (dx^dT) (10) 

Equation (2) together with Equations (9) and (10) for (d^/dT) and 
(dn2/dT), respectively, becomes 

nil(dx1/dT)<y.AV.>+ng(dy1/dT)<x.AV.>-(V?;+Vg)(Ax) 
(dP/dT) - — J — 1 (11) 

(V£ + V g) (Δχ) 

Equation (6) shows that 

(dy.j/dT) - [<x.AVi>(dP/dT) - <x.AS.>] y 2/(Ax) Ο μ 1 /3y1 ) p T (12) 
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2. ROWLINSON ET A L . Collinearity of Isochores 47 

where 

Oy^By^p τ = <χ.Δν.Χ3Ρ/3γ 1 ) τ (y^àx) =- <χ.Δ§.>( Β Τ ^ ) ρ (y2/Ax) 
(13) 

Substitution of Equations (12) and (13) into Equation (11) along with 
analogous 

(dP/dT) = 

analogous equations for (dx^dT) and Oy^Bx^p^, results in 

3x 9x dP _ 3y 9y dP 
^ ^ [ ( ^ • ( ^ 

(Vp+Vg)(Ax) 

(1*0 

This equation i s solved for (dP/dT) with the quality, q Ξ. [η δ/(η δ + 
n A ) ] f introduced as well as v* s Ov A/3T) p = (vl/n1), ν δ , v£ and 
P" 

-(dP/dT) = 

[(1-q)v^+qvg](Ax)+(1-q)<yiAVi>Ox2/3T)p+q<x.AVi>Oy2/3T)p 

[(1-q)Vp+qvg](Ax) + (1-q)<yiAVi>(8x2/3P)T+q<xiAVi>(8y2/3P)T 

(15) 

Because (3Ρ/3Τ)χ =- (3x 2/3T) p (3P/3x 2) T , an alternate form of 

Equation (15) is 

[(1-q)v%v g](Ax)-(3P/3T) v · n*-(3P/3T) · η δ 

1 I Xp Yp 
-(dP/dT) = _ 1_ ^ — (16) 

[(1-q)v£+qv*]Ux)+n +η δ 

where η Α = ( 1-qXy.AV.X3x2/3P)T and η δ = q^.AV.X3y 2/3P) T 

PURE COMPONENT CHECK 

Both η and r\ are everywhere zero for a pure compound causing 
Equation (16) to reduce to 

-(dP/dT) - [(1-q) v* + qv^ - (Δν) (dq/dT) ]/[ 1-q)v£ + qv^] (17) 

For either pure components or mixtures of fixed overall composition, 
quality l i n e s form a family of curves in the heterogeneous region 
issuing from the c r i t i c a l point. Any continuous path through the 

American Chemical Society, 
Library 

1155 18th St., N.W. 
Washington, DX. 2003S 
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48 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

h e t e r o g e n e o u s r e g i o n e n d i n g a t t h e CP r e s u l t s i n ( d q / d T ) = 0 a t t h e 
CP v i a s t r a i g h t l i n e t a n g e n c y . F o r a n y f L x e d v a l u e o f q n e a r i n g t h e 
C P , E q u a t i o n (17) c o n t a i n s - v ^ a n d vZ •+ vj* s o t h a t ( d P ° / d T ) = 

f f I T r r ^ 
- ( v T / v p ) c = ( 3 P / 3 T ) . H e r e t h e homogeneous p h a s e s i d e d e r i v a t i e s v T 

f P ° 
a n d v p , ( f = f l u i d ) , a r e b o t h d i v e r g e n t b u t t h e i r r a t i o i s 
i d e n t i c a l l y t h e s l o p e o f t h e c r i t i c a l i s o c h o r e a t t h e C P . T h i s 
c o l l i n e a r i t y o f t h e v a p o r p r e s s u r e c u r v e w i t h t h e c r i t i c a l i s o c h o r e 
was known t o v a n d e r W a a l s [ 3 ] . 

BINARY MIXTURE AT THE CRICONDENTHERM ( C T ) 

A t t h e C T , ( 3 P / 3 T ) a n d ( 3 P / 3 y ) a r e i n f i n i t e w h i l e Δ χ , 

( 3 T / 3 y 2 ) p a n d < x i A S i > a r e f i n i t e s o t h a t < x i A V i > i s z e r o f r o m 

E q u a t i o n ( 1 3 ) . W i t h q u n i t y , n g = 0 a n d ( 3 P / 3 T ) · n S = - q < χ . Δ ν \ > · 

CT y ρ 1 1 

( 3 y 2 / 3 T ) p = ( 1 ) . ( 0 ) - ( f ) = 0 , w h e r e f = f i n i t e ( n o n z e r o ) . 
E q u a t i o n (16) t h e n r e d u c e s t o - ( d P / d T ) = ( v ^ / v g ) =- ( 3 P / 3 T ) o r 
c o l l i n e a r i t y i s o b t a i n e d f o r a n y e x t r e m u m (maximum o r m i n i m u m ) i n t h e 
t e m p e r a t u r e on t h e D B C . We have a s s u m e d h e r e t h a t t h e CT l i e s o n t h e 
d e w - p o i n t c u r v e b u t i n t h e u n u s u a l c a s e w h e r e i t i s o n t h e b u b b l e -
p o i n t c u r v e t h e c o n c l u s i o n s a r e i d e n t i c a l . F i g u r e 2 i s a 
p r e s s u r e / t e m p e r a t u r e d i a g r a m s h o w i n g t h e q u a l i t a t i v e b e h a v i o r o f 
f l u i d i s o c h o r e s f o r a b i n a r y m i x t u r e e x h i b i t i n g a c l a s s i c a l DBC 
i n c l u d i n g a v a p o r / l i q u i d c r i t i c a l p o i n t . F i g u r e 3 i s t h e a n a l o g o u s 
q u a l i t a t i v e d i a g r a m f o r e q u i m o l a r C 0 2 / N 2 w h i c h h a s no CP n o r CB b u t a 
CT a n d a m i n i m u m t e m p e r a t u r e (MT) . As t n e d e n s i t y o f t h e h o m o g e n e o u s 
p h a s e i n c r e a s e s i t i s t e r m e d f i r s t "gas", t h e n " l i q u i d " a n d , f i n a l l y , 
o n c e a g a i n " g a s " . B o t h t h e i s o c h o r e s ρ a n d ρ a t C T a n d M T , 
r e s p e c t i v e l y , a r e c o l l i n e a r . 

ISOCHORIC C O L L I N E A R I T Y PROOF OF G R I F F I T H S 

L e v e l t S e n g e r s [ 4 ] has n o t e d an e a r l i e r p r o o f d u e t o G r i f f i t h s w h i c h 
a p p e a r e d as an a p p e n d i x i n t h e i m p o r t a n t a r t i c l e o f D o i r o n , B e h r i n g e r 
a n d M e y e r [ 5 ] , w h i c h c o n t a i n s t h e i r H e / H e i s o c h o r i c d e n s i t y 
m e a s u r e m e n t s . Our p r e v i o u s d i s c u s s i o n s w i t h e n g i n e e r s a n d c h e m i s t s 
l e a d s us t o b e l i e v e t h a t t h i s p r o o f i s k n o w n m o s t l y t o a l i m i t e d 
n u m b e r o f p h y s i c i s t s . We r e p e a t h e r e a b a c k w a r d s v e r s i o n o f t h i s 
t e r s e , b r i l l i a n t p r o o f t o c a l l i t t o t h e a t t e n t i o n o f a w i d e r 
a u d i e n c e . C o m p a r e d t o t h e p r o o f g i v e n e a r l i e r , G r i f f i t h s 1 p r o o f i s 
more c o n c i s e a n d m a t h e m a t i c a l . T h e r e a d e r c a n t a k e h i s p i c k b e c a u s e 
t h e s e t w o d i f f e r e n t p r o o f s l e a d t o t h e same c o n c l u s i o n . 

A s t a n d a r d m a t h e m a t i c a l a r g u m e n t i s e m p l o y e d t h r i c e t o r e l a t e 
v a r i o u s q u a n t i t i e s a c r o s s t h e D B C . L e t ξ ( ψ , ω ) be a c o n t i n u o u s 
f u n c t i o n w h o s e d e r i v a t i v e s a r e d i s c o n t i n u o u s a l o n g a c u r v e i n t h e 
( ψ , ω ) p l a n e s e p a r a t i n g r e g i o n s I a n d I I . The d i f f e r e n t i a l o f ξ a l o n g 
t h i s c u r v e i s 

dC = ( 3 ξ / 3 ψ ) 1 dij, + ( 3 ξ / 3 ω ) * do) = ( 3 ξ / 3 ψ ) Ι ] ^ ψ + ( 3 ξ / 3 ω ) ^ 1 άω (18) 
ω ψ ω ψ 
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2. ROWLINSON ET A L . Collinearity of Isochores 49 

F i g u r e 3· A q u a l i t a t i v e d i a g r a m r e p r e s e n t i n g a b i n a r y m i x t u r e 
w i t h no c r i t i c a l p o i n t ( e . g . , e q u i m o l a r C O ^ / N ^ ) . N o t e t h e 
d i f f e r e n c e b e t w e e n i s o c h o r i c s l o p e s o n e i t h e r s i d e o f t h e D B C 
t r a c i n g t h e DBC f r o m l o w t o h i g h d e n s i t i e s . 
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50 E Q U A T I O N S O F S T A T E : T H E O R I E S A N D A P P L I C A T I O N S 

where Ο ξ / δ ψ ) 1 refers to the derivative at the DBC taken from the 
side of region^, etc. Then 

[(3ξ/3ψ)* - Ο ξ / 3 ψ ) " ] =- [Οξ/3ω)ψ - Οξ/3ω)^] du> (19) 

or 

δ Ο ξ / 3 ψ ) ω = - (da>/di|i) ·δ Οξ/3ω) (20) 

where δ indicates the difference, Ι-ΙΙ. We are specially interested 
in δ(3Ρ/3Τ) , for which Equation (20) reads Ρ » z 1 

δ (3P/3p)T „ (dT/dp) · δ (3P/3T) „ (21) 

where the total derivative (dT/dp) is taken along the DBC. This 
derivative is positive at low densities passing through zero at the 
CT to become negative at higher densities (see Figure 1). Griffiths 
proves that the left-hand side of Equation (21) is always nonnegative 
so that δ(3Ρ/3Τ) must be negative below the CT, positive above 

Ρ » Z 1 
the CT and thus zero i t s e l f at the CT. To prove that δ(3Ρ/3ρ) τ £ 0, Equation (20) is again applied 

, Z1 
but with ξ s ρ, ψ = Ρ and ω = ζ̂  at constant temperature: 

δ Ο ρ / 3 Ρ ) ζ > τ = " (dz 1/dP) T · δ Ο ρ / S z ^ p ^ (22) 

The derivative (3ρ/3Ρ) > 0 for mechanical stability (see Ref. 
z1 ' 

[2], p. 18). A Maxwell relation, 

Ο ρ / 3 ζ Ί ) Ρ ί Τ = - ρ 2 (3Δ/3Ρ) ζ > τ (23) 

where Δ = - μ^, is then used to obtain 

δ(3ρ/3Ρ) ζ ^ - ρ 2 (dz 1/dP) T · δ(3Δ/3Ρ) ζ ^ (24) 

Equation (20) is applied a third time with ξ = Δ, ψ = Ρ and ω s ζ̂  to 
replace δ(3Δ/3Ρ) with δΟΔ/Βζ,. ) D τ : 

Ζ ^ , Ι Ι Γ , Ι 

δ(3ρ/3Ρ) ζ > χ ρ 2 (dz^dP) 2 · δ ( 3 Δ / 3 ζ Ί ) ρ χ (25) 

Now (3Δ/3ζ ) is zero in the two-phase region (due to a phase rule 
I r , 1 

constraint) and is nonnegative in the homogeneous region for material st a b i l i t y or (3 G /3z.,) > 0, where G i s the molar Gibbs energy m ι ρ 11 πι 
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2. ROWL1NSON ET AL. Collinearity of Isochores 51 

(see Réf. [2], p. 115). Hence, δ(3ρ/3Ρ) < 0 or δ(3Ρ/3ρ) > 0 
z-j » i z i » * 

because (3p/3P) £ 0 for mechanical st a b i l i t y . This completes the 
Ζ Γ 

proof of Griffiths. 
EXPERIMENTAL RESULTS 

ο h 

The 80.5? He/19.5? He mixture of Ref. 5 from Duke University showed 
collinear isochores at the CT for a system with the CP to the l e f t of 
the CB on the P/T diagram. Figure 7 of Ref. 5 also showed the slope 
(dP/dT) to increase but weakly with temperature and with o v e r a l l 
density in the heterogeneous region. 

Later, isochoric measurements for a 20.05? H2/79.95? CH^ mixture 
at Rice University by Kobayashi and coworkers [6] i l l u s t r a t e d 
collinearity at the CT for a system without a CB—at least not within 
30 degrees of the CT temperature. 

At the same time, measurements for C0 p binaries in our labora­
tories at Texas A&M University showed isochoric collinearity for a 
nearly equimolar mixture of CO /CĤ  as seen in Figure 4. The CP for 
this mixture is not known exactly but has been estimated using a BACK 
equation of state (EOS). Later, we measured a nearly equimolar 
mixture of CO^N^ resulting in the quantitative Figure 5, a dramatic 
illus t r a t i o n of isochoric collinearity at the CT. As discussed in a 
previous section, t h i s mixture has no CP nor CB but a CT and a 
minimum temperature (MT) as shown by the qualitative Figure 3» based 
partly on necessarily less precise data at the higher densities. 

COLLINEARITY OF ISENTROPES 

In the fundamental equations of thermodynamics for pure components 
the variables are Ρ, T, S and V. Ρ and Τ are analogous potential 
functions of zero degree of mathematical homogeneity whereas S and V 
are analogous functions of f i r s t degree. The isentropic slope, 
(3P/3T) S, i s c o l l i n e a r with the vapor pressure curve at the CP for 
pure components as is the isochoric slope. 

For binary mixtures the r o l e of S and V can be reversed in any 
of the proofs given above with the r e s u l t that isentropes are 
collinear at the CB. The qualitative nature of binary isentropes i s 
i l l u s t r a t e d i n Figure 1. For mixtures, i t may be said that "volume 
is prejudiced i n favor of temperature whereas entropy favors 
pressure" . 

To confirm experimentally the collinearity of isentropes at the 
CB, we have taken the equimolar CO^CH^ data of Figure 4 and calcu­
lated entropy increments on isotherms via the identity 

-p2 
U S ) = - / OP/9T) (dp/p2) (26) Ί. m T I ρ 

p1 

To traverse temperature i t is convenient to use the entropy residual 
function, Sr(p,T): 
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210 230 250 270 
TEMPERATURE (K) 

XI = 0.476 X2 = 0.540 
X1 - CO2 and X2 - CH4 

F i g u r e 4. B i n a r y m i x t u r e d a t a f o r 52 .40 m o l % m e t h a n e / 4 7 . 6 0 m o l % 
c a r b o n d i o x i d e i l l u s t r a t i n g i s o c h o r i c c o l l i n e a r i t y a t t h e c r i c o n -
d e n t h e r m . T h e c r i t i c a l p o i n t ( C P ) o f t h i s d i a g r a m i s n o t e x p e r ­
i m e n t a l but e s t i m a t e d f r o m a BACK e q u a t i o n o f s t a t e [ 1 0 ] . 
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Ρ Ρ 

(s£/R) = Τ 1 ' ! O Z m / 3 T 1 ) ρ ( d p / p ) + I ^ V 1 ) / p ] T d p ( 2 7 ) 

0 "o 

w h e r e Ζ (= P / p R T ) i s t h e c o m p r e s s i b i l i t y f a c t o r a n d » S ( T , p ) -
m m m 

S * ( T , p ) w i t h S * t h e p e r f e c t gas m i x t u r e v a l u e b a s e d u p o n a r e f e r e n c e 
p r e s s u r e a n d t e m p e r a t u r e , Ρ a n d Τ , r e s p e c t i v e l y . L i k e E q u a t i o n 
( 2 6 ) , E q u a t i o n (27) a s s u m e s i s o t h e r m a l i n t e g r a t i o n . W h e n t h e i s o ­
t h e r m c r o s s e s t h e DBC, s p e c i a l p r e c a u t i o n s mus t be t a k e n . A l t h o u g h 
we u s e E q u a t i o n (27) f o r t h e c a l c u l a t i o n s , E q u a t i o n (26) i s e a s i e r t o 
e x a m i n e . I m a g i n e t h a t o u r i s o t h e r m c r o s s e s t h e DBC f i r s t a t a d e w -
p o i n t p r e s s u r e o r d e n s i t y , ρ , a n d s e c o n d a t a b u b b l e - p o i n t p r e s s u r e 
o r d e n s i t y , ρ . B e c a u s e o f d i s c o n t i n u i t i e s o f t h e d e r i v a t i v e s , 
( 3 P / 3 T ) a n d (3Z / 3T ) , E q u a t i o n (27 ) m u s t be i n t e g r a t e d i n t h r e e 
s e p a r a t e s t e p s : (1) f r è m z e r o d e n s i t y t o P D p » (2) a c r o s s t h e t w o -
p h a s e r e g i o n f r o m p D p t o ρ a n d (3) f r o m ρ β ρ t o a h i g h e r d e n s i t y i n 
t h e c o m p r e s s e d l i q u i d , w h e n t h e i s o t h e r m i s s u p e r c r i t i c a l , t h e 
b u b b l e p o i n t i s s i m p l y r e p l a c e d by t h e u p p e r dew p o i n t . A l o n g t h e 
i s o t h e r m , S i s a c o n t i n u o u s f u n c t i o n o f d e n s i t y b u t ( 3 S m / 3 p ) T 

s u f f e r s a d i s c o n t i n u i t y a t t h e DBC. 

V a l u e s o f S c a l c u l a t e d f r o m E q u a t i o n ( 2 7 ) , s e e T a b l e I , w e r e 
t h e n g r a p h e d a s S v e r s u s p r e s s u r e a l o n g i s o t h e r m s f o r t h e C O ^ C H ^ 
b i n a r y . T h e s e i s o t h e r m s m u s t show a p o s i t i v e i s o b a r i c h e a t c a p a c i t y , 
C = T (3S / 3 T ) n , f o r t h e r m a l s t a b i l i t y . The c o u n t e r d e r i v -

P , z 2 m p » z 2 

a t i v e , ( 3 S / 3 P ) T ^ - ~ p ~ 2 · ( 3 p / 3 P ) _ · ( 3 P / 3 T ) „ , i s u s u a l l y 
m ι , Z p ι , Z p P' 2 

n e g a t i v e b u t ( 3 P / 3 T 7 may be n e g a t i v e i n t h e t w o - p h a s e r e g i o n n e a r 
Ρ » Z p 

t h e C P . W i t h t h e s e c r i t e r i a i n m i n d , s o m e s m o o t h i n g o f o u r t w o - p h a s e 
r e s u l t s w e r e made o n t h e s e n s i t i v e S / P d i a g r a m , F i g u r e 6. W h i l e o u r 
h i g h - p r e c i . s i o n , P ( p , T ) m e a s u r e m e n t s u s u a l l y w i t h s t a n d w e l l t h e 
d i f f e r e n t i a t i o n a n d i n t e g r a t i o n o f E q u a t i o n ( 2 7 ) , s u c h i s n o t a l w a y s 
t h e c a s e i n t h e t w o - p h a s e r e g i o n . H e r e we f i r s t h a v e f e w e r d a t a 
p o i n t s a n d s e c o n d a r e c o n c e r n e d a b o u t e q u i l i b r i u m when two p h a s e s a r e 
p r e s e n t i n a b l i n d c e l l w i t h o u t m i x i n g c a p a b i l i t y . 

F o l l o w i n g t h i s s l i g h t , j u d i c i o u s m a s s a g i n g o f o u r i s o t h e r m s o n 
t h e S / P g r a p h , F i g u r e 6, a c r o s s p l o t o f i s e n t r o p e s was made o n a P / T 
d i a g r a m — F i g u r e 7. A l t h o u g h m o r e d a t a a r e d e s i r a b l e a t l o w e r 
e n t r o p i e s ( i . e . , h i g h e r p r e s s u r e s a n d l o w e r t e m p e r a t u r e s ) , F i g u r e 7 
s u p p o r t s t h e n o t i o n o f i s e n t r o p i c c o l l i n e a r i t y a t t h e CB. 

We a l s o c h e c k e d t h a t ( 3 P / 3 T ) n > ( 3 P / 3 T ) a t e a c h ( T , P ) o f 
S , z 2 p , z 2 

F i g u r e s 4 a n d 7 . The d i f f e r e n c e o f t h e s e two s l o p e s i s ( ρ Ο γ / Τ ) · 

( 3 T / 3 V )_ . F u r t h e r , i t c a n be shown t h a t ( 3 2 P / 3 T 2 ) C i s g e n -
m P , z 2 S , z 2 

e r a l l y p o s i t i v e s o t h a t t h e i s e n t r o p e s o f F i g u r e 7 a r e c o n c a v e u p ­
w a r d s . B o t h p u r e m e t h a n e a n d p u r e C 0 2 e x h i b i t t h i s b e h a v i o r w i t h 
( 3 P / 3 T ) c o l l i n e a r w i t h t h e v a p o r p r e s s u r e c u r v e a t t h e C P . 

c ' Z 2 
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T a b l e I: T h e c a l c u l a t i o n o f E n t r o p i e s for 52.40 m o l % C H 4 a n d 47.60 m o l % C 0 2 

R e f e r e n c e S t a t e : P 0 = 0.101825 M P a (1 A t m . ) , T 0 = 278.15 Κ 

The entries are: pressure (Roman), (MPa), and <limensionless entropy (Italie), ( S m / R ) . 

D e n s i t y ( m o l / m ) 

T ( K ) 820.871 1246.85 8074.69 4799.85 7589.85 10509.1 11850.4 16560.7 18619.5 

800.00 
0.7817 

2. 080 

2.8496 

S. 550 

6.2404 

4.657 

8.8193 

5.270 

12.267 

5.980 

16.098 

6.569 

18.246 

6.807 

32 .090 

7.599 

48.550 

7.050 

288.75 
0.7511 

2.207 

2 .7189 

S. 679 

5.8710 

4.787 

8.1789 

5.4 08 

11.103 

6.112 

14.219 

6.702 

15.930 

6. 939 

27 .664 

7.720 

42 .286 

8.085 

278.20 
0.7085 

2. S 86 

2.5362 

-8.857 

5.3479 

4.967 

7.2619 

5. 589 

9.4650 

6.297 

11.644 

6.890 

12.823 

7.129 

21 .687 

7.020 

33.787 

-£ .275 

260.08 
0.6724 

2.5S9 

2.3802 

-4.012 

4.8953 

-5.128 

6.4597 

5.745 

8.0573 

6.451 

9.4941 

7.042 

10.306 

7.280 

16.774 

000 

26 .764 

-8.42S 

256.61 
0.6628 

2.580 

2.3386 

-4.058 

4.7738 

5.164 

6.2429 

5. 786 

7 .6807 

6.492 

8.9282 

7.17£ 

9.6523 

7.488 

15.493 

-8.205 

24.927 

500 

256.80 
0 .6620 

-2.584 

2.3350 

-4.057 

4.7630 

5.167 

6.2236 

5. 789 

7.6516 8 .8780 

7.162 

9.5946 

7.874 

15.380 

8.643 

24.764 

«S. 057 

256.08 
0 .6612 

2.588 

2.3318 

-4.060 

4.7537 

5.170 

6.2069 

5. 792 

7.6266 

7. 886 

8.8349 

8.141 

9.5450 

8.405 

15.282 

-9.177 

24 .625 

-9.471 

255.80 
0.6606 

2.590 

2.3290 

-4.062 

4.7455 

5.169 

6.1879 

5.823 

7.6044 

7.853 

8.7966 

8.190 

9.5010 

8.454 

15.196 

9.220 

24.501 

9.510 

254.78 
0.6578 

2.602 

2.3167 

-4-074 

4.7096 

5.182 

6.1055 

5.907 

7.5084 

7 . - ^ 1 

8.6310 

8.378 

9.3108 

8.652 

14.823 

0.^57 

23.964 

0.72£ 

254.20 
0.6562 

2.609 

2.3098 

-4.081 

4.6892 

5.189 

6.0584 

6.066 

7.4535 

7.505 

8 .5365 

8.447 

9.2023 

-8.725 

14.610 

-0.568 

23 .659 

9.864 

252.78 
0.6521 

2.621 

2.2921 

-4.099 

4.6372 

5.207 

5.9392 

6.462 

7.3147 

-& 072 

8.2974 

-8.938 

8.9287 

9.226 

14.072 

-IO.O4 

22.886 

10 .5^ 

252.10 
0.6504 

2.685 

2 .2845 

-4-106 

4.6150 

5.214 

5.8884 

6". 530 

7.2554 8 .2297 

8.946 

8.8123 

-9.212 

13.842 

-IO.O4 

22 .556 

10 .5. / 

251.50 
0.6487 

2.642 

2 .2773 

•4-114 

4.5938 

5.221 

5.8398 

6.596 

7.1988 

£.155 

8.1650 

8.953 

8.7012 

9.233 

13.624 

1 0 .07 

22 .242 

10.87 

248.84 
0.6414 

2.67S 

2.2454 

4.144 

4.4790 

5.816 

5.6251 

6.90S 

6.9487 

8.421 

7.8793 

9.189 

8.2954 

9.363 

12.681 

-10.08 

20 .856 

- 1 0 . 5 £ 

245.50 
0.6321 

2.714 

2.2049 

-4-184 

4.2861 

-5.602 

5.3540 

7.105 

6.6329 

-8.518 

7.5183 

-9.216 

7.9222 

9.370 

11.451 

-10.09 

19.114 

-10.46 

242.50 
0.6237 

2.750 

2.1686 

-4.22I 

4.1134 

-5.821 

5.1112 

7.246 

6.3499 7.1950 

-9.223 

7.5878 

9.373 

10.374 

- 1 0 . OS 

17.561 

- 1 0 . 5 1 

289.87 
0.6164 

-2.782 

2 .1367 

-4.258 

3.9621 

-5.999 

4.8986 

-7.366 

6.1022 

8.625 

6.9119 

9.235 

7.2951 

9.878 

9.4364 

10.07 

16.206 

- 1 0 . 5 5 

284.08 
0.6003 

-2.853 

2.0662 

-4.828 

3.6283 

-6.180 

4.4292 

-7.323 

5.5553 

8.548 

6.2871 

9.838 

6.6490 

9.588 

7.3829 

-10.44 

13.236 

-10.80 
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- 2 

Ο 
PU 
H 

ω 

- 1 0 

DBC^ 

. . DBC 
0 0 2 4 5 . 5 
• • 2 5 4 2 
Δ Δ 2 6 0 . 0 8 1 

10 20 

PRESSURE (MPa) 
• * * 2 3 4 . 0 7 6 
• · · 2 4 8 . 8 4 9 

• · · 2 5 5 . 8 
• • • 2 7 3 . 2 

30 

2 3 9 . 4 3 8 
2 5 2 . 1 

2 5 6 . 6 0 8 
2 8 8 . 7 5 2 

Figure 6. The calculated entropies for equimolar m ethane/ car bo η 
dioxide mixture (see caption of Figure M). The slope of isotherms 
is (-pr/v ) whereas the isobaric heat capacity, C , i s roughly the 
average temperature multiplied by the isobaric ^entropy increment 
divided by the temperature increment. 
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2. ROWLINSON ET A L . Collinearity of Isochores 57 

Figure 7. A pressure/temperature diagram illustrating isentropes 
(dashed lines) for the nearly equimolar methane/carbon dioxide 
mixture (see caption of Figure 4). Scatter in the calculated 
entropies prevents a definitive conclusion from these data alone 
of isentropic c o l l i n e a r i t y at the cricondenbar. However, these 
data are supportative of that proof and show that c o l l i n e a r i t y 
occurs on the upper part of the DBC between 237-255K. 
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THE ISOCHORIC INFLECTION LOCUS (IIL) 

For pure components, i t appears that the IIL always intersects the 
vapor pressure curve at the CP and again, for some compounds, at a 
liquid density roughly twice c r i t i c a l . Recent density data at Rice 
University (20.05 m o l % H /79.95 m o l % CH.) and Texas A&M University 
(52.40 m o l % CH.A7.60 m o l % CO and 44.70 m o l % C02/55.30 m o l % N2) 
suggest that the IIL may intersect the DBC at the CT for binary 
mixtures. 

We know of no thermodynamic proof for this behavior whether for 
pure components or mixtures of fixed composition. A nonclassical 
proof might be required for pure compounds but i f the mixture inter­
section i s indeed the CT rather than the CP, then a c l a s s i c a l proof 
should be possible. Considerable importance i s attached to the 
IIL for not only i s i t the locus of the extremum of the heat 
capacity C but also i t s different qualitative behavior at v,z 2 

densities above c r i t i c a l for pure compounds has been related to 
molecular effects, such as polarity [7_]. 

DISCUSSION 

Although we have presented proofs for (1) isochoric collinearity at 
the CT and (2) isentropic c o l l i n e a r i t y at the CB assuming a binary 
mixture, i t i s obvious that these resu l t s apply also to multi-
component mixtures because the derivatives are at constant o v e r a l l 
composition. From another viewpoint, any multicomponent system may 
be considered a "pseudo-binary" and the above derivations repeated. 

The derivative (3P/3T) is important because a number of 
ρ, ζ 2 

thermophysical property measurements are performed at constant volume 
and composition. For example, Nowak and Chan [8] have extended the 
"adiabatic non-flow saturation calorimeter method" to mixtures in the 
heterogeneous region. This method for measuring latent heats of 
vaporization and heat capacities was made famous by Osborne, Stimson 
and Ginnings (OSG) working primarily on water at NBS in the 1 930fs. 
The approximate working equations of Ref. 8 r e l a t e the apparent 
specific heat of the calorimeter to the desired isobaric heat capacity, C , for both the l i q u i d and vapor at saturation. Ρ 
Because mixtures are d i f f i c u l t to duplicate, data are most con­
veniently taken along a series of isochores. In the homogeneous 
phase region, the density i s lowered to the next isochore by simply 
exhausting part of the f l u i d or by expanding i t into a second 
volume—as in the Burnett-isochoric method for the density measure­
ments of Table I. 

Finally, the present work has an important bearing upon mixture 
equations of state (EOS). Many physical EOS for both pure components 
and mixtures begin with straight isochores (van der Waals EOS) and 
then add correction terms to account for curvature [9]. It i s an 
experimental fact that isochores are nearly linear in the homogeneous 
region on a pressure/temperature diagram for both pures and mixtures. 
The c o l l i n e a r i t y of isochores at the CT for mixtures provides a 
sensitive constraint for EOS parameters. 
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3 
The Equation of State of Tetrafluoromethane 

J. C. G. Calado1, R. G. Rubio2, and W. B. Streett 

School of Chemical Engineering, Cornell University, Ithaca, NY 14853 

An experimental study of the P-V-T properties of tetra­
fluoromethane (CF4) over wide ranges of temperature and 
pressure is used to test several semi-empirical equa­
tions of state and molecular theories. The experimen­
tal data have been correlated by the Strobridge equa­
tion, and comparisons are made with the Haar and Kohler, 
Deiters and BACK equations of state, as well as with 
the lattice gas model of Costas and Sanctuary, the 
variational inequality minimization (VIM) theory of 
Mansoori, and the perturbation theory of Gray and 
Gubbins. 

We have recently completed a detailed experimental study of the 
equation of state of tetrafluoromethane, CF 4 , covering a wide range 
of temperature and pressure (1_). 

Tetrafluoromethane is an attractive substance from both the 
technological and theoretical points of view. It is widely used as 
a low-temperature refrigerant (Freon 14) and a gaseous insulator, 
and i ts molecules offer an interesting theoretical study of the 
underlying intermolecular forces. Whilst its grosser features may 
be considered to be representable by a quasi-spherical (or glob­
ular) molecule, i ts thermodynamic behavior, especially in mixtures, 
displays a nonideality that is symptomatic of the anisotropy inher­
ent in i ts microscopic interactions. For instance, a whole variety 
of phase diagrams arise when tetrafluoromethane is mixed with 
hydrocarbons (2). Even the existing low-density studies lead to 
contradictory conclusions about the intermolecular potential of 
CFi*. While in some cases a simple (12,6) Lennard-Jones potential 
is able to describe the second v i r ia l coefficient data (_3) > in 
other cases a spherical-shell model has been claimed to be neces­
sary (4-6). 

1 Current address: Complexo I, Instituto Superior Tecnico, 1096 Lisboa, Portugal. 
2Current address: Departamento de Quimica Fisica, Facultad de Quimicas, Universidad 
Complutense, Madrid 28040, Spain. 

0097-6156/86/0300-0060S06.00/0 
© 1986 American Chemical Society 
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3. C A L A D O ET A L . Equation of State of Tetrafluoromethane 61 

Tetrafluoromethane seems to be an ideally placed molecule for 
this kind of study: on the one hand, i t is fa i r ly small, non-
polar, highly symmetric (tetrahedral) and thus suitable for the 
testing of a wide variety of stat i s t ica l theories and semi-
empirical equations of state; on the other hand, since i t has a 
relatively big octopole moment, i t exhibits enough anisotropy to 
serve as a discriminator against cruder theoretical approaches. As 
such, tetrafluoromethane seems to fa l l between methane (CH )̂ for 
which a (12, 6) Lennard-Jones potential seems to be adequate, and 
tetrachloromethane (CCliJ for which a spherical-shell or s i te -s i te 
model is necessary. 

Strong orientational correlations, which persist over several 
molecular diameters, have been found for tetrahedral molecules 
(7,8), and interlocking effects have been detected in tetrachloro­
methane molecules using Br i l l oui η scattering techniques (9). These 
phenomena suggest that the spherical reference system, frequently 
ut i l ized in perturbation and variational approaches (10) could fa i l 
for this kind of molecules. In addition, calculations carried out 
using the s i te-s i te distribution function formalism show that the 
disagreement with results from computer simulation is much larger 
than for diatomic molecules {11). Those interlocking and other 
effects should become more pronounced at higher densities, hence 
the need to extend the pressure range for which P-V-T data are 
available. Powles et aK (12) have pointed out that pressure and 
configurational energy data over wide ranges of density and temper­
ature are necessary in order to improve intermolecular potential 
functions and to test theories. 

There have been several experimental studies of the P-V-T 
properties of CFu. but only up to about twice the cr i t i ca l density 
(p c = 7.1 mol dm" 3). The most extensive and accurate measurements 
are those of Douslin et aU (4, 13) which cover the temperature 
range 273-623 Κ and pressures up to 400 bar. MacCormack and 
Schneider worked in the same temperature range but only with pres­
sures up to 55 bar (14), while Lange and Stein (6) and Martin and 
Bhada (15) extended the measurements to lower temperature (203 K) 
and pressures up to 80 and 100 bar, respectively. Staveley and his 
co-workers measured both the orthobaric densities (16) and the 
saturation vapor pressure {!]_) of tetrafluoromethane. Thermody­
namic properties of the saturated l iqu id , from the tr iple-point 
89.56 Κ to the cr i t i ca l point 227.5 K, have been calculated by Lobo 
and Staveley (18), while Harrison and Douslin (19) calculated them 
for the compressed gas (temperatures 273-623 Κ and densities 0.75 
- 11.0 mol dm- 3). 

There was obviously a need for more data, especially in the 
low temperature, high-pressure region. We studied thirty-three 
isotherms in the temperature range 95-413 Κ and pressures up to 
1100 bar, obtaining about one thousand and five hundred new P-V-T 
data points (_1). Figure 1 shows the Ρ - Τ regions for which data 
are now available. The P-V-T surface of tetrafluoromethane is now 
thus well defined over a wide range of temperature and pressure, 
from the dilute gas to the highly compressed l iqu id . 

In this paper we examine the ab i l i ty of several types of 
equations of state and molecular theories to predict the P-V-T 
properties of CF^. Detailed tables of thermodynamic properties 
will be published elsewhere (20). 
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1000 

800 

600 

400 

0 

— 

-

Γ I 
/ 1 

/ 
1 
1 

! 
1 
1 i 

/ / | 1 " ~ Ί • 

0 200 400 600 T / K 

Figure 1. Pressure-temperature regions covered by 
different investigators : , this work; 
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and Stein (6); , Martin and Bhada 
(15); - - - - , MacCormack and Schneider (14) 
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3. C A L A D O ET A L . Equation of State of Tetrafluoromethane 63 

Experimental 

Since our study covered both low and moderately high temperatures, 
low and high densities, two different apparatuses were used. The 
measurements in the 95 to 333 Κ range were made in the gas-expan­
sion type apparatus which has been ut i l ized and described before 
(21). In this apparatus, the amount of substance contained in a 
calibrated 27.5 cm3 c e l l , kept at a measured pressure and tempera­
ture, is determined by expansion into a large volume, followed by 
suitable P-V-T calculations (the pressure in the expansion volume 
is kept under 1.5 bar, to avoid any uncertainties in the equation 
of state of the gas). For the runs above 330 Κ a modification of 
the direct-weighing apparatus described by Machado and Streett (22) 
was used. Here the amount of substance is measured directly by 
weighing a fu l l cel l of approximately 100 cm3 capacity. 

Temperature control was achieved with a boiling liquid-type 
cryostat for the low-temperature apparatus (replaced by a simple 
water bath in the experiments above 270 K) and by a cascade-type 
oven in the higher temperature apparatus. Substances used in the 
boiling l iquid type cryostat were nitrogen (95 K), argon (100 -
120 K), methane (130 - 152 Κ ) , tetrafluoromethane (160 - 200 Κ ) , 
ethane (210 - 245 K) and monochlorodifluoromethane (252 - 263 K). 
The temperature was controlled to within ± 0.02 Κ in the cryostat, 
and to within ± 0.002 Κ in both the l iquid bath and the air oven. 
It was measured, in al l cases, with a platinum resistance thermome­
ter and referred to the IPTS - 68. 

Pressures in the cel ls were measured with a Ruska dead-weight 
gage, (model 2450), the absolute accuracy being 0.1% or better, and 
the precision being about 0.01%. 

The main source of error in both apparatuses l ies in the 
imprecise knowledge of the volume of the systems. Details of the 
calibrating procedures have been given in previous papers (21, 
22). We estimate that the average absolute error in density is 
about 0.1% for ρ > 8 mol dm- 3, 0.3% for 2 < p/mol dm-3 < 7 and 0.4% 
for ρ < 2 mol dm" 3. 

The CFj4 used in this work was from Linde (maximum purity 
99.7%). It was purified by fractionation in a low-temperature 
column with a reflux ratio of 19/20. The final purity is estimated 
to be better than 99.99%. 

Results 

The over one thousand and five hundred data points were correlated 
by the Strobridge equation in the following form 

(1) 
ρ = RTp + (AXRT + A.2+ A 3/T + k j l 2 + Ας/Τ1*) ρ 2 + 

(A6RT + A 7 )p 3 + Α 8 Τ Ρ * + (A 9 /T 2 + A 1 0 / T 3 + A 1 1 /T 1 + )exp[A 1 6 p 2 ]p 3 + 
( A i 2 / T 2 + A 1 3 / T 3 + Am/T^)exp[A 1 6 p 2 ] P

5 + A 1 5 p 6 

For the sake of completeness, the data of Douslin et al_. (4)_ and 
Lange and Stein (6_) were included in the correlation. Given their 
high quality, a stat ist ica l weight of two was ascribed to the data 
of Douslin et a l . 
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64 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

The parameters of Equation 1 have been obtained using a 
method based on the Maximum Likelihood Principle as described by 
Anderson et al_. (23). Values of the parameters are recorded in 
Table I, as well as their estimated uncertainties. Figure 2 shows 
the differences between experimental and calculated densities for 
several isotherms. Deviation plots for the other isotherms follow 
this same general trend: Equation 1 is able to represent the 
experimental results within their estimated errors, except for the 
low density region of a few isotherms. It is gratifying to note 
the good agreement obtained for the 227.53 Κ isotherm, which is 
very close to the c r i t i ca l one. Table II shows the density values 
of CFi* calculated at round values of pressure and temperature from 
Equation 1. 

In Figure 3 we compare the data of Douslin et a l . (£) with the 
values generated by Equation 1. The agreement i s , in general, 
within the combined errors of experiment and f i t t i n g . Martin and 
Bhada (15) have also reported large differences for the 273 Κ iso­
therm, from the equation they proposed. 

The agreement between the different sets of data can be 
examined in Figure 4 where we plot the function B v, defined by 

Bv = (Z - l)/p (2) 

where Ζ is the compressibility factor, against pressure. As i t has 
been pointed out by Douslin et a]_. (4J this plot provides an excel­
lent test of the quality of the compressibility values, and the 
extrapolation to Ρ = ο gives the second v i r ia l coeff ic ient, B. In 
the temperature range in which the three sets of results overlap, 
the agreement is very good. This is very encouraging since our 
experimental techniques were specially designed for high densities, 
whereas the other investigators were primarily concerned with the 
lower density region. 

Equations of state and perturbation theory 

With sixteen parameters Equation 1 is f lexible enough to correlate 
PVT data over wide ranges of temperature and density, even in 
regions where (ap/3p)j is relatively large. It lacks sound theo­
retical foundation, although the format is that of an empirical 
modification of the v i r ia l equation of state. Looking at equations 
with a firmer theoretical basis is not only an intel lectual ly 
rewarding exercise but also a serious attempt to develop more r e l i ­
able and universal equations and improve on our present predictive 
ab i l i t i e s . The remainder of this paper will be devoted to an 
analysis and comparison of some of the most successful semi-
empirical equations and theories proposed in the last few years. 

The old Cartesian approach of dividing a complex problem into 
simpler, more manageable parts is of relevance here. Perturbation 
theory does just that. The reference or unperturbed system is a 
simple model whose properties have been fa i r ly well understood. 
The real or complex system is recreated by adding successive layers 
of complexity (the perturbing terms) to the i n i t i a l reference 
system. The genius or insight l ies in finding a reference system 
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ρ/bar 

Figure 2. Density deviation plots Δ ρ = (p e - P c ) / p e χ 
100 for several isotherms. p e is the experi­
mental density and p c i ts value calculated 
from Eq. (1). , 199.98 K; > 
227.53 K; , 252.53 K; 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

3

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



T
ab

le
 

II
. 

D
en

si
ty

 
va

lu
es

 
of

 
C

F
^ 

(i
n

 m
ol

 d
m

 
) 

at
 

ro
un

d 
va

lu
es

 
o

f 
te

m
p

er
at

u
re

 
an

d
 p

re
ss

u
re

, 
ca

lc
u

la
te

d 
fr

om
 E

q
u

at
io

n 
1.

 

P
/b

ar
 

5 
10

 
15

 
25

 
50

 
10

0 
20

0 
30

0 
40

0 
50

0 
60

0 
70

0 
80

0 
90

0 
10

00
 

T
/k

 
11

00
 

95
 

10
0 

12
0 

14
0 

16
0 

18
0 

20
0 

22
0 

24
0 

26
0 

28
0 

30
0 

32
0 

34
0 

36
0 

38
0 

40
0 

42
0 

21
.0

54
 

20
.8

07
 

19
.7

39
 

18
.5

87
 

17
.3

30
 

0.
36

8 

0
.3

2
3 

0
.2

8
8 

0.
26

1 

0
.2

3
8 

0
.2

2
0 

0.
20

4 

0.
19

0 

0.
17

9 

0.
16

8 

0.
15

9 

0.
15

1 

0.
14

4 

2
1

.0
6

3 

20
.8

17
 

19
.7

52
 

18
.6

05
 

17
.3

57
 

15
.9

24
 

0
.7

0
3 

0.
61

3 

0
.5

4
5 

0
.4

9
2 

0
.4

5
0 

0.
41

5 

0
.3

8
6 

0.
36

1 

0
.3

3
9 

0
.3

2
0 

0
.3

0
3 

0
.2

8
8 

21
.0

72
 

20
.8

26
 

19
.7

65
 

18
.6

23
 

17
.3

85
 

15
.9

70
 

1.
18

0 

0.
98

7 

0
.8

5
8 

0
.7

6
5 

0
.6

9
3 

0
.6

3
5 

0.
58

7 

0.
54

7 

0.
51

3 

0
.4

8
3 

0
.4

5
6 

0
.4

3
3 

21
.0

90
 

20
.8

45
 

19
.7

90
 

18
.6

59
 

17
.4

38
 

16
.0

58
 

14
.3

32
 

2
.0

0
3 

1.
60

7 

1.
37

7 

1.
21

8 

1.
10

0 

1.
00

7 

0.
93

1 

0
.8

6
8 

0.
81

3 

0.
76

7 

0
.7

2
5 

21
.1

34
 

20
.8

92
 

19
.8

52
 

18
.7

45
 

17
.5

65
 

16
.2

60
 

14
.7

16
 

12
.5

76
 

5.
77

8 

3.
54

1 

2.
83

9 

2.
43

6 

2.
16

2 

1.
95

8 

1.
79

8 

1.
66

8 

1.
55

9 

1.
46

6 

2
1

.2
1

8 

2
0

.9
8

1 

19
.9

70
 

18
.9

08
 

17
.7

96
 

16
.6

06
 

15
.2

87
 

13
.7

46
 

11
.8

12
 

9
.3

4
6 

7
.0

9
2 

5
.6

7
9 

4.
80

1 

4.
20

7 

3
.7

7
4 

3
.4

4
2 

3.
17

7 

2
.9

6
0 

21
.3

76
 

21
.1

48
 

20
.1

88
 

19
.1

98
 

18
.1

90
 

17
.1

52
 

16
.0

69
 

14
.9

27
 

13
.7

16
 

12
.4

45
 

11
.1

58
 

9.
93

8 

8
.8

0
0 

7
.9

5
3 

7.
20

6 

6
.5

9
2 

6.
08

4 

5
.6

6
0 

2
1

.3
0

2 

20
.3

85
 

19
.4

54
 

18
.5

21
 

17
.5

83
 

16
.6

32
 

15
.6

67
 

14
.6

87
 

13
.7

00
 

12
.7

24
 

11
.7

81
 

10
.8

97
 

10
.0

90
 

9.
36

7 

8
.7

2
8 

8.
16

6 

7
.6

7
4 

21
.4

46
 

20
.5

67
 

19
.6

84
 

18
.8

10
 

17
.9

43
 

17
.0

81
 

16
.2

21
 

15
.3

66
 

14
.5

20
 

13
.6

91
 

12
.8

91
 

12
.1

31
 

11
.4

19
 

10
.7

62
 

10
.1

61
 

9.
16

5 

9.
12

1 

20
.7

35
 

19
.8

93
 

19
.0

67
 

18
.2

56
 

17
.4

58
 

16
.6

71
 

15
.8

97
 

15
.1

38
 

14
.3

99
 

13
.6

87
 

13
.0

06
 

12
.3

63
 

11
.7

60
 

11
.2

00
 

10
.6

82
 

10
.2

05
 

2
0

.8
9

2 

20
.0

85
 

19
.2

99
 

18
.5

33
 

17
.7

85
 

17
.0

52
 

16
.3

36
 

15
.6

38
 

14
.9

62
 

14
.3

09
 

13
.6

85
 

13
.0

92
 

12
.5

32
 

12
.0

06
 

11
.5

15
 

11
.0

57
 

21
.0

39
 

20
.2

64
 

19
.5

12
 

18
.7

83
 

18
.0

74
 

17
.3

84
 

16
.7

13
 

16
.0

61
 

15
.4

30
 

14
.8

23
 

14
.2

40
 

13
.6

85
 

13
.1

59
 

12
.6

61
 

12
.1

94
 

11
.7

55
 

21
.1

79
 

2
0

.4
3

1 

19
.7

09
 

19
.0

11
 

18
.3

36
 

17
.6

80
 

17
.0

45
 

16
.4

29
 

15
.8

34
 

15
.2

61
 

14
.7

12
 

14
.1

87
 

13
.6

87
 

13
.2

13
 

12
.7

66
 

12
.3

43
 

21
.3

11
 

20
.5

88
 

19
.8

92
 

19
.2

21
 

18
.5

74
 

17
.9

47
 

17
.3

41
 

16
.7

55
 

16
.1

89
 

15
.6

44
 

15
.1

21
 

14
.6

21
 

14
.1

44
 

13
.6

90
 

13
.2

59
 

12
.8

52
 

21
.4

37
 

20
.7

36
 

20
.0

63
 

19
.4

17
 

18
.7

93
 

18
.1

92
 

17
.6

10
 

17
.0

49
 

16
.5

07
 

15
.9

85
 

15
.4

85
 

15
.0

05
 

14
.5

47
 

14
.1

10
 

13
.6

94
 

13
.2

99
 

21
.5

57
 

20
.8

77
 

20
.2

25
 

19
.5

99
 

18
.9

97
 

18
.4

17
 

17
.8

57
 

17
.3

16
 

16
.7

95
 

16
.2

93
 

15
.8

11
 

15
.3

49
 

14
.9

07
 

14
.4

85
 

14
.0

82
 

13
.6

98
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

3

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



68 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

2 4 6 θ 10 
p (mol /Γ 1 ) 

Figure 3. Density deviation plots for Douslin's 
isotherms, Δρ = (p e - p c)/p e χ 100. p e is 
the experimental value and p c the calculated 
value from Eq. (1): , 273.15 Κ , 
298.15K; , 323.15K; , 348.15K; 
- · · - · · - , 373.15K. Horizontal bars denote 
the precision achieved by our results in the 
different density regions. 
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CALADO ET AL. Equation of State of Tetrafluoromethane 
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Figure 4. Values of B v calculated from Equation 2: χ, 
this work; · , Douslin et aK (4) ; α , Lange 
and Stein (6). The points at Ρ = ο are the 
values of the second v i r ia l coefficient 
recommended by Dymond and Smith (24). 
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70 E Q U A T I O N S O F S T A T E : T H E O R I E S A N D A P P L I C A T I O N S 

that is simple enough to allow its properties to be easily calcu­
lated, and yet close enough to the real system to avoid the need of 
many perturbing terms. Most of the calculations have been made 
using a spherical model (hard-sphere) as the reference system. 
Obviously in this case a perturbation theory is feasible i f the 
molecules are not far from spherical. Recently Fischer (25) devel­
oped a perturbation theory which can effectively deal with aniso­
tropic molecules, namely those of the two-center type (later also 
triangular, tetrahedral and octahedral molecules). The problem is 
that strongly anisotropic molecules are also usually polar, and the 
present theories are s t i l l unable to deal with both anisotropy and 
polarity. CF̂ . is fortunately non-polar, but despite i ts high 
symmetry cannot be reasonably described as a spherical molecule. 
It is now well established that thermodynamic properties are 
markedly affected by the shape of the molecules. 

Some of the more interesting equations of state can be obtain­
ed from perturbation theory. Indeed, the earliest of them, that 
due to van der Waals, can be derived from first-order perturbation 
theory with a reference system of hard-spheres (26). A common fea­
ture to many of these equations of state is its sp l i t t ing, in true 
perturbational fashion, into two or more terms, accounting for d i f ­
ferent levels and types of complexity. One of those terms is 
usually built around a convex hard body. We will concentrate our 
attention, however, on what may be called the second generation of 
van der Waals - type equations. These are equations which retain a 
good approximation for the repulsive part (l ike that given by the 
Carnahan-Starling or Boublik-Nezbeda equations) while trying to 
improve on the attractive part of the potential. 

The Haar and Kohler equation of state 

A few years ago Haar et al_. proposed a new approach to calculating 
P-V-T- data ( 2 7 ) . The equation of state is spl i t into two parts 

Ρ = PB + PR (3) 

where Ρβ is the so-called base equation (in the sense that i t is a 
physically based expression) incorporating the effects of molecular 
repulsion and attraction, and PR is a sum of residual terms, usual­
ly a series expansion in terms of ρ and Τ or some empirical func­
t ion. For globular molecules a modified Carnahan-Starling equa­
tion is often used as Ρβ, but as many as twenty-six adjustable 
parameters are sometimes needed for PR ( 2 8 ) . 

Kohler and Haar (29) showed that PR would be a universal func­
tion for nonpolar f lu ids, provided that Pg takes into account the 
shape of the molecule. Recently, Moritz and Kohler came out with 
an empirical expression for PR (3(D), leading to the following final 
form for the compressibility factor Ζ 

ζ - z h - | i ̂  ,,,· ̂  * » e « p [ - J ! ^ ] , ,„ 

Z n is the compressibility factor for a hard-convex body (a tetrahe-
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3. C A L A D O E T A L . Equation of State of Tetrafluoromethane 71 

dron for CFiJ l ike that given by the Boublik-Nezbeda equation of 
state (31), d v and d w are universal constants (0.098 and 0.128, 
respectively, according to reference 30) and y = v*p is the reduc­
ed density, with v* = N/\V*, V* being the volume of the hard-body 
and N/\ Avogadro's number. y r c j is the reduced density of the rec t i ­
linear diameter p r cj (the arithmetic mean of the densities of the 
orthobaric l iquid and vapor) 

p rd " <PL + P G> / 2 T < T c <5> 

For Τ > T c , p r c| has a virtual value, obtained from the extrapola­
tion of the recti l inear diameter curve. 

Equation 4 has four parameters a 0 , V , W and d (d/2 being the 
thickness of the smooth hard layer added to the hard body). For 
Τ < 0.6 T c , V and W can be easily calculated from vapor-liquid 
equi l ibr ia using the second v i r ia l coeff icient; thus, only d and a 0 

(or ao/v*) need to be f itted at each temperature. The ratio a 0/v* 
for CFi* (-33 kj mol- 1) is appreciably larger than for CH^ (-20 kJ 
mol" ), in qualitative agreement with the corresponding values of 
the solubi l i ty parameter. 

The hard-core volume v* is found to decrease with temperature, 
as expected, but following a different dependence law than that 
observed with the BACK equation (see later) . Moritz and Kohler had 
reached a similar conclusion for methane (30). The observed 
density dependence for the van der Waals parameter a/v* 

= RT (Z h - Z)/y (6) 

is also similar to that found for methane (30). Within the 
estimated uncertainties, we found that i t is possible to describe 
the temperature dependence of al l four parameters in Kohler*s 
equation of state for CF 4 , with simple functions incorporating only 
a few adjustable constants. 

Figure 5 compares the results obtained with Equations 4 and 
1. It is obvious that Kohler's equation f i t s the data better than 
the Strobridge equation below T c , but the quality of the f i t t ing 
worsens dramatically above T c . This suggests that there is s t i l l 
room for improvement in the density dependence of a/v*. 

The Deiters equation of state 

Another of the new, physically based equations of state is that 
derived by Deiters (32) from a square-well potential model of depth 
(-ε) — 

(7 ) 

RT 
1 + c c 0 

4y - 2y2 

(1 - y)d 

RbcT 

Vzw(y) 
exp 

aw(y) 

~~cT 
-1 ii(y) 

The equation has three adjustable parameters: the characteristic 
temperature a, the covolume b, and the correction factor for the 
number of density dependent degrees of freedom, c. 
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72 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

100 200 300 T/K 400 

Figure 5. Mean standard deviations of density, σ, as a 
function of temperature. A , Strobridge 
equation; · , Kohler equation; o, Deiters 
equation. 
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3. C A L A D O E T A L . Equation of State of Tetrafluoromethane 73 

a = ε/k (8) 

b = NA σ 3 / / 2 (9) 

c can also be interpreted as a shape parameter (c = 1 for spherical 
molecules); c 0 = 0.6887 is a universal constant which accounts for 
the deviation of the real pair potential from the rigid-core model. 
Il(y) and w(y) are complicated functions of the density y and c, 
derived from stat ist ica l mechanics. w(y) may be described as an 
efficiency factor for the square well depth, and i t takes into 
account the fact that the structure of the f lu id is more and more 
determined by repulsive forces as density increases. The repulsive 
part of the Carnahan-Starling equation (33) has been retained as a 
good approximation for rigid spheres. Equation 7 can be modified, 
to account for three-body forces, by intrQducing an additive cor­
rection, λρ, to the reduced temperature, Τ = cT/a ( 3 2 ) . 

We have used Equation 7 as Pg in Equation 3 and allowed the 
three parameters a, b and c to be temperature dependent. Figure 5 
compares the results obtained with the Deiters equation with those 
given by Equations 1 and 4 . For Τ < T c the highest deviations 
occur in the low density region, where the isotherms are the steep­
est. The results usually fa l l between those obtained with the 
Strobridge and Kohler equations. 

Figures 6 and 7 show the f i tted parameters of Deiters* equation 
as a function of temperature. It is interesting to note that both 
(c) and (a) are constant within their estimated errors, although 
they take distinct values below and above the c r i t i ca l temperature. 
Of course, the temperature dependence of any of the parameters is 
not a simple function in the c r i t i ca l region, so we cannot extrap­
olate over this region. The behavior found for parameter (b) is 
somewhat bizarre. In the range Τ < T c , (b) follows the usual trend, 
i . e . i t decreases with temperature ( 3 4 ) ; no explanation has been 
found for its apparent increase with temperature in the region 
Τ > T c . It should be noted that similar behaviour of the param­
eters a, b and c has been found for trifluoromethane CHF3, whose 
study is now under way. 

The calculations were repeated using a constant value for (c) 
throughout the entire temperature range (we used the more rea l i s t i c 
'high-temperature' value of Figure 6, c = 1 .08 ) , but letting both 
(a) and (b) f loat. Under these conditions parameter (a) is found 
to decrease monotonically from a value of about 235 Κ at 100 Κ to 
about 175 Κ at 400 K. Parameter (b) retains, however, the peculiar 
behavior displayed in Figure 7. The quality of the overall f i t t ing 
also deteriorates when a constant value of (c) is used throughout, 
perhaps because packing effects become important at higher 
densities. 

Using the Deiters equation as Pg (with the "constant" values 
of a and c, and b f i tted to a Morse-like function) and an expres­
sion for PR l ike that proposed by Haar et a l . (27) 

(10) 
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74 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Figure 6. 

200 300 400 
T / K 

Parameter c in Deiters equation as a function 
of temperature (with error bars for estimated 
uncertainty). 
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C A L A D O ET A L . Equation of State of Tetrafluoromethane 

τ 1 r 

100 200 300 400 T/K 
Figure 7. Parameters a and b in Deiters equation as 

function of temperature (with error bars 
estimated uncertainty). 
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76 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

We were unable, even with sixteen constants C n j , to describe the 
whole set of P-V-T data with better accuracy tnan that provided by 
Equation 1. This could be due to the inadequacy of the residual 
terms used, but looking at Figure 5 suggests that an improvement in 
the low-temperature range can be obtained by substituting the 
Boublik-Nezbeda equation for the Carnahan-Starling equation in 
Deiters" model. This is confirmed by setting V = W = 0 in the 
Kohler equation (4) (which uses the Boublik-Nezbeda equation as a 
reference) and finding that i t leads to a better correlation of the 
experimental results than that obtained with the Deiters equation. 
Even more important, perhaps, that substitution would allow the 
separation of the contributions of external and internal degrees of 
freedom in the Deiters equation. One should then use data for 
molecules with vibrational degrees of freedom, instead of data on 
argon, as Deiters did. 

The BACK equation of state 

One of the best equations of state based on the generalized van der 
Waals model is the so-called BACK (from Boublik-Alder-Chen-
Kreglewski) equation (35). It is an augmented hard-core equation 
which combines the Boublik expression for the repulsive part of the 
compressibility factor, with the polynomial developed by Alder 
et AL- for the attractive part (36) 

p v - ζ + z 
RT h a (11) 

Ζ = 1 * ( 3 Ύ " 2 ) y * ( 3 γ 2 " 3 Ύ * 1 ) y 2 " 1 f 2 y 3 (12) 
h " ( l - y ) 3 

" 9 u η V*m 

Z a = I l m D ( ) ( _ ) (13) 
η m nm kT V 

Both the molecular hard core V* and the characteristic energy u are 
decreasing functions of temperature 

V* = V 0 0 [ 1 - C exp ( -3u°/kT)] 3 (14) 

( 1 + * ) u 
ΊΓ k v " kT ' (15) 

Chen and Kreglewski (35) gave rules for calculating C and n, so 
that only three adjustable parameters remain in the BACK equation: 
V , γ and u /k. The f i t t ing of our experimental data led to the 
following values: V00=(0.0310 ± 0.0001)dm3, γ = 1.099 ± 0.013 and 
u°/k = (225 ± 2)K. The results are plotted in Figure 8. The 
agreement is satisfactory in the c r i t i ca l region, but i t goes 
beyond the experimental error in the high density region. Besides, 
the value of γ does not clearly respect the tetrahedral geometry of 
the molecule, a fact which Moritζ and Kohler also found for methane 
(30). As mentioned before, the temperature dependence of the hard-
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3. C A L A D O ET A L . Equation of State of Tetrafluoromethane 11 

Figure 8. Several isotherms for CF 4 (in reduced 
variables). · , experimental data; , calcu­
lated from BACK equation; , calculated 
from latt ice model; - · - · - , coexistence 
curve according to Lobo and Staveley (17). 
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78 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

core volume, as expressed by Equation 14, does not agree with the 
corresponding dependence in Kohler's equation. Use of the correla­
tions proposed by Simnick et al_. (37) for the calculation of param­
eters V 0 0 , γ and u°/k leads to even poorer agreement with the 
experimental results. 

Taking the entire P-V-T range covered in this work, the 
quality of the f i t t ing obtained with the BACK equation is consider­
ably worse than that obtained with either the Kohler or Deiters 
equations, but this result should be set against the very small 
number of adjustable parameters ut i l ized in the BACK equation. 

Cell and Lattice Models 

Although the cel l and latt ice models have been virtual ly abandoned 
for l iquids, mainly because they over-estimate the degree of order, 
some of their modifications have been revived, with success, in the 
thermodynamic treatment of polymers. Recently Nies et aU (38) 
have shown that hole theories can be effective in reproducing the 
P-V-T behavior of a relatively simple f l u i d , ethylene. In the low-
density region, they favor the lattice-gas model over the cel l 
theory. 

Sanchez and Lacombe (39) developed a theory of r-mers based 
upon a latt ice model for l iquids. They used a simplified Ising 
model, and were led to a four-parameter equation of state which 
successfully predicted a liquid-vapor phase transit ion. The four 
parameters were the non-bonded mer-mer interaction energy, ε* 
(equivalent to a characteristic temperature), the close-packed -mer 
volume, v*, the latt ice coordination number z, and the number of 
mers per r-mer, r. Later Costas and Sanctuary (40, 41J removed r 
as an adjustable parameter and set i t equal to the number of atoms, 
other than hydrogen, in the molecule. Their equation of state, in 
reduced variables, took the form 

[ ρ ( 1 - φ ) / ( 1 - φ ρ ) ] 2 + ρ + f [ ln( l-p) - (ζ/2) Ι η ( Ι -φρ) ] = 0 (16) 

where 

Φ = (2/z) (1-1/r) (17) 

Since they found that the calculated quantities were relatively 
insensitive to changes in ζ between the values 8 and 14, they chose 
to fix ζ equal to 12. Equation 16 became then a two-parametric 
equation. 

In this work we used the Costas-Sanctuary equation of state in 
its three-parametric form. The adjusted values of the parameters 
were found to be p*/bar = 3338 ± 123, T*/K = 258 ± 2 and v*/l mol" 1 

= 0.0476 ± 0.0002. The results are plotted in Figure 8. It can be 
observed that the BACK equation gives a better overall description 
of the P-V-T properties of CFî  than the Costas-Sanctuary equation, 
especially near the cr i t i ca l region. At very high or very low 
densities and pressures the two models give almost identical 
results. For high densities and P r < 0.8 the agreement between the 
experimental values and those calculated from the latt ice model is 
better than that obtained with the BACK equation, in particular 
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3. C A L A D O ET A L . Equation of State of Tetrafluoromethane 79 

near the coexistence curve. In the range 0.3 < p r < 1.8 the 
densities calculated with the BACK equation are too low, whereas 
those calculated from the Costas-Sanctuary equation are too high. 
In agreement with Costas and Sanctuary we have found that these 
conclusions s t i l l hold when the coordination number ζ changes from 
8 to 12. 

The VIM theory 

In a previous paper we have already examined the ab i l i ty of both 
variational and perturbation (see next section) theories to 
describe the thermodynamic properties of CF^ (_1). Here we repro­
duce the main conclusions in order to assess how these theories 
fare in comparison with more empirical equations of state. 

The variational inequality minimization (VIM) theory as 
developed by Alem and Mansoori (42) led to a relatively simple 
equation of state for non polar f lu ids. They use a reference 
system of hard-sphere molecules whose diameter (σ) has been chosen 
in order to minimize the Helmholtz energy of the real system. The 
configurational entropy is then given by 

SC = -R y H S (4 - 3y H $ ) / ( l - y H S ) 2 (18) 

Contrary to what Alem and Mansoori found for argon and methane, 
where σ was a linear function of density and inverse temperature, 
for tetrafluoromethane second order terms were needed. This 
ref lects, perhaps, the higher anisotropy of CF^. 

Fitt ing of the P-V-T data led to the following values of the 
three adjustable parameters: ε/k = (220 ± 1) K; σ/nm = 0.414 ± 
0.001 and 103v/k = (8 ± 1) nm3 Κ" 1 , ( ε , σ) are the usual param­
eters in a Lennard-Jones type potential and ν is the coefficient of 
the Axil rod-Tel 1er correction for the three-body potential (42). 
The final results are compared with the experimental values τη 
Figure 9. The agreement is similar to that found by Alem and 
Mansoori for argon, but i t is worse than that for methane. The 
theory underestimates the temperature coefficient of the density, 
leading to poor agreement in the low temperature region. 

Perturbation theory 

The perturbation theory of Gray, Gubbins and coworkers (10) has 
been extensively applied to molecular liquids and their mixtures. 
Since i t uses a spherically-symmetric reference system, it stands 
the best chance of success when applied to molecules which exhibit 
high symmetry. A previous study (43) proposed a model for CF^ 
which involved descriptions of the octopolar, anisotropic disper­
sion and charge overlap (shape) forces, in addition to a Lennard-
Jones (n,6) potential 

(19) 
(n,6) 

u = u + u (336) + u (303 + 033) + u (303 + 033) 
C F 4 / C F 4 ο ΩΩ ov disp. 
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01 1 ι ι ι 
0 200 400 600 800 1000 p/bor 

Figure 9. Comparison of experimental density values ( · ) 
with the predictions of the variational 
equation of state ( - · - · - ) and perturbation 
theory ( - - - - ) , as a function of pres­
sure, for different isotherms.  P
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The potential was found to be extremely hard, with a repulsive 
exponent η = 20, perhaps reflecting the high electronegativity of 
fluorine atoms. Best values of the intermolecular parameters were 
ε/k = 232 Κ and σ = 0.4257 nm. 

Use of the perturbation theory with the usual Padé approximant 
(I) led to the calculated densities shown in Figure 9. The agree­
ment with experiment can be rated very good, the difference being, 
at most, 2% even at the highest pressures, where the reduced densi­
ty is very close to the limit of val idity of the reference equation 
( i .e . densities ρσ 3 < 1.0). 

Conclusions 

The usual pattern is to have a new approach, be i t an empirical 
equation of state or molecular theory, tested against a variety of 
systems, from pure fluids to mixtures, from simple molecules to 
nasty ones (to borrow an expression from John Prausnitz). Here we 
have followed a different route, v iz . use the same body of experi­
mental data to assess the goodness of several semi-empirical equa­
tions and of some theoretically based treatments. Obviously this 
latter approach can only be of value i f the set of data is compre­
hensive enough to provide a s tr ict test of the theory. In thermo­
dynamic terms this means data over wide ranges of temperature and 
density, so that f i r s t order properties (temperature and pressure 
coefficents, for instance) can also be checked. 

The f i r s t attempt at a molecular understanding of the proper­
t ies of a f luid was that of van der Waals, with his famous equa­
tion of state 

- I L . . ^ _ + _ L _ (20) 
RT RTV l-4y 

Although the f i r s t (attractive) term was soon recognized as a good 
approximation for the attractive f i e l d , the second was thought, 
even by van der Waals, to be a poor representation of the repulsive 
forces. In his Nobel address of 1910 he was s t i l l wondering i f 
there was "a better way" of doing i t , adding that "this question 
continually obsesses me, I can never free myself from i t , i t is 
with me even in my dreams". The problem was only solved more than 
f i f t y years later, when good approximations for the equation of 
state of a system of hard spheres were proposed. In the meantime, 
many people were busy trying to improve on the van der Waals equa­
tion by retaining its bad term while trying to correct the good 
one. The Redlich - Kwong equation of state is perhaps the most 
celebrated outcome of this approach. 

PV 

R T (V+bjRT1-5 i-4y 

(21) 

No wonder i t has generated over one hundred modifications, despite 
its own successes. John Prausnitz has said that Equation 21 is to 
applied thermodynamics what Helen of Troy has been to l iterature 
" . . . the face that launched a thousand ships." 
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In the 60's and 70's more successful members were added to the 
family of van der Waals equations: these combined the attractive 
part of the original Equation 20 or even Equation 21 with a good 
hard-sphere equation of state. The Carnahan-Starling equation, 
mentioned in this paper, is a good example. 

In the last few years another type of equations of state has 
begun to emerge. They usually have a stat ist ical mechanics basis 
and combine a good hard-sphere part (or some generalization to hard 
convex bodies) with a more f lexible and sophisticated representa­
tion of the attractive f ie ld than that provided by the van der 
Waals equation. The Deiters and Kohler equations are good specimens 
of this second generation of generalized van der Waals equations of 
state. 

Equations with a rea l i s t ic molecular basis should be poten­
t i a l l y more universal in their appl icabi l ity and thus better suited 
to sound predictive methods. 

There is obviously s t i l l room for progress. For instance, the 
Deiters equation could profit from a better description of shape 
effects, while the Kohler equation is perhaps deficient in its 
depiction of the attractive f i e l d . Perturbation theory seems, at 
present, to be more promising than the variational approach, espe­
c i a l l y i f i t succeeds in combining the ab i l i ty to deal with polar­
ity with the abi l i ty to take shape into account. 

In any science, understanding must be synonymous with good 
quantitative agreement, and understanding really means the molecu­
lar leve l , even in chemical engineering. We owe i t , after a l l , to 
van der Waals who, in his Nobel address, said: "It will be perfect­
ly clear that in al l my studies I was quite convinced of the real 
existence of molecules, that I never regarded them as a figment of 
my imagination". The road is long and arduous, but van der Waals 
pointed the way. 

Glossary of Symbols 

Latin Alphabet 

A-j (i = 1 - 16) = coefficients of the Strobridge Equation (1) 
a, a 0 = van der Waals parameters in Equation 4; charac-

t ic temperature in Deiters Equation (7) 
Β = second v i r ia l coefficient 
Bv = function defined by Equation 2 
b = covolume 
C = parameter in Equation 14 

C n j = constants in Equation 10 
c = shape parameter in Deiters Equation (7) 

c 0 = universal constant in Deiters Equation (7) 
d = twice the thickness of hard layer added to hard 

convex core 
d v , d w = universal constants in Equation 4 
U (y) = a function of density in Deiters Equation (7) 

k = Boltzmann's constant 
N/\ = Avogadro's constant 
Ρ = pressure 
R = gas constant 
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Γ = number of mers per r-mer 
S = entropy 
Τ = absolute temperature 
υ = total energy 

u, u° = characteristic energy in Equations 13--15 
V = volume 

ν 0 0 = volume parameter in Equation 14 
V = parameter in Equation 4 
ν* = volume of one mole of hard bodies 
V* = volume of hard body 
W = parameter in Equation 4 

w(y) = efficiency factor for the square-well depth, 
Equation 7 

y = reduced density 
ζ = compressibility factor = PV/RT 
ζ = latt ice coordination number 

Greek alphabet 

α = coefficient in Equation 10 
γ = shape parameter in Boublik Equation (12) 
ε = intermolecular energy parameter (depth of 

potential) 
n = parameter in Equation 15 
ν = coefficient in Axil rod-Teller t r ip le potential 
Ρ = molar density 
σ = intermolecular energy parameter (molecular 

diameter); mean standard deviation 
Φ = parameter defined by Equation 17 

Subscripts, superscripts 

a = attractive 
Β = base (physically based) 
c = configurational; calculated 
e = experimental 
G = gaseous 
h = hard convex 
HS = hard sphere 
L = Liquid 
R = Residual 
r = reduced (by c r i t i ca l parameters) 
rd = recti l inear diameter 
Ω = octopole 

= reduced (by characteristic parameters, 
other than c r i t i ca l ) 

* = characteristic 
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4 
Phase Equilibria for the Propane-Propadiene System 
from Total Pressure Measurements 

Andy F. Burcham, Mark D. Trampe, Bruce E. Poling, and David B. Manley 

Department of Chemical Engineering, University of Missouri-Rolla, Rolla, MO 65401 

Total pressure measurements were made on the propane-
propadiene system from 253.15 to 353.15K. The data 
were reduced using the Soave-Redlich-Kwong Equation of 
state with modified mixing rules containing several 
parameters. Corrections were made for the effects of 
known chemical impurities in the experimental system, 
and vapor pressures and relative volatilities were 
calculated. 

The phase equilibrium behavior of the propane-propadiene system was 
st u d i e d using the t o t a l pressure method. This method has been 
applied to a number of systems of close boiling light hydrocarbons at 
the university of Missouri-Rolla (Steele et a l . , 1976; Martinez-Ortiz 
and Manley, 1978; Flebbe et a l . , 1982; Barclay et. a l . , 1982). The 
t o t a l pressure method consists of experimentally measuring the vapor 
pressures and t o t a l volume of two-phase mixtures under v a r y i n g 
conditions of temperature and overall composition. These data were 
then reduced using a thermodynamically consistent set of equations to 
calculate phase compositions and densities. 

In past studies, i t has been necessary to use extremely pure 
m a t e r i a l s i n order to produce accurate r e s u l t s . For p r a c t i c a l 
reasons this has limited the method to investigations concerning the 
r e l a t i v e l y few chemicals which are easily purified. However, many 
chemicals present in industrial process mixtures cannot be studied in 
pure form because they react with themselves. In particular, light 
hydrocarbon d i o l e f i n s and acetylenes tend to dimerize at process 
temperatures. One o b j e c t i v e of t h i s work was to extend the 

0097-6156/86/0300-0086$06.50/0 
© 1986 American Chemical Society 
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previously developed technique to mixtures containing r e a c t i v e 
components. Propadiene was chosen because, among other reasons, i t 
i s d i f f i c u l t to obtain in high purity; and i t i s moderately reactive. 
Therefore, i t provides a good test case for the development of the 
necessary experimental and computational tools. 

There are several ways to reduce the experimental total pressure 
data. In this work we chose to f i t the data with the Soave-Redlich-
Kwong (SRK) equation of s t a t e (Soave, 1972) with adjustable 
interaction parameters. The SRK equation was chosen because i t has 
been used s u c c e s s f u l l y f o r c o r r e l a t i n g hydrocarbon physical 
properties and because i t was necessary to predict some properties i n 
addition to c o r r e l a t i n g the observed pressures. Multicomponent 
mixtures were prepared with propadiene which contained quantitatively 
known impurities. The SRK i n t e r a c t i o n parameters for the minor 
constituents were estimated from the literature, but the parameters 
for the primary propane-propadiene binary were determined from the 
measured data. It was necessary to add additional i n t e r a c t i o n 
parameters in order to f i t the data within the estimated experimental 
error. To avoid errors in calculated pure component vapor pressures 
and l i q u i d densities, the SRK equation parameters were adjusted to 
y i e l d accurate pure component vapor p r e s s u r e s . The C o s t a l d 
(Hankinson and Thompson, 1979) correlation was used to calculate the 
saturated li q u i d densities i n the volume balance equation. Pure 
propadiene vapor pressures were estimated from the experimental data 
simultaneously with the i n t e r a c t i o n parameters i n an i t e r a t i v e 
procedure. 

Experiment 

The equilibrium c e l l which holds about 6 cc of sample i s shown in 
Figure 1. The chemicals of known composition were volumetrically 
metered i n t o the evacuated c e l l , and t h e i r exact amounts were 
determined (to within 0.0001 grams) on an a n a l y t i c a l balance. The 
c e l l was then placed i n a thermostat controlled to within 0.01 °C, 
and the pressure was determined by balancing the hydrocarbon vapor 
pressure on the bottom of the stainless steel diaphragm with nitrogen 
on the top. The differential pressure null was determined to within 
0.02 psia by the displacement transformer which had been previously 
calibrated. The nitrogen pressure was measured to within 0.01 psia 
with a Ruska dead weight gauge and Princo barometer. The temperature 
was measured to within 0.025 °C by a platinum resistance thermometer 
and Mueller b r i d g e . D e t a i l e d descriptions of the equipment, 
operating procedures, and e r r o r a n a l y s i s are g i v e n elsewhere 
(Barclay, 1980; Burcham, 1981, Barclay et a l . , 1982). 

Research grade propane was obtained from P h i l l i p s Petroleum 
Company, which s t a t e d that i n f r a r e d and mass spectrometer 
determinations showed the purity to be 99.99 mole percent. After 
careful degassing, the only impurity shown by gas chromatography was 
a trace amount of ethane. The propadiene was purchased from Columbia 
Inorganics Incorporated and had a stated purity of 99 weight percent. 
After careful degassing, analysis by gas chromatography and mass 
spectrometry identified the impurities as listed in Table I. 
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TO NITROGEN 

FERRITE CORE 

0.002" STAINLESS 
DIAPHRAGM 

THERMOWELL 

DISPLACEMENT 
TRANSDUCER 

4 - WIRE CABLE 
TO POWER SUPPLY 
AND VOLTMETER 

COUPLING-

SAMPLE CAVITY 

FILL LINE TO 
ATTACHED VALVE 

Figure 1. Sample c e l l and transducer 
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Table I. Propadiene Analysis 

Compound Mole % 
96.84 
2.11 
0.89 
0.088 
0.047 
0.031 

Propadiene 
Propene 
Propyne 
Propane 
Ethene 
Cyclopropane 

Two c e l l s were used, and a run c o n s i s t e d of f i l l i n g the 
evacuated c e l l s 25 to 60 percent f u l l with degassed chemicals, 
inserting them into the bath, and measuring the pressure at different 
temperatures. The f i r s t set of measurements started at 80°C, 
proceeded down in 25°C steps to -20°C; a second set of measurements 
was then made from -20°C to 80°C. Comparison of the duplicated 
measurements provided a check on possible errors due to l e a k s , 
reactions, or non-equilibrium conditions. 

The experimental results after adjustment to exact temperatures 
are g iven i n Table I I . The temperature adjustment procedure 
accounted for the difference between the actual bath temperature and 
the d e s i r e d temperature. This was less than 0.15°C, and the 
correction (done with the Antoine equation) contributed n e g l i g i b l e 
error. 

Data Reduction 

In order to compare with l i t e r a t u r e data the pure propane vapor 
p r e s s u r e s were c o r r e l a t e d w i t h t h e G o o d w i n 
equation (Goodwin, 1975). 

The constants given in Table III, are regressed from the data of this 
study; and a comparison with recent l i t e r a t u r e data i s shown in 
Figure 2. The scatter i s typical for light paraffin vapor pressure 
data from different laboratories. 

The thermodynamic state of a closed system at fixed temperature 
and s p e c i f i c volume i s completely determined. Pressure can be 
measured, but not varied independently. Consequently, the pressure 
measurements can be used to determine appropriate parameters in the 
theoretical description of the system. This was accomplished by 
forming a system of equations r e l a t i n g the known and unknown 

Ρ = P'EXPUX + BX2 + CX3 + DX(l-X) 1 , 5) (1) 

X = (1 - T'/T)/(1-T'/Tc) 
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B U R C H A M E T A L . Propane-Propadiene System: Phase Equilibria 

Table III. Goodwin Equation Constants for Propane and Propadiene 

ProDane ProDadiene 
A 3 .26655 - 1 . 5 7 0 8 6 
Β 0 .65753 9 .00968 
C - 0 . 1 8 9 3 0 - 3 . 3 5 3 2 9 
D 0 .56757 5 .35825 
p', p s i a 1 4 . 6 9 6 1 4 . 6 9 6 
Τ ' , Κ 2 3 1 . 1 2 3 8 . 7 
T C , Κ 369 .82 393 .0 

280 300 320 

TEMPERATURE, KELVIN 

360 

Figure 2 . Comparison for propane vapor pressure 
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92 E Q U A T I O N S O F S T A T E : T H E O R I E S A N D A P P L I C A T I O N S 

variables, and then solving for the unknown v a r i a b l e s . For M 
components these equations are: 

M Component Mass Balances 

N i ~ x i N x ~ y i N y β 0; i « l . . . . , M <2> 

1 Total Volume Balance 

V - - N V - Ν V =0 (3) Τ x x y y 

2 Summation Equations 

l - ^ x i = 0 ; l - ^ y i = 0 (4) 

2 Equations of State 

E(P,V ,T) = 0; E(P,V ,T) - 0 (5) x y 

M Equilibrium Constraints 

F i(P,x i,T) - F i(P,y i,T) = 0; i = 1,...,M (6) 

These equations contain only parameters and p h y s i c a l l y s i g n i f i c a n t 
variables. When V T, T, and are known, and the parameters are 
specified; the equations can be solved for the 2M + 5 unknowns x ^ 
y J t , P , V , V , N , N . Comparison of the measured and calculated J i χ y χ y κ 

pressures provides verification of the specified parameters. 
The SRK equation of state i s : 

Ρ = RT/(V-b) - a/(V(V+b)) (7) 

where 

a = Û bRTF/Q. (8) a D 

b = Û URT /P (9) b c c 

Q = 0.42748 (10) a 

n u = 0.08664 ( I D 
D 
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4. B U R C H A M E T A L . Propane-Propadiene System: Phase Equilibria 93 

where F i s a parameter which forces equation 7 to reproduce pure 
component vapor pressures. Equations 7 through 11 correspond to the 
form described by Reid, et. a l . (1977). I n i t i a l l y , the o r i g i n a l 
mixing rules with one interaction parameter 

were applied; but, as described below, i t was necessary to add 
additional parameters i n order to f i t the experimental data within 
i t s estimated uncertainty. Since the SRK equation predicts l i q u i d 
s p e c i f i c volumes poorly, the more accurate Costald c o r r e l a t i o n 
(Hankinson and Thomson, 1979) was used i n the t o t a l volume balance 
e q u a t i o n o n l y . Because t h i s i s an e x t e n s i v e c o n s t r a i n t , 
thermodynamic consistency i s s t i l l satisfied. 

At each temperature, pure component F parameters for equation 
(8) were determined so that pure component vapor pressures were 
accurately reproduced. For propane, the vapor pressure data of this 
study were used. For the impurities propene, propane, cyclopropane, 
and ethene, l i t e r a t u r e vapor pressure data were used (Bender, 1975; 
Vohra et. a l . , 1962; Heisig and Hurd, 1933; Lin et. a l . , 1970; 
Douslin and Harrison, 1968). The parameters are given i n Table IV. 

Interaction parameters, k ^ i n Equation 12, f o r the minor 
impurities were considered relatively unimportant and were assigned a 
value of 0. The propene-propane parameter was determined from 
l i t e r a t u r e data (Manley and Swift, 1970) to be 0.0085, and the 
propene-propadiene parameter was estimated to be the same based on 
experience with hydrocarbon mixtures. The propane-propadiene 
parameter was estimated to be 0.028 from the experimental mixture 
data of this study. 

Using the F parameters for a l l the components except propadiene, 
and the estimated i n t e r a c t i o n parameters; the theoretical-model 
equations were applied to the impure propadiene vapor pressure data. 
Pure propadiene F parameters and vapor pressures were calculated. 
The r e s u l t s are given i n Table V. Goodwin equation parameters 
determined by a least squares f i t to the pure vapor pressures are 
given in Table III, and a comparison with literature data i s given i n 
Figure 3. The r e l a t i v e l y large scatter for these data i s probably 
due to the d i f f i c u l t y in obtaining pure propadiene and i n keeping i t 
from dimerizing. The effect of accounting for the 3.26 mole percent 
impurity present i n the propadiene used i n this study was to reduce 
the estimated pure propadiene vapor pressure by about 1.5%. 

Next, the propane-propadiene i n t e r a c t i o n parameter, k 1 2 , for 
each data point was déterminée. Each value of k 1 0 i s shown in Figure 

(12) 

b (13) 
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94 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Table IV. SRK F Parameters, C r i t i c a l Properties, 
and Acentric Factors in this Study 

Propane Propene Propvne Cyclopropane Ethene Propadiene 

Parameter F in Equation 8 
253.15 Κ 1.843929 1.798899 2.167369 2.032122 1.189297 
278.15 Κ 1.596573 1.558492 1.870922 1.769849 1.024429 
303.15 Κ 1.394985 1.362286 1.629764 1.554293 0.890463 
328.15 Κ 1.227697 1.199187 1.430623 1.375080 0.779921 
353.15 Κ 1.085501 1.059943 1.264037 1.223972 0.687514 

Τ ,K 369.82 364.90 402.39 398.30 282.35 393. 
Ρ ,psia 616.41 699.06 816.27 809.24 731.28 793.58 

ω 0.152 0.148 0.218 0.132 0.086 0.1493 

Table V. Propadiene Properties (Duplicate Data Points) 

253.15 Κ 278.15 Κ 303.15 Κ 328.15 Κ 353.15 Κ 
Impure Propadiene 26.505 63.163 128.864 234.883 393.683 

Vapor Pressures 26.502 63.169 128.897 234.847 393.801 

Pure Propadiene 2.017308 1.749740 1.532509 1.352641 1.201258 
F Parameters 2.017349 1.749706 1.532417 1.352645 1.201152 

Pure Propadiene 25.882 62.053 127.083 232.230 389.897 
Vapor Pressures 25.879 62.059 127.117 232.193 390.019 

• THIS STUDY (PURE PfWPflOIENE) 
Ο THIS STUDY (IMPURE PROPflOIENO 
- RPI-4W (1969) 
A HILL (1962) 
Y STULL (1947) 
X HRKUTA (1969) 

260 280 300 320 3«40 360 

TEMPERATURE, KELVIN 

Figure 3. Comparison for propadiene vapor pressures 
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4. BURCHAM ET AL. Propane-Propadiene System: Phase Equilibria 95 

4, At a l l five temperatures, k 1 2 increased s t e a d i l y as the mole 
f r a c t i o n propane increased. At each temperature, the value of 
that minimized the sum of the squares of the pressure deviations was 
also determined. A typical pressure deviation plot (for 303.15K with 
k12 = ° · 0 2 7 9 2 ) i s shown in Figure 5. This figure demonstrates a non-
random error pattern consistent with the non-random composition 
dependence of k^- This indicated a need for additional parameter(s) 
in the mixing rules for the SRK equation. 

SRK Equation with Additional Interaction Parameters 

I n i t i a l l y , a second parameter (β) was added to the standard SRK 
mixing rule i n the form 

k12 = k12 + P X 1 / V ( 1 4 ) 

This equation introduces a l i n e a r composition dependence for the 
parameter k^ 2. The inverse volume factor was incorporated to force 
the mixing rule to reduce to a quadratic form i n the low density 
l i m i t . This i s important i f the equation i s to be applied to the 
vapor as well as the liquid phase. Equation 14 led to s a t i s f a c t o r y 
r e s u l t s , but two questions remained. How could equation 14 be 
extended to multicomponent mixtures, and what similarities were there 
between equation 14 and other recently proposed mixing rules? 
Mathias and Copeman (1983) recently published a modification of the 
Peng-Robinson equation (1976) with mixing rules based on l o c a l 
composition concepts. When the SRK equation i s substituted for the 
Peng-Robinson equation, Mathias's logic leads to 

ρ . _ — 1 ( a _ ln(l+b/V) 
V-b V(V+b) bRT 

(15) 

In equation 15, a and b are s t i l l given by equations 12 and 13. Two 
additional parameters per binary, d ^ and d ^ are introduced. For 
the system in this study values of d were to be introduced for only 
one of the binaries, namely, the propane-propadiene binary. When a l l 
d ^ values except d ^ and d 2 1 are zero, equation 15 may be written as 

V-b V(V+b) * a b W a l V 
(Xjbjgj+xjb^)) (16) 
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EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

0 . 0 7 

0 . 0 6 

0 . 0 5 

ce 
°T- 0 . 0 4 

x MIXTURE DATA 
-H- HEIGHTS) AVERAGE 

X 
X 

X 

M 
X X 
•M- H 
X X χ 
X I χ χ 
X X 

X î I * 
WO 2 6 0 2 8 0 3 0 0 3 2 0 

TEMPERATURE, KELVIN 

340 3 6 0 

Figure 4, Propane-propadiene interaction parameters, k 
values increase with increasing propane concentration. 
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Figure 5. Mixture pressure deviations at 303.15K for one-
parameter SRK f i t . 
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4. B U R C H A M E T A L . Propane-Propadiene System: Phase Equilibria 97 

where the two dimensionless parameters, and g 2 are given by 

2 ,2 
β1 1/2 ( 1 7 ) 

and 

2 2 
ff _ ac2 d12 ( 1 R ) 
g2 1/2 ( 8 ) 

( a i a 2 ) 1 / 2 b 2 R T 

Equation (16) written for a binary mixture i s 

„ RT 1 , 2^ 2^„, .1/2 . . ln(l+b/V) 
P = V=b _ v 7 v T b ) I a l W 2 + 2 ( a l a 2 ) x l X 2 ( 1 - k 1 2 _ X l g l b l 2b 

- V 2 > 2 l f i i 2 f ^ 

In equations 15, 16, and 19, the g (or d) parameters p r i m a r i l y 
characterize the mixing behavior in the liquid phase, while k^2 has 
an ef f e c t on both phases. When g 1 and g 2 are zero, equation 16 
reduces to the o r i g i n a l SRK equation. In equations 15, 16, and 19, 
the term ln(l+b/V) plays the same role as 1/V i n equation 14. When 
g 2 i s set equal to zero, equations 14 and 19 take on essentially the 
same composition dependence. 

A general fugacity coefficient expression can be obtained from 
equation 15. However, since the extra parameters were used only for 
the propane-propadiene binary, i t was more convenient to use equation 
16. The fugacity coefficient expression that r e s u l t s from equation 
16 i s 

2 a 1 / 2 

l n A i = f <-i>-m(z- fr^V ~ " J " 1 vfu-Vlinii+b / v ) 
3 

+ ln(l+b/V) 1/2 h_ _ \ l n V ± b ) ( x g b + x g b ) 
.2-,-, l a l V l X l X 2 U V + b b l n V M X l g l D l X 2 g 2 V 
D n l 

• in ψ 1 + Q. l n * f } (20) 

For components 1 and 2, 

°1 = x l x 2 g l b l / 2 + X 2 ( V X l ) g 2 b 2 / 2 ( 2 1 ) 
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98 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

and 

°2 = x l x 2 g 2 b 2 / 2 + V V V W 2 < 2 2 ) 

For a l l other components, CL = 0. 

Results 

The experimental data in Table II were recorrelated using equations 
16 and 20 with ĝ ^ set equal to zero. Values of the parameters that 
were obtained i n t h i s two parameter f i t are l i s t e d in Table VII. 
Figure 6 shows the deviation plot for 303.15 K. The extra parameter 
has e s s e n t i a l l y removed the non- random d e v i a t i o n p a t t e r n 
demonstrated by Figure 5. The parameters in Table VII were used to 
c a l c u l a t e smoothed phase compositions, volumes, and r e l a t i v e 
v o l a t i l i t i e s , α = ( y ^ X j ) / ( y 2 / x 2 ) , o f Propane (1) in propadiene (2). 
These are shown i n Tables VII-XI and Figure 7. The r e l a t i v e 
v o l a t i l i t y curves are not linear with mole fraction. This non-linear 
behavior has been observed previously i n close-boiling hydrocarbon 
m i x t u r e s ( F l e b b e et a l . , 1982; B a r c l a y et a l . , 1 9 8 2 ) ; 
characterization of t h i s behavior i s important i n the design of 
separation processes. Hakuta et a l . (1969) repor t e d r e l a t i v e 
v o l a t i l i t i e s for the propane-propadiene system and comparisons to 
their results shown i n Figures 8 and 9. A comparison to r e s u l t s 
reported by H i l l et a l . (1961) i s shown in Table XII. 

As discussed elsewhere (Barclay, 1980; Burcham, 1981; Barclay et 
a l . , 1982) estimated probable errors i n the calculated l i q u i d 
compositions and relative v o l a t i l i t i e s are +0.0005 mole f r a c t i o n and 
+0.004 units respectively assuming that the pure material analysis i s 
good and that calculated vapor and l i q u i d densities are reasonably 
accurate. A comparison of the calculated saturated vapor and liquid 
compressibility factors for propane with published data (Das and 
Eubank, 1973) shows an error of +1% in Z v - Z L at 253.15°K and +4% at 
353.°K. Since these errors generate equivalent percent errors i n 
ln o , the calculated r e l a t i v e v o l a t i l i t i e s may be o f f a maximum 
additional 0.0010 units at the pure propane conditions and 0.0100 
units at the pure propadiene conditions. Experimental propadiene 
densities are not available and no e f f o r t was made to reduce t h i s 
contribution to the total error. 

As can be seen from equation 19, the binary i n t e r a c t i o n term 
when g 1 i s zero i s given by 

! _ k _ χ g b ln<l+b/V) 
K12 x2 g2 D2 2b 

In this study, values of k 1 2 were always positive and less than 0.04. 
Values of the term, *282*>2 ln( 1+b/V)/2b, were always po s i t i v e and 
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BURCHAM ET AL. Propane-Propadiene System: Phase Equilibria 

Table VI. Binary Interaction Parameters for the 
Propane-Propadiene Binary 

τ,κ k12 g2 

253.15 0.03329 0.1564 
278.15 0.02956 0.1147 
303.15 0.02775 0.0532 
328.15 0.02694 0.0440 
353.15 0.02599 0.0356 

0.5 

0.4 

0.3 

0.2-

0.1-

-0.1-

-0.2-
o 
ο -0.3 

-0.4-

-0.5, 

I I Γ 

DEVIATION PLOT K|2 =0.02775 
G2 * 0.0532 

_L I 

Ό 0.2 0.4 0.6 0.8 10 
OVERALL MOLE FRACTION PROPANE 

Figure 6. Mixture pressure deviations at 303.15K for two-
parameter SRK f i t . 
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EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

Table VII . Calculated Propane(l)-Propadiene(2) VLE at 253.15 K. 
LIQ 

V from Ccstald, Other Values from SRK Equation 

V L I Q , Relative 
3 VAP 

Y± P ,psia cm /g-mol Ζ V o l a t i l i t y 

0.0 0.0 25.88 63.81 0.9593 2.892 
0.0500 0.1184 27.92 64.56 0.9558 2.552 
0.1000 0.2019 29.43 65.31 0.9532 2.276 
0.1500 0.2658 30.58 66.07 0.9511 2.051 
0.2000 0.3180 31.50 66.83 0.9494 1.865 
0.2500 0.3631 32.26 67.59 0.9479 1.710 
0.3000 0.4038 32.91 68.36 0.9467 1.581 
0.3500 0.4420 33.46 69.13 0.9455 1.471 
0.4000 0.4788 33.95 69.90 0.9445 1.378 
0.4500 0.5151 34.38 70.68 0.9436 1.298 
0.5000 0.5516 34.75 71.47 0.9427 1.230 
0.5500 0.5889 35.07 72.25 0.9419 1.172 
0.6000 0.6272 35.33 73.04 0.9412 1.121 
0.6500 0.6669 35.54 73.83 0.9406 1.078 
0.7000 0.7082 35.70 74.63 0.9400 1.040 
0.7500 0.7514 35.80 75.43 0.9395 1.008 
0.8000 0.7967 35.84 76.24 0.9390 0.980 
0.8500 0.8441 35.82 77.05 0.9386 0.956 
0.9000 0.8938 35.75 77.86 0.9383 0.935 
0.9500 0.9457 35.62 78.67 0.9380 0.917 
1.0000 1.0000 35.44 79.49 0.9378 0.902 

Table VIII . Calculated Propane(l)-Propadiene(2) VLE at 278.15 K. 
LIQ 

V from Costald, Other Values for SRK Equation 

V L I Q , Relative 
3 VAP 

Χ χ P,psia cm /g-mol Z ¥ V o l a t i l i t y 

0.0 0.0 62.06 67.21 0.9218 2.121 
0.0500 0.0932 65.25 68.03 0.9172 1.952 
0.1000 0.1673 67.80 68.86 0.9135 1.808 
0.1500 0.2293 69.90 69.68 0.9103 1.686 
0.2000 0.2833 71.66 70.52 0.9076 1.581 
0.2500 0.3319 73.16 71.36 0.9051 1.490 
0.3000 0.3769 74.46 72.20 0.9030 1.412 
0.3500 0.4197 75.59 73.05 0.9010 1.343 
0.4000 0.4611 76.58 73.90 0.8992 1.283 
0.4500 0.5017 77.44 74.76 0.8976 1.231 
0.5000 0.5422 78.19 75.62 0.8961 1.185 
0.5500 0.5830 78.83 76.48 0.8947 1.144 
0.6000 0.6243 79.36 77.36 0.8934 1.108 
0.6500 0.6664 79.79 78.23 0.8922 1.076 
0.7000 0.7097 80.11 79.11 0.8911 1.048 
0.7500 0.7541 80.33 80.00 0.8902 1.022 
0.8000 0.8000 80.45 80.89 0.8893 1.000 
0.8500 0.8475 80.46 81.78 0.8885 0.980 
0.9000 0.8965 80.38 82.69 0.8878 0.963 
0.9500 0.9474 80.19 83.59 0.8872 0.947 
1.0000 1.0000 79,91 84.50 0.8867 0,934 
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B U R C H A M ET A L . Propane-Propadiene System: Phase Equilibria 

Table IX. Calculated Propane(l)-Propadiene(2) VLE at 303.15 K. 
LIQ 

V from Costald, Other Values from SRK Equation 

V L I Q , Relative 
3 VAP 

Χ χ Υ χ Ρ , p s i a cm /g-mol Ζ V o l a t i l i t y 

0.0 0.0 127.10 71.42 0.8676 1.667 
0.0500 0.0771 131.59 72.33 0.8620 1.587 
0.1000 0.1441 135.44 73.26 0.8571 1.515 
0.1500 0.2040 138.77 74.19 0.8527 1.452 
0.2000 0.2585 141.69 75.12 0.8487 1.395 
0.2500 0.3093 144.25 76.07 0.8450 1.343 
0.3000 0.3573 146.50 77.02 0.8416 1.297 
0.3500 0.4033 148.49 77.97 0.8385 1.256 
0.4000 0.4480 150.25 78.94 0.8357 1.218 
0.4500 0.4919 151.78 79.91 0.8330 1.183 
0.5000 0.5353 153.12 80.89 0.8306 1.152 
0.5500 0.5785 154.26 81.87 0.8283 1.123 
0.6000 0.6220 155.21 82.86 0.8262 1.097 
0.6500 0.6658 155.99 83.86 0.8242 1.073 
0.7000 0.7103 156.58 84.86 0.8224 1.051 
0.7500 0.7556 157.00 85.87 0.8207 1.031 
0.8000 0.8019 157.25 86.89 0.8192 1.012 
0.8500 0.8493 157.32 87.92 0.8179 1.995 
0.9000 0.8980 157.22 88.95 0.8166 0.979 
0.9500 0.9482 156.95 89.99 0.8155 0.964 
1.0000 1.0000 156.50 91 t03 0.8146 0.950 

Table X. Calculated Propane(l)-Propadiene(2) VLE at 328.15 K. 
LIQ 

V from Costald, Other Values from SRK Equation 

V L I Q , Relative 
3 VAP 

Χ χ Υχ P,psia an /g-mol Z ¥ r V o l a t i l i t y 

0.0 0.0 232.21 76.93 0.7939 1.462 
0.0500 0.0690 238.75 78.00 0.7866 1.409 
0.1000 0.1314 244.47 79.08 0.7799 1.361 
0.1500 0.1887 249.53 80.17 0.7737 1.318 
0.2000 0.2422 254.00 81.27 0.7679 1.279 
0.2500 0.2930 257.97 82.38 0.7626 1.243 
0.3000 0.3417 261.50 83.51 0.7577 1.211 
0.3500 0.3889 264.62 84.64 0.7531 1.182 
0.4000 0.4350 267.37 85.79 0.7488 1.155 
0.4500 0.4805 269.77 86.94 0.7447 1.130 
0.5000 0.5256 271.85 88.11 0.7410 1.108 
0.5500 0.5706 273.62 89.29 0.7375 1.087 
0.6000 0.6158 275.09 90.48 0.7342 1.068 
0.6500 0.6612 276.26 91.69 0.7311 1.051 
0.7000 0.7071 277.14 92.91 0.7283 1.035 
0.7500 0.7537 277.74 94.14 0.7257 1.020 
0.8000 0.8010 278.06 95.38 0.7234 1.006 
0.8500 0.8491 278.10 96.63 0.7212 0.993 
0.9000 0.8983 277.86 97.90 0.7192 0.981 
0.9500 0.9485 277.36 99.19 0.7174 0.970 
1.0000 1.0000 276 t?9 100.48 0.7158 0.960 
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102 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

TABLE XI. Calculated Propane(l)-Propadiene(2) VLE at 353.15 K. 
LIQ 

V from Costald, Other Values from SRK Equation 

V L I Q, Relative 
3 VAP 

Χ α Υ χ Ρ,psia cm /g-mol Ζ V o l a t i l i t y 

0.0 0.0 389.96 84.99 0.6949 1.303 
0.0500 0.0626 398.94 86.35 0.6849 1.268 
0.1000 0.1208 406.97 87.73 0.6755 1.237 
0.1500 0.1757 414.17 89.14 0.6667 1.208 
0.2000 0.2281 420.64 90.57 0.6583 1.812 
0.2500 0.2785 426.44 92.03 0.6503 1.158 
0.3000 0.3276 431.63 93.51 0.6427 1.137 
0.3500 0.3757 436.26 95.03 0.6355 1.117 
0.4000 0.4230 440.36 96.57 0.6287 1.100 
0.4500 0.4700 443.97 98.14 0.6221 1.084 
0.5000 0.5167 447.09 99.74 0.6159 1.069 
0.5500 0.5634 449.74 101.37 0.6100 1.056 
0.6000 0.6102 451.94 103.04 0.6044 1.044 
0.6500 0.6572 453.71 104.75 0.5992 1.032 
0.7000 0.7046 455.04 106.50 0.5943 1.022 
0.7500 0.7524 455.94 108.28 0.5896 1.013 
0.8000 0.8007 456.43 110.12 0.5853 1.005 
0.8500 0.8496 456.51 111.99 0.5814 1.997 
0.9000 0.8990 456.18 113.92 0.5777 0.990 
0.9500 0.9492 455.47 115.90 0.5744 0.983 
1.0000 1.0000 454,37 117.94 0.5713 0.977 

0 0.2 04 0.6 08 1.0 
MOLE FRACTION PROPANE 

Figure 7. Relative v o l a t i l i t y of propane propadiene. 
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B U R C H A M ET A L . Propane-Propadiene System: Phase Equilibria 

Figure 8. Comparison for relative v o l a t i l i t i e s at 273.15K. 
Line i s calculated from results of this study, points are 
Hakuta's data (1969).  P
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104 EQUATIONS OF STATE. THEORIES AND APPLICATIONS 

0 0.2 0.4 0.6 0.8 1.0 
MOLE F R A C T I O N PROPANE 

Figure 9. Comparison for relative v o l a t i l i t i e s at 293.25K. 
Line i s calculated from results of this study, points are 
Hakuta's data (1969). 

TABLE XII. Comparison of Experimental and Calculated Relative 
V o l a t i l i t i e s of Propane i n Propadiene 

Liquid Phase Mole fractions Relative V o l a t i l i t i e s 
Experimental 

Propane Propadiene Propene Propvne Temperature ( H i l l . 1961) Calculated 
0.912 0.013 0.058 0.017 305.37 0.976 0.967 
0.924 0.014 0.047 0.015 305.37 0.973 0.965 
0.026 0.935 0.027 0.012 305.37 1.441 1.584 
0.012 0.933 0.037 0.018 305.37 1.464 1.595 
0.010 0.941 0.036 0.013 305.37 1.464 1.601 
0.919 0.012 0.055 0.014 333.15 0.971 .974 
0.929 0.011 0.047 0.013 333.15 0.978 .973 
0.014 0,959 0.016 0.011 333.15 1.287 1.401 
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4. B U R C H A M E T A L . Propane-Propadiene System: Phase Equilibria 105 

less than 0.045 (the value for pure propadiene at 253.15K). At the 
four higher temperatures, this last term was never more than 0.026. 

The data in this study were f i t to various forms of equation 16, 
and none was judged to be as satisfactory as the form just reported, 
i . e . with g^ = 0. For the case when a l l three parameters were f i t , 
the three parameters proved to be highly correlated, the parameters 
did not vary smoothly with temperature, and the f i t was improved by 
an insignificant amount. When other two-parameter combinations were 
tested, i.e., k^2 = 0, or g 2 = 0, the f i t to the data was better than 
with the one parameter model, but always worse than for the two 
parameter case when g^ = 0. 

When i s zero, and g 2 i s a pos i t i v e number, the predicted 
relative v o l a t i l i t y i s increased at low propane mole fractions. When 
g^ i s a posit i v e number, the e f f e c t i s to lower the r e l a t i v e 

v o l a t i l i t y predictions at high propane mole fractions. 

Summary 

New experimental t o t a l pressure data for the propane-propadiene 
system with several known minor i m p u r i t i e s are presented. A 
computational method f o r reducing the data i s developed and 
demonstrated. A modification of the SRK equation of state with an 
a d d i t i o n a l i n t e r a c t i o n parameter i s applied. Calculated pure-
propadiene vapor pressures and relative v o l a t i l i t i e s for the propane-
propadiene system are given. 
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Legend of Symbols 

mixture constants in SRK equation; a ±, b± are for pure 
i ; a . i s for pure i at i t s c r i t i c a l temperature 

CI 
constants in Goodwin vapor pressure equation 
binary iteraction parameter (see equation 15) 
equation of state (see equation 5) 
fugacity of i (see equation 6) 
pure component parameter i n SRK equation, see 
equation 8 
binary i n t e r a c t i o n parameters (see equations 16-19). 
In this study g 1 = 0 
binary interaction parameter 
constants in equation 14 

a,b 

A,B,C,D,P',T' 

Ε 
F, 

g l ' g 2 

k. . 

k°. 
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106 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Ν moles; Ν , moles in the liquid phase; Ν , moles i n the 
χ y 

vapor phase 
Ρ pressure, psia; Ρ , c r i t i c a l pressure, psia 
Q± term in fugacity coefficient expression, see equations 

19-21 
Τ temperature. Κ; Τ , c r i t i c a l temperature 
V molar volume ; V i s molar volume of l i q u i d , V i s 

χ y 
molar volume of vapor 

V T total volume 
X temperature function in equation 1 
χ mole fraction in the liquid phase i n equations 2-6, in 

either phase i n equations thereafter 
y mole fraction i n the vapor phase 

ν L 
Ζ compressibility factor; Ζ for vapor, Ζ for liquid 
Greek 
α relative v o l a t i l i t y 
β constant in equation 14 

fugacity coefficient of i 

û a pure number, see equations 8-11 
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5 

Nonclassical Description of (Dilute) Near-Critical 
Mixtures 

J. M. H. Levelt Sengers, R. F. Chang, and G. Morrison 

Thermophysics Division, Center for Chemical Engineering, National Bureau of Standards, 
Gaithersburg, MD 20899 

The organizers of this symposium have asked us to 
review the nonclassical equations of state and their 
applications in near-critical fluids and fluid 
mixtures. In this contribution, the emphasis will be 
on fluid mixtures. The behavior of fluid mixtures 
near the gas-liquid critical line has undergone a 
revival of interest for a variety of reasons. One is 
the appearance of a number of reports of large 
anomalies in properties such as apparent heats of 
dilution (1), apparent molar volumes (2) and apparent 
molar specific heats (3) of dilute salt solutions in 
near-critical steam, and of extraordinarily large 
enthalpies of mixing at supercritical pressures in 
mixtures with components of very different critical 
temperature (4). Another reason is the strong push 
for exploration of the supercritical regime in 
separation processes, a promising alternative to 
liquid extraction (5). Supercritical solubility is 
governed, in part, by the partial molar properties of 
the solute, which have been reported to behave 
anomalously. It seems therefore useful at this point 
to take stock and review: (1) what are the differences 
in prediction between classical and nonclassical 
equations for fluids and fluid mixtures; (2) how the 
nonclassical behavior is going to be meshed with 
classical behavior further away and (3) what types of 
nonclassical equations are available for fluid 
mixtures and what is their range of validity. The 
anomalous properties of dilute near-critical mixtures, 
which are of interest in custody transfer and in 
supercritical solubility, are discussed in the last 
part of this contribution. 

C r i t i c a l Behavior of Pure Fluids 
This section defines the terminology and summarizes the differences 
between classical and nonclassical behavior of pure fluids in the 

This chapter not subject to U.S. copyright. 
Published 1986, American Chemical Society 
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5. L E V E L T S E N G E R S ET A L . Near-Critical Mixtures 111 

briefest of terms. The material presented here is in standard 
notation and has been reviewed elsewhere ( 6 ^ 7j_ 8 ) . 

C r i t i c a l behavior is called classical (mean-field, or van der 
Waals-like) i f the Helmholtz free energy a ( V , T) can be expanded at 
the c r i t i c a l point in terms of 6V = V - V q and δΤ = Τ - T c > V being 
the volume, Τ the temperature and the subscript c denoting the 
c r i t i c a l value. If such an expansion exists, thermodynamic 
properties vary in accordance with simple power laws along given 
paths asymptotically near the c r i t i c a l point. The power laws and 
exponent values are summarized in Table 1 and the paths are 
indicated in Figure 1. Real fluids do not behave classically. 
Their coexistence curves and c r i t i c a l P - V isotherms are flatter 
than predicted by classical equations, and their specific heat Cy 
shows a weak divergence (Table 1 ) . Renormalization-group theory 
explains how nonclassical exponent values result from the 
correlation of the c r i t i c a l fluctuations, and the theoretical 
exponent values for the universality class of 3D Ising-like systems 
have been confirmed in a number of delicate experiments, see, for 
instance ( 9 ) , ( 1_0). The scaling laws (6 - 8 , U_) that describe the 
thermodynamics of near-critical fluids can be viewed as a compact 
"packaging" of the power laws of Table 1. They imply the exponent 
equalities 

2 - α - 0(6 + 1) ; Ύ - β(δ - 1) (1) 

so that only two exponents are independent; these are, however, the 
same for a l l systems in the 3D Ising-like universality class. 
Likewise, only two amplitudes in the power-law expressions can be 
chosen independently; these are not universal. We w i l l c a l l the 
c r i t i c a l behavior shown by real fluids and predicted by 
renormalization-group theory nonclassical. 

It is important to note the difference between strongly 
(Ύ-like) and weakly (α-like) diverging properties in the 
nonclassical case (j_2). Properties which are the same in 
coexisting phases are called "fields". Examples are pressure P, 
chemical potential μ and temperature T. Thus 
Ρ (μ, Τ), with Ρ = Ρ/Τ, μ = μ/Τ and Τ = 1/Τ is an example of a 
thermodynamic potential in which a l l variables are fie l d s . First 
derivatives, the density ρ = (3Ρ/9μ) τ and the energy density Up = 

( 3 P / 9 T ) , are generally different in coexisting phases. Such f i r s t 
derivatives are called "densities". Other examples of densities 
include volume V , enthalpy H, entropy S, and composition x. 

The strong divergences are obtained (classically and 
nonclassically) i f a derivative is taken of a density with respect 
to a f i e l d while another f i e l d is kept constant, that i s , in a 
direction intersecting the coexistence curve in Figure 1 b . If, 
however, a density is kept constant at differentiation, one obtains 
the nonclassical weak divergences; a constant - density direction 
is parallel to the coexistence curve in Figure 1 b . (J_2). Examples 
of strong and weak divergences in one-component fluids are listed 
in Table II. 
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112 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

T a b l e I 
C r i t i c a l exponent d e f i n i t i o n s and v a l u e s 

The p a t h s a r e i n d i c a t e d i n F i g u r e 1 

P r o p e r t y D e f i n i t i o n o f C l a s s i c a l V a l u e f o r 
c r i t i c a l exponent V a l u e r e a l f l u i d s 

S p e c i f i c h e a t c v - | T - T c f a α = 0 α = 0 1 

C o e x i s t e n c e C u r v e |p-p0l " I T - T g ι β 3 - 0.5 3 = 0 33 

C o m p r e s s i b i l i t y κ τ - | T - T c f Y Ύ = 1 Ύ = 1 21 

C r i t i c a l i s o t h e r m s | P - P C I " | P - P C I 6 δ = 3 δ - 4 .8 
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5. L E V E L T S E N G E R S ET A L . Near-Critical Mixtures 113 

For details of the scaled form of the potential Ρ (μ, Τ) we 
refer to the literature (6 - 8). Conceptually, this form is 
construed as follows. The potential is sp l i t into a part that is 
analytic in μ and Τ and a part that is scaled. The scaling 
variables are chosen as a reduced temperature difference τ = Δ Τ in 
the weak direction along the coexistence curve and a 
reduced chemical potential difference h = Δμ in the strong 
direction intersecting this curve (Figure 2). The scaled part is 
written in algebraically closed form by means of Schofield's 
parametric variables, a distance-from-critical variable r and a 
contour variable θ. Two refinements are made. One goes by the 
name of "revised scaling": the gas-liquid asymmetry characteristic 
of real fluids is obtained by replacing the weak scaling variable 
by a linear combination of ΔΤ and Δμ (7, 1_3) which is equivalent 
with " t i l t i n g " the h axis in Figure 2. The other refinement is 
called "corrections to scaling" or "extended scaling". These 
corrections, introduced by Wegner, account for the difference 
between the c r i t i c a l Hamiltonian of the real f l u i d and the 
Hamiltonian characterizing the fixed point for 3D Ising-like 
systems [7]. 

PVT and thermal data for a number of pure fluids, including 
steam, ethylene and isobutane have been f i t t e d accurately in the 
range of -0.01 to +0.1 in reduced temperature around the c r i t i c a l 
point by means of revised and extended scaling with one Wegner 
correction term (8). 

Crossover from Classical to Scaled Behavior 
Universal scaling behavior results when the behavior of a system is 
dominated by one length scale, that of the correlation length, 
which diverges at the c r i t i c a l point. When the system moves away 
from the c r i t i c a l point, other length scales begin to become 
important and the system gradually assumes the nonuniversal 
species-specific behavior that is described by classical equations. 
Only very recently, progress has been made with devising functions 
that scale near the c r i t i c a l point and are classical at some 
distance from i t . There have been a number of attempts at 
empirically connecting " c r i t i c a l " and classical" regimes. Switch 
functions have been introduced to smoothly connect the two regimes 
(14, 15)Î great d i f f i c u l t y i s , however, experienced with derived 
properties, because of anomalous contributions from higher 
derivatives of the switch function. Only i f classical and scaled 
free energy are exceedingly close to each other in the range of the 
switch can these anomalous variations be suppressed. H i l l reports 
good success with a switch function for steam (16). 

A true crossover function is a function that behaves 
classically far from and is scaled close to the c r i t i c a l point. 
Fox transformed the variables in a classical thermodynamic 
potential in such a way that nonclassical behavior was obtained 
near the c r i t i c a l point (j_7). His method gives good results for 
PVT and coexistence curve data but has not been tried for higher 
derivatives such as C... White (18) has reported success with a 
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(")P 

τ Δ v \spy, 

ι /<sv\ 

° Ρ Δ * V ^ T J P I 

( « ) ρ Δ 

Ε Ρ Δ · Τ 

(3χ/8Δ) ρ τ, osmotic 
s u s c e p t i b i l i t y 

Ο χ / 3 Ρ ) Τ μ , s u p e r c r i t i c a l 

Table II. Strong and Weak Divergences 
Strong (Ύ-type) weak (a-type) other (nondivergent) 

second derivative 
in direction intersecting 
coexistence surface in 
field space 

second derivative taken 
in coexistence, but 
not in critical 
surface in field space 

second derivative along 
critical surface in 
field space 

one-component 

τ V \dp)T 

Ks - - 7 (lf)s 
N.A. 

( " ) v 

two-component, Δ=μ1~μ2 

Tx 

Px 

- 1 (*A 

Ox/3P), 

c„ = τ 
Vx 

¥1 

s o l u b i l i t y 

Figure 2. Directions of the strong (h) and weak (τ) scaling 
variables in the space of independent variables μ, Τ for a 
one-component f l u i d . In simple scaling, the h axis is 
vertical; in revised scaling, i t is not. 
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5. L E V E L T S E N G E R S E T A L . Near-Critical Mixtures 115 

systematic averaging procedure for fluctuations on various length 
scales for the van der Waals equation. Crossover from scaled to 
mean-field behavior was solved for the Landau-Ginzburg Hamiltonian 
for 3D Ising-like systems (J_9, 20) for both the symmetric and the 
asymmetric case, by Nicoll and Albright. The latter has 
constructed a crossover function that crosses from the scaled 
equation to the van der Waals equation in a range around the 
c r i t i c a l isochore (21). 

Classical C r i t i c a l Behavior of Fluid Mixtures 
By classical behavior we mean again that the Helmholtz free energy 
a(V, Τ, χ), with χ the mole fraction, can be expanded at the 
c r i t i c a l line in terms of its independent variables. The 
ideal-mixing term RT[x in χ + (1-x) Jin (1-x)] must be treated 
separately because i t is not analytic at x=0 and x=1. The 
implications of classical behavior can be visualized by assuming, 
with van der Waals, that the mixture, at constant composition x, is 
in corresponding states with i t components. In Figure 3a, b, we 
draw the equivalent of Figure 1a, b for the mixture, in reduced 
coordinates Ρ = Ρ/Ρ , V = V/V and Τ = T/T . For the mixture, c c c 
Ρ f p c and T q represent the pseudocritical parameters of the point 
at which the mixture would become mechanically unstable i f i t would 
remain homogeneous. In reality, the mixture becomes materially 
unstable before i t reaches the pure-fluid coexistence curve. The 
curve of material instability, or dew-bubble curve, is indicated in 
Figure 3a. Inside this curve, the mixture split s into two phases 
of compositions other than x^, and does not 
follow the pure-fluid isotherms. In a constant - χ representation 
the c r i t i c a l point is not at the top and there are no tie lines in 
the plot. Figure 3a makes clear that the compressibility Κ Τ χ, and 
therefore also α ρ χ and C p x > are f i n i t e at the c r i t i c a l point. 
Thus, these mixture properties are not analogous to their strongly 
diverging counterparts in one-component fluids. Mixtures do show 
strong divergences; and example is the osmotic susceptibility 
(3χ/3Δ)ρΤ, with Δ = μ1 - which diverges because of the 
c r i t i c a l i t y conditions: 

(3Δ/3χ) ρ τ = (3 2G/3x 2) p T - 0 ; 0 2 Δ / 3 χ 2 ) ρ τ = (3 3G/8x 3) p T = 0 (2) 

In Figure 3b we show the equivalent of Figure 1b for a mixture of 
constant composition; also indicated are the isobar that passes 
through the maximum on the phase boundary in Figure 3a and b, and 
the isotherm tangential to the phases boundary. In this example, 
the c r i t i c a l point is located between the two extrema in Figure 3b. 
This is the most common, but not the only case. In Figure 3b we 
also draw a few isochores. Note that the c r i t i c a l isochore changes 
slope at the phase boundary while the isochore passing through the 
temperature extremum does not change slope (22). By means of the 
law of corresponding states, van der Waals was able to predict 
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almost a l l of the often-complex phase behavior of binary mixtures 
that has later been found experimentally. Van Konijnenburg and 
Scott ( 23 ) generated by computer a l l binary-mixture phase diagrams 
that follow from the van der Waals equation through the law of 
corresponding states. 

Nonclassical C r i t i c a l Behavior of Fluid Mixtures 
The defects of a classical description are as obvious in f l u i d 
mixtures as in pure fluids. Classical models for the coexistence 
curves of mixtures are never fl a t enough at the top, since binary 
gas-liquid and liquid-liquid coexistence curves are cubic (£4, 25). 
Griffiths and Wheeler (J_2) generalized the scaling laws for pure 
fluids to fl u i d mixtures by means of the concept of critical-point 
universality. Although, as we have seen, a one-component f l u i d and 
a mixture of constant composition do not have the same two-phase 
behavior, Griffiths and Wheeler postulated that they do i f the 
mixture is considered at constant f i e l d . This principle is 
indicated schematically in Figure 4. In this figure the 
independent fields, for the scaled potential developed by Leung and 
Griffiths (26), are the weighted average activity a = + a 2 

and the normalized activity of the second component: 

ζ = c 2 a 2 / (c a 1 + c 2 a 2) (3) 

Here c^, c 2 are two constants related to the choice of zeropoints 
of chemical potentials, â ^ - exp (yVRT), and ζ runs from 0 (pure 
component 1) to 1 (pure component 2). The variable ζ, rather than 
the customary composition variable x, connects the a-T diagrams of 
the two pure components. Whereas i f χ is the variable, a 
coexistence surface consists of two sheets, a dew and a bubble 
surface, i t is single valued i f ζ is the variable, since ζ is a 
f i e l d . A point on the c r i t i c a l line can now be approached in one 
of three ways. If two fields are kept constant, for 
instance ζ and the temperature, a path intersecting the coexistence 
curve is obtained. We expect this direction, indicated by h in 
Figure 4, to be "strong" just as in the pure f l u i d , Figure 2, and 
corresponding second derivatives to be strongly divergent. Several 
examples are given in Table II. Note that the osmotic 
susceptibility Ο χ / 3 Δ ) ρ τ and the supercritical solubility 
Ox/3P) T ^ in the presence of a solid or liquid phase of (almost) 

constant μ 2 are in this category of strong, Ύ-like divergences. 
If one density is kept constant in the differentiation, for 

instance the volume or the entropy, then the c r i t i c a l point is 
approached along the coexistence surface, the weak direction 
indicated by τ in Figure 4, and second derivatives diverge weakly. 
Note, in Table 2, that Κ Τ χ, C p x and α ρ χ are in this category. 

Finally, when two densities are held constant, the path to a 
point on the c r i t i c a l line becomes asymptotically parallel to this 
line. Since f i r s t derivatives such as volumes and entropies vary 
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(b) 1 x. 

P m / V̂  

ψ Ρ 
/ / ι 

A 

' ' ' ' ' À 

! Tm 

T/Tc 

Figure 3 a, b. They are the equivalents of Figure 1a, b for a 
mixture of constant composition x, by virtue of the law of 
corresponding states. · is the pure-fluid c r i t i c a l point, a 
pseudocritical point for the mixture. The mixture 
phase-separates on the dew-bubble curve and does not attain 
the states — ~ inside this curve. Ο is the real c r i t i c a l 
point of the mixture. Τ is the maximum temperature, Ρ the 

m m 
maximum pressure, for the dew-bubble curve at x̂  . In (b), 
several isochores are indicated. The c r i t i c a l isochore 
changes slope at the dew-bubble curve while the isochore 
through Τ does not. m 

I 

Figure 4. Coexistence surface and c r i t i c a l line in the space 
of independent variables a (average activity), c(=a2/a) and T. 
The scaling variables h (strong) and τ (weak) are chosen in 
the plane of constant ζ. ζ is the third variable chosen along 
the c r i t i c a l line. 
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s m o o t h l y a l o n g t h e c r i t i c a l l i n e , no d i v e r g e n c e s r e s u l t i f s e c o n d 
d e r i v a t i v e s a r e t a k e n a l o n g t h i s l i n e , w i t h t h e e x c e p t i o n o f 
x - d e r i v a t i v e s i n t h e l i m i t s ζ - 0 o r 1, t o be d i s c u s s e d l a t e r . 

I n o r d e r t o c o n s t r u c t a s c a l e d t h e r m o d y n a m i c p o t e n t i a l f o r t h e 
b i n a r y g a s - l i q u i d m i x t u r e , L e u n g a n d G r i f f i t h s (26) p o s t u l a t e d t h a t 

P ( a , T ) a t c o n s t a n t ζ i s o f t h e same f o r m a s P t a ^ Τ ) , o r Ρ ( μ , Τ ) , 

o f t h e p u r e c o m p o n e n t s ( i = 1 o r 2). A g a i n , t h e p o t e n t i a l i s s p l i t 
i n t o a r e g u l a r a n d a s c a l e d p a r t . T h e s c a l e d p a r t , a t c o n s t a n t ζ , 
i s a f u n c t i o n o f t h e v a r i a b l e s τ , a l o n g , a n d h , a t a n a n g l e t o t h e 
c o e x i s t e n c e s u r f a c e a n d i s w r i t t e n i n S c h o f i e l d f s p a r a m e t r i c f o r m , 
i n c o m p l e t e a n a l o g y w i t h t h e p u r e f l u i d . T h e n o n u n i v e r s a l s c a l i n g 
a m p l i t u d e s a n d t h e a n a l y t i c b a c k g r o u n d a r e i n t e r p o l a t e d b e t w e e n 
t h o s e o f t h e p u r e c o m p o n e n t s , w i t h ζ a s t h e i n t e r p o l a t i o n v a r i a b l e . 
T h e L e u n g - G r i f f i t h s e q u a t i o n , a l t h o u g h p h e n o m e n o g i c a l i n n a t u r e , 
a l g e b r a i c a l l y t e d i o u s , r e s t r i c t e d t o c o n t i n u o u s c r i t i c a l l i n e s , a n d 
w i t h l i m i t e d p r e d i c t i v e power b e c a u s e o f t h e l a r g e number o f 
a d j u s t a b l e p a r a m e t e r s , i s y e t t h e o n l y s c a l e d e q u a t i o n a v a i l a b l e 
f o r m o d e l i n g o f g a s - l i q u i d m i x t u r e s n e a r c r i t i c a l l i n e s . I t i s 
a n a l o g o u s w i t h s i m p l e s c a l i n g i n o n e - c o m p o n e n t f l u i d s a n d h a s n o t 
y e t b e e n g e n e r a l i z e d t o i n c l u d e l i q u i d - v a p o r a s y m m e t r y a n d 
c o r r e c t i o n s t o s c a l i n g . I t i s t h e r e f o r e u s e d w i t h s o - c a l l e d 
a p p a r e n t c r i t i c a l e x p o n e n t s w h i c h , by t h e i r d e p a r t u r e f r o m t h e t r u e 
a s y m p t o t i c v a l u e s , accommodate e m p i r i c a l l y t h e c o r r e c t i o n s t o 
s c a l i n g t o a c e r t a i n e x t e n t . T h e o r i g i n a l L e u n g - G r i f f i t h s f o r m h a s 
b e e n u s e d t o d e s c r i b e one a n d t w o - p h a s e p r o p e r t i e s , s u c h a s PVT a n d 

Q il 
C v , o f m i x t u r e s o f H e J a n d He (26, 27, 22). W i t h m i n o r 

m o d i f i c a t i o n s , i t h a s b e e n a p p l i e d t o o n e - a n d t w o - p h a s e s t a t e s o f 
a z e o t r o p i c m i x t u r e s s u c h a s C 0 2 ~ e t h a n e (28) a n d C 0 2 ~ e t h y l e n e (29). 

M o l d o v e r , R a i n w a t e r and c o w o r k e r s h a v e m o d i f i e d t h e L e u n g - G r i f f i t h s 
e q u a t i o n i n o r d e r t o d e s c r i b e t h e l i q u i d - v a p o r a s y m m e t r y i n t h e 
t w o - p h a s e r e g i o n ( 3 £ , 3]_). T h e y h a v e b e e n v e r y s u c c e s s f u l i n 
d e s c r i b i n g d e w - b u b b l e c u r v e s o f h y d r o c a r b o n m i x t u r e s , e v e n w i t h 
l a r g e d i f f e r e n c e s i n v o l a t i l i t y , a n d a t p r e s s u r e s down t o h a l f t h e 
c r i t i c a l p r e s s u r e . T h e i r m o d e l i s p r e s e n t l y l i m i t e d t o t w o - p h a s e 
s t a t e s . 

T h e o n l y o t h e r n o n c l a s s i c a l m o d e l t h a t h a s b e e n a p p l i e d i n 
f l u i d m i x t u r e s i s t h e d e c o r a t e d l a t t i c e g a s ( 3 2 , 33). T h e 
a p p l i c a t i o n h a s b e e n m o s t l y t o t h e d e s c r i p t i o n o f p h a s e b o u n d a r i e s 
i n b i n a r y l i q u i d s , some w i t h c l o s e d - l o o p c o e x i s t e n c e c u r v e s (3j0. 
B a r t i s and H a l l a p p l i e d s u c h a m o d e l t o g a s - g a s e q u i l i b r i a (35). 

One o f us ( L . S . , 36) c o n s t r u c t e d a s c a l e d p o t e n t i a l f o r b i n a r y 
l i q u i d m i x t u r e s by a t r a n s f o r m a t i o n o f t h e s c a l i n g v a r i a b l e s o f t h e 
p u r e f l u i d t o t h o s e o f a b i n a r y m i x t u r e a t c o n s t a n t p r e s s u r e . I n 
a n a l o g y w i t h t h e L e u n g - G r i f f i t h s m e t h o d , t h e two n o n u n i v e r s a l 
s c a l i n g a m p l i t u d e s a n d t h e a n a l y t i c b a c k g r o u n d were made 
p r e s s u r e - d e p e n d e n t . R e c e n t l y , J o h n s o n h a s u s e d t h i s p o t e n t i a l t o 
c o r r e l a t e e x c e s s e n t h a l p i e s a n d v o l u m e s o f a b i n a r y l i q u i d m i x t u r e 
(37). 

A s o f t h i s d a t e , no a t t e m p t h a s b e e n made t o s o l v e t h e 
c r o s s o v e r p r o b l e m f o r f l u i d m i x t u r e s . I n v i e w o f t h e g r o w i n g 
i m p o r t a n c e o f s u p e r c r i t i c a l f l u i d m i x t u r e s t h i s a p p e a r s t o be a n 
u r g e n t t a s k . 
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Experimental Evidence, or Lack of I t , For N o n c l a s s i c a l Behavior i n 
Mixtures 
For a l l gross features of phase behavior of mixtures, c l a s s i c a l 
equations do a reasonable j o b . There are not many mixtures f o r 
which we have the wealth of accurate experimental d e t a i l that we 
have f o r some of the pure f l u i d s , so the shortcomings of c l a s s i c a l 
equations are not as acutely f e l t . As we already mentioned, the 
most s t r i k i n g shortcoming of c l a s s i c a l equations i s i n the 
r e p r e s e n t a t i o n of the c o e x i s t i n g phases near the c r i t i c a l point 
(24, 25) where n o n c l a s s i c a l r e p r e s e n t a t i o n s make a major 
improvement (V7, J_8, 25 - 3£ ). A l s o , the strong anomaly of the 
osmotic s u s c e p t i b i l i t y (3χ/3Δ) ρ τ has been determined from the 
i n t e n s i t y of s c a t t e r e d l i g h t i n l i q u i d - l i q u i d (38) and i n 
g a s - l i q u i d (39) mixtures and the n o n c l a s s i c a l exponent value was 
found f o r Ύ. 

The s i t u a t i o n w ith respect to the weak anomalies i s f a r l e s s 
c l e a r - c u t . Only the weak divergence p r e d i c t e d f o r the s p e c i f i c 
heat C p x has been c o n v i n c i n g l y demonstrated i n l i q u i d - l i q u i d (40) 
mixtures. Those i n the expansion c o e f f i c i e n t α ρ χ and the 
c o m p r e s s i b i l i t y Κ Τ χ have not been seen y e t . In binary l i q u i d 
mixtures, the reason i s obvious. Since, according to the Pippard 
r e l a t i o n s 

αΡχ / ΚΤχ " d P / d T l C R L : C P x / V T a P x * d P / d T l C R L W 

where CRL denotes the c r i t i c a l l i n e , and s i n c e dP/dT| C R L i s very 
l a r g e i n binary mixtures, the anomaly i n 0 ρ χ has the best chance of 
being v i s i b l e , followed by those i n α ρ χ and i n Κ Τ χ , i n t h i s order. 

In g a s - l i q u i d mixtures, the L e u n g - G r i f f i t h s model has been 
used to f i n d the distance from the c r i t i c a l l i n e where the weak 

3 4 
divergence of Κ Τ χ can be seen. For He - He , t h i s d istance was 
estimated to be about 10 1 0 Κ (26), which i s beyond experimental 
a c c e s s i b i l i t y . 

The p r e d i c t i o n of a weakly d i v e r g i n g c o m p r e s s i b i l i t y leads to 
an apparent paradox (£l_) i n the case depicted i n Figure 3* because 
the c r i t i c a l isotherm has to cross the phase boundary at the 
c r i t i c a l p oint with a h o r i z o n t a l slope (Figure 5 ) . From the 
r e l a t i o n 

d V / d P l a , x = ( 9 v / 9 p ) T x
 + ( 3 V / 3 T ) p x dT/dP| o > x (5) 

where σ i s the phase boundary, we note that i f ( 3 V / 3 P ) T x i s to 
diverge to -«. while (dV/dP) and dT/dP| are f i n i t e and ° σχ 1 σχ 
negative, then (3V/3T) has to diverge to -« . This means that i n 
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120 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

the one-phase region near the c r i t i c a l point, the expansion 
coefficient must pass through zero and diverge to The negative 
expansion coefficient makes i t appear that the isotherm enters the 
two-phase region while i t is actually s t i l l in one phase, and vice 
versa on the other side of the c r i t i c a l point. Some indications of 
negative expansion coefficients have been seen in liquid-liquid 
mixtures near consolute points (42, 43) but never near gas-liquid 
c r i t i c a l lines. By using the Leung-Griffiths model, Wheeler and 
two of us (RFC and GM) have found that in 0.28 mole fraction C0 2 in 

-22 
ethane, the expansion coefficient changes sign at 10 in reduced 
temperature from the c r i t i c a l line! (41). 

While several of the weak anomalies thus escape detection, 
some of the non-divergent properties actually appear to diverge. 

Q 4 
Thus the specific heat C V x of He - He behaves like the 
weakly-divergent specific heat Cy of pure fluids, while theory 
predicts i t to remain f i n i t e (j_2). The Leung-Griffiths model 
explains that the same mechanism, the small size of a 
weakly-diverging property, is the cause of the apparent f i n i t e 
value of Κ«Γχ and the apparent divergence of C V x (26). 

A related theoretical prediction is that the 
isochore-isopleth, a curve on which two densities, V and x t are 
constant, should become confluent with the c r i t i c a l line and 
therefore with the constant - χ phase boundary (Figure 5). The 
most detailed measurement of (9Ρ/3Τ) ν χ is that of Doiron et a l . in 
3 4 

He - He (22) in which the c r i t i c a l point was approached to 1 mK 
but OP/3T) V x remained f i n i t e . The Leung-Griffiths 
model predicts 10~ 1 1 Κ for the region in which (3Ρ/3Τ) ν χ begins to 
approach dP/dT| C R L. In the C0 2 - C2Hg system, the isochoric slope 
has to become negative (Figure 5) - according to the 

-22 
Leung-Griffiths model, this happens at 10 in reduced 
temperature, the same point where the expansion coefficient turns 
negative (41). 

It is obvious that for a l l practical purposes most of the 
predictions of nonclassical theory for the weak anomalies can be 
safely ignored. An exception is the weak divergence in 0 ρ χ. The 
departures from classical behavior for the strong divergences, 
however, are quite visible and need to be taken into account i f 
accuracy is desired. 

Dilute Near-Critical Mixtures: Classical Analysis 
Dilute near-critical mixtures show a peculiarity that at a f i r s t 
glance is offensive to the thermodynamic1st; partial molar 
properties of the solvent do not necessarily approach pure-solvent 
properties in the limit x-0 at the solvents c r i t i c a l point. This 
behavior was f i r s t experimentally studied by Krichevskii and 
coworkers (4_4, 45), and modeled by a classical equation by Rozen 
(46). Wheeler (47) gave a nonclassical treatment based on the 
decorated lattice gas. 
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5. L E V E L T S E N G E R S E T A L . Near-Critical Mixtures 121 

The reason for this abnormal behavior is that the solvent 
c r i t i c a l point is the intersection of the locus of i n f i n i t e 
dilution, (3Δ/3χ) ρ τ + and of the c r i t i c a l line, (3Δ/3χ) ρ τ 0; 
as a consequence the limiting values assumed by certain partial 
properties depend on the path of approach. This anomalous behavior 
is readily elucidated for the partial molar volume 

since 
V1 - V - χ (3V/3x) p T (6) 

(3V/3x) p T - VK T x (3P/3x) V T (7) 

In the limit x+0, Κ Τ χ approaches the compressibility of the pure 
f l u i d which 
by (44, 48) 
f l u i d which is strongly divergent. The limit of (3P/3x) V T is given 

[Lim (3P/3x)VT]° - dP/dx| C R L - dP/dT|£ x c dT/dx|£ R L (8) 

where dP/dx|° are dT/dx|^LT are limiting slopes of the c r i t i c a l 
L/HL LKL 

line in P-x and T-x space, respectively; the limit in (8), in 
general, is f i n i t e . Thus (3V/3x) p T diverges at the solvent's 
c r i t i c a l point. If the limit x-0 is taken f i r s t , i t diverges 
strongly, as the compressibility. As a consequence, the partial 
molar volume of the solute 

V 2 = V + (1 - x)(3V/3x) p T (9) 

diverges strongly, with a sign equal to that of (3P/3x) V T in (8). 
These diverging partial molar volumes of the solute have been 
reported by Khazanova and Sominskaya for C0 2 - (45), by Benson 
et a l . for NaCl in steam (2) and by Eckert et a l . for naphthalene 
in ethylene (49). Close to the solvent c r i t i c a l point, and V 2 

can be predicted from the solvent properties and the i n i t i a l slope 
of the c r i t i c a l line (48, 50, 51). 

In the classical treatment of dilute mixtures, the divergence 
of (3V/3x) p T along a path of choice is obtained by expanding 

(VK^)""1 around the solvent's c r i t i c a l point, at which point i t 
equals 0. We obtain (48); 

V K i x - a V V x X + 3 V V T ( δ Τ ) + a V V V V ( 5 V ) 2 / 2 0 0 ) 
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122 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

where subscripts V, χ, Τ indicate repeated partial differentiation 
of the Helmholtz free energy a(V, T, x) with respect to the 
variable indicated, and where the superscript c indicated that the 
derivatives are evaluated at the solvent's c r i t i c a l point. Note 
that (VK,^) 1 is quadratic in volume because the c r i t i c a l i t y 

c c 
conditions imply that a^ v = 0, a^yy • 0. 

A typical path is the c r i t i c a l line (Figure 5). Here δΤ and 
δν are linear in x, so ( ν κ

Τ χ ) 1 is linear in χ and (3V/3x) p T 

diverges as χ 1. The product x(3V/3x) p T in (6) is a f i n i t e 

constant and does not approach Vc» A second path is the 
2 

coexistence curve at T=Tc (Figure 6). Here (δν) ~ χ and (3V/3x)pT 

s t i l l diverges as 1/x, but with a different amplitude. On any 
2 

isothermal path on which (δν) varies more slowly than x, however, 
2 

the term in (δν) w i l l dominate the c r i t i c a l behavior. One such 
path is the c r i t i c a l isotherm-isobar (Figure 6) on which 
(δν)3 - χ, so that V-2 diverges as x*~2/3. On this path, x(3V/3x) p T 

approaches 0 and V̂  •» V . Since the derivative (3H/3x) p T is 
asymptotically proportional to (3V/3x) p T: 

Lim (H2/V2) = Τ (dP/dT|£ ) (11) 
x-»0 

we expect the same anomalies in partial enthalpies as in partial 
molar volumes (48, 50, 51_) as was also noted by Wheeler (47). 
Strongly increasing slopes in the excess enthalpy curves of binary 
gas-liquid mixtures were reported by Christensen on 
isotherm-isobars near the c r i t i c a l points of each of the components 
(4, 50). 

The above analysis is readily extended to higher-ordered 
derivatives such as the partial molar specific heat 
C p 2 - (3C p/3x) p T. This quantity is predicted to diverge much more 

2 
strongly than the partial molar volume, namely as (K T) in the 

2 
limit x+Q and as (1/x) along the c r i t i c a l line. This extremely 
strong divergence of C p 2 was experimentally found by Wood et a l . 
for NaCl in steam (3). 

The classical results are summarized in Table 3. 
Dilute Near-Critical Mixtures; Nonclassical Analysis 
We have investigated the nonclassical c r i t i c a l behavior of dilute 
mixtures (48) by writing 
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X 1 
1 

/ 2 \\ 
\\ 

\ 

(a) 

X1 

Ρ / 

(b) 

Figure 5. Nonclassical behavior near a mixture c r i t i c a l 
point. The compressibility is weakly divergent, so the 
c r i t i c a l isotherm is horizontal (a). The isochore-isopleth is 
confluent with the phase boundary and the c r i t i c a l line (b). 
If the slope of the phase boundary is is negative at the 
c r i t i c a l point, the expansion coefficient diverges to -°° and 
the slope of the isochore-isopleth is negative at the 
mixture's c r i t i c a l point. 

Figure 6. The paths in V-x space at the c r i t i c a l temperature 
of the solvent along which we have calculated the divergence 
of V 2« The c r i t i c a l line is shown in projection. 
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( a V/3x) p T = θΥ/3Δ) ρ τ/Οχ/3Δ) ρ τ (12) 

Both numerator and denominator, being second derivatives [of the 
potential μ2(Δ, Ρ, Τ), (_1_2)] in a direction intersecting the 
coexistence surface, diverge strongly at the c r i t i c a l line. As a 
consequence, (3V73x) p T is fi n i t e at the c r i t i c a l line just as in 
the classical case, and not weakly divergent as stated in ref. 
(52). The osmotic susceptibility in the denominator, however, 
faces a dilemma when x+0 because i t is zero at the pure-fluid axis 
and infinite at the c r i t i c a l line. By means of the Leung-Griffiths 
model we have been able to obtain the structure of this term. 
Schematically, i t can be given, to the leading order in ζ and r, as 

Οχ/3 Δ ) ρ τ * c(flnlte) + c 2(strong) (13) 

While the structure of the numerator is 

θ ν / 3 Δ ) ρ τ ~ c(strong) (14) 

where (finite) denotes a thermodynamic derivative that remains 
f i n i t e , (strong) one that diverges strongly at the c r i t i c a l line. 
Thus the structure of (3V73x) p T is 

(3V/3x) * .„ , (strong) ( } 

ax; p T (finite) + c(strong) 

Schofield's r denotes the distance from the c r i t i c a l line at 
constant ζ, and the strong term can be written as proportional to 
-Ύ 

r . A path to the solvent c r i t i c a l point can be characterized by 
stating how r goes to zero as ζ shrinks, or by the relation 

r _ ζ

ε (16) 

If ε is small, ζ decreases much faster than r and the path is close 
to the pure-fluid axis. If ε is large, ζ decreases slower than r 
and the path is close to the c r i t i c a l line. Intermediate paths are 
obtained by varying the value of ε. Thus we may indicate the 
behavior of (3V/3x) p T schematically by 

(3V/3X) ~ il -y - ^ £ Ύ . e T ^ ( 1 7 ) 

(finite) + cr (finite) + ζ 

Since for small ζ, ζ ~ χ, because the RTxfcnx term dominates the 
free energy, we obtain 
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5. L E V E L T S E N G E R S E T A L . Near-Critical Mixtures 125 

(3V/3x) " L — (18) 
( f i n i t e ) x e T + χ 

When ζ goes to 0 at f i n i t e r, we retrieve, from (15), the strong 
divergence of (3V/3x) p T. If ζ and r both go to zero, there is a 

competition between the term in χ ε Ύ and the term in χ in (18). If 
ε is large, 

ε > 1/Ύ, εΎ > 1, ε > 0.81 (19) 

then (3V/3x) p T behaves like 1/x and so does V 2 (9). In this case 

V1 does not approach V . If ε is small 

ε < 1/Ύ, εΎ < 1, ε < 0.81 (20) 

then (3V/3x) p T behaves like 1/χ ε Ύ and so does \?2. In this case 

does approach Vq. On the c r i t i c a l line (ε large) V 2 diverges as 
1/x. On the isothermal or isobaric coexistence curve h equals 0 
and τ is linear in ζ to lowest order. Since τ is linear in r, we 
have ε=1 and (3V/3x) p T goes at 1/x. 

On the c r i t i c a l isoterms-isobar, the pressure and temperature 
are to be kept constant and equal to those at the solvent's 
c r i t i c a l point. In this case both τ and h vary linearly with ζ for 

ft Λ 
small ζ leading to r ~ ζ or ε = 1/36. It follows that 

(3V/3x) p T . 1/χ Ύ / Β δ « 1/χ 1" 1 / δ (21) 

and so does V 2« The value of 1-1/6 = 0.79. Therefore χ (3V/3x) p T 

0 and V\ V . The crossover from 1/x to slower-than 1/x 1 c 
behavior occurs at ε - 1/Ύ » 0.81 which is between the isothermal 
or isobaric coexistence curve (ε*1) and the c r i t i c a l 
isotherm-isobar (ε=0.64). We have also analyzed the behavior of 
the partial molar specific heat C p 2. The results of our analysis 
are summarized in Table III. 

The classical and nonclassical treatments of dilute mixtures 
show the same global features but differ in detail. The 
differences are due to the different values assumed by the strong 
exponents 3, Ύ, δ and should therefore be experimentally 
detectable. 

Impure Near-Critical Fluids 
In the custody transfer of fluids, the density of the f l u i d is 
often obtained from measurements of pure Ρ and temperature Τ and 
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126 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

from the known equation of state. It is important to know what 
effect the presence of an impurity can have on the density at given 
Ρ and T. If V indicates the molar volume, we may write 

V(P, T, x) = V(P, T, 0) + (3V/3x) P Tx + . . . . (22) 

Since (3V/8x) p T is proportional to the solvent's compressibility, 
impurity effects become larger the larger the compressibility. The 
expansion (23) is not valid at the solvent's c r i t i c a l point. At 

1 / Λ 
T c * Pc* w e h a v e χ(<* ν / 9 χ)ρ Τ ~ x (21). So even an impurity on the 

-5 
level of 10 in mole fraction can s t i l l modify the molar volume on 
the 10? level, since 1/6 is about 0.2 for fluids. 

Impurity effects can be drastic near Tq9 ?q9 because they may 
induce a phase transition. In Figure 7, we sketch how a 
nonvolatile impurity affects the molar volume of a near-critical 
f l u i d . If is obvious that impurity effects are highly nonlinear in 
concentration. Impurity effects in near-critical fluids can be 
calculated in a consistent but inaccurate way by means of classical 
corresponding-states treatments and their generalizations. They 
can be calculated consistently and accurately by means of the 
Leung-Griffiths model. In view of the complication of the latter 
approach i t is tempting to model the pure f l u i d as accurately as 
possible with a multiparameter classical or a nonclassical 
thermodynamic surface, and then to calculate the impurity effects 
by means of corresponding states (53). Unfortunately, this idea is 
incorrect as can be appreciated from Figure 3. The nonclassical 
treatment of the major component modifies the behavior around the 
pure-fluid c r i t i c a l point. This part of the graph, however, is not 
reached by the mixture because i t separates at the curve of 
material instability. The mixture therefore "sees" l i t t l e or 
nothing at a l l of the nonclassical behavior characterizing the 
major component. The effect of combining a nonclassical 
description of the major component with classical corresponding 
states are more disturbing in dilute mixtures. To see this, we 
need the classical expressions for the i n i t i a l slopes of the 
c r i t i c a l line, which are obtained from the classical expansion of 
the Helmholtz free energy and from the conditions of c r i t i c a l i t y . 
They are 

dT 
dx 

2 

c ^ (a° x) -RT a ; x ^ _ & 

CRL RT a £ V T ' d x 
CRL 

c dT 
aVT dx 

c 

CRL 
+ 4 ( 2 3 ) 

the latter being the equivalent of (8). From (23) we derive for 
the i n i t i a l slope of the c r i t i c a l line in P-T space 
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Table III 
C r i t i c a l Behavior in Di lute Mixtures 

path V 2 , H 2 K T 2 , C p 2 V1 Lim xV 2 lim ( ν 2 / Κ Τ χ ) 
x->0 x-K) 

C la s s i ca l 

1 /x 5 / 3 V 0 AV 
c c 

isotherm-isochore 1/x 1/x2 ?V RT /(A-c./A) AV 
C C I c 

isobar-isochore 1/x 1/x2 fV RT / (A-c 0 /A) AV 
C C 2 C 

c r i t i c a l l ine 1/x 1/x2 ?V RT /A AV 
Λ c c c 

Nonclassical 

1 / χ 2 ~ 1 / δ V 0 AV 

isotherm-isochore 1/x 1/x /V RT /A AV 
r c c c 

isobar-isochore 1/x 1/χ 3 ~ Ύ /V RT /A AV^ 
r c c c 

c r i t i c a l l ine 1/x — ?V RT /A 0 

I E , 
'CRL 'CXC 1CRL 

C1 ' R T c a V V T d T / d X l c R L 

C 2 - R V V V T d T / d P l c X C d P / d X 

x • x 2 
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V 

χ 

Figure 7. Impurity effects on extensive properties in dilute 
mixtures near the solvent's c r i t i c a l point are large and 
nonlinear in concentration. The plot shows the relation 
between molar volume and impurity concentration at fixed T 1 > 
T Q and at four pressures: that of the mixture's c r i t i c a l point 
Ρ , P 0 > Ρ and two pressures Ρ , P„ at which the impurity cm d cm m l 
actually induces a phase transition. 
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where we have used a ^ T - -dP/dT|£ x c, the l i m i t i n g slope of the 
vapor pressure curve. I f the major component has been t r e a t e d 
n o n c l a s s i c a l l y , or with a very accurate c l a s s i c a l equation, the 
c o e f f i c i e n t a ^ V T w i l l be zero or very small because 

aVVT * 9 ( ν κ χ 1 ) / 9 Τ ~ Δ τ Ί Μ and Ύ > 1. Thus, the i n i t i a l slope of 
the c r i t i c a l l i n e i s forced to be the extension of the vapor 
pressure curve, which c o n t r a d i c t s experiment. The combining of a 
n o n c l a s s i c a l p u r e - f l u i d equation with corresponding s t a t e s f o r the 
mixture induces a se r i o u s d i s t o r t i o n i n the phase diagram. 

Conclusions 
For one-component f l u i d s , accurate n o n c l a s s i c a l formulations of the 
c r i t i c a l region are a v a i l a b l e , i n c o r p o r a t i n g the v a p o r - l i q u i d 
asymmetry as w e l l as c o r r e c t i o n s to s c a l i n g . E m p i r i c a l techniques 
f o r s w i t c h i n g from c l a s s i c a l to c r i t i c a l behavior have been worked 
out. The fundamental s o l u t i o n of the crossover problem has 
advanced to the point that a p p l i c a t i o n to one-component f l u i d s i s 
near. For binary mixtures a n o n c l a s s i c a l f o r m u l a t i o n i s a v a i l a b l e 
f o r the one-and-two-phase regions mixtures with continuous c r i t i c a l 
l i n e s . A v a r i e t y of n o n c l a s s i c a l models have been used to 
represent c o e x i s t i n g phases. No attempts have been made to devise 
crossover f u n c t i o n s . 

D i l u t e n e a r - c r i t i c a l mixtures present some s p e c i a l anomalies 
not o f t e n encountered i n thermodynamics. We describe these w i t h 
both c l a s s i c a l and n o n c l a s s i c a l equations. We argue that a 
n o n c l a s s i c a l thermodynamic d e s c r i p t i o n of the solvent can not be 
combined with a corresponding-states treatment of the d i l u t e 
mixture. For i n c o r p o r a t i o n of the n o n c l a s s i c a l e f f e c t s i n t o 
p r a c t i c a l thermodynamic surfaces of f l u i d mixtures, the s o l u t i o n of 
the crossover problem appears to be the most urgent task at hand. 

Acknowledgment 
We have p r o f i t e d from d i s c u s s i o n s with P.C. A l b r i g h t and J.C. 
Wheeler. 

References 

1. Busey, R.H.; Holmes, H.F.; Mesmer, RE. J. Chem. Thermodynamics 
1984, 16, 343. 

2. Benson, S.W.; Copeland, C.S.; Pearson, D. J . Chem. Phys. 1953, 
21, 2208. Copeland, C.S.; Silverman, J.; Benson, S.W. 

J. Chem. Phys. 1953, 21, 12. 
3. Smith-Magowan, D.; Wood, R.H. J. Chem. Thermodynamics 1981, 

13, 1047. Wood, R.H.; Quint, J.R. J. Chem. Thermodynamics 
1982, 14, 1069. Gates, J.Α.; Wood, R.H. J. Phys. Chem. 1982, 
86, 4948. 

4. Christensen, J .J . ; Walker, T.A.C.; Schofield, R.S.; Faux, 
P.W.; Harding, P.R.; Izatt, R.M. J. Chem. Thermodynamics, 
1984, 16, 445 and references therein. 
Wormald, C.J. Ber. Bunsenges. Phys. Chem. 1984, 88, 826 and 
references therein. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

5

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



130 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

5. See for instance, "Chemical Engineering in Supercritical Fluid 
Conditions" (Paulaitis, M.E. et al., Eds). Ann Arbor Science 
Publishers, 1983. 

6. Sengers, J.V.; Levelt Sengers, J.M.H. in "Progress in Liquid 
Physics" (Croxton, C.A. Ed.); Wiley: Chichester, U.K., 1978; 
Ch. 4, p. 103. 

7. Levelt Sengers J.M.H.; Sengers, J.V. in "Perspectives in 
Statistical Physics" (Raveche, H.J. Ed.); North Holland Publ. 
Co: Amsterdam, Netherlands, 1981; Ch. 14, p. 239. 

8. Sengers, J.V.; Levelt Sengers, J.M.H. Int. J . Thermophysics 
1984, 5, 195. 

9. Hocken, R.J.; Moldover, M.R. Phys. Rev. Letters 1976, 37, 29. 
10. Greer, S.C. Phys. Rev. 1976, A14, 1770. 
11. Widom, B. J . Chem. Phys. 1965, 43, 3898. 
12. Griffiths, R.B.; Wheeler, J.C. Phys. Rev. 1970, A2, 1047. 
13. Mermin, N.D.; Rehr, J.J. Phys. Rev. Letters 1971, 26, 1155. 

Phys. Rev. 1971, A4, 2408. Rehr, J .J . ; Mermin, N.D. Phys. Rev. 
1973, A8, 472. 

14. Chapela, G.; Rowlinson, J.S. Faraday Trans. 1974, 70, 584. 
15. Woolley, H.W. Int. J . Thermophysics 1983, 4, 51. 
16. H i l l , P.G. Proc. 10th International Conf. on Properties on 

Steam" Moscow, USSR, 1984; and Int. J . Thermophysics; to be 
published. 

17. Fox, J.R. Fluid Phase Equilibria, 1983, 14, 45. 
18. White, J.Α.; Pustchi, M.E. Bull. Am. Phys. Soc., 1984, 30, 

372; 1984, 29, 697; and references therein. 
19. Nicoll, J.E. Phys. Rev. 1981, A24, 2203. 
20. Nicoll, J.E.; Albright, P.C. Phys. Rev. 1985, B31, 4576. 
21. Albright, P.C. Ph.D. Thesis, U. of Maryland, 1985. 
22. Doiron, T.; Behringer, R.P.; Meyer, H. J . Low Temp. Phys. 

1976, 24, 345. 
23. Van Konynenburg, P.H.; Scott, R.L. Phil. Trans. Roy. Soc., 

1980, 298, 495. 
24. Kolasinska, G.; Moorwood, R.A.S.; Wenzel, H. Fluid Phase 

Equilibria 1983, 13, 121. 
25. B i j l , H.; de Loos, Th.W.; Lichtenthaler, R.N. Fluid Phase 

Equilibria 1983, 14, 157. 
26. Leung, S.S.; Griffiths, R.B. Phys. Rev. 1973, A8, 2670. 
27. Wallace Jr, B; Meyer, H. Phys. Rev., 1972, A5, 953. 
28. Chang, R.F.; Doiron, T. Int. J . Thermophysics 1983, 4, 337. 

Chang, R.F.; Levelt Sengers, J.M.H.; Doiron, T.; Jones, J . J . 
Chem. Phys. 1983, 79, 3058. 

29. D'Arrigio, G.; Mistura, L. ; Taraglia, P. Phys. Rev. 1975, A12, 
2578. 

30. Moldover, M.R.; Gallagher, J.S. in "Phase Equilibria and Fluid 
Properties in the Chemical Industry" (Storvick, T.S. and 
Sandler, S.I., Eds.). ACS Symposium Series 60, 1977; Ch. 30, 
p. 498. 

31. Rainwater, J.C.; Moldover, M.R. in "Chemical Engineering in 
Supercritical Fluid Conditions" (Paulaitis, M.E., et al., 
Eds.), Ann Arbor Science Publishers, 1983; p. 199. 

32. Wheeler, J.C. Ann. Rev. Phys. Chem., 1977, 28, 411 and 
references therein. 

33. Wheeler, J.C. J. Chem. Phys. 1975, 62, 4332. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

5

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



5. LEVELT SENGERS ET AL. Near-Critical Mixtures 131 

34. Andersen, G.R.; Wheeler, J.C. J. Chem. Phys., 1978, 69, 2082; 
J . Chem Phys., 1979, 70, 1326. 

35. Bartis, J.T.; Hall, C.K. Physica, 1975, 78, 1. 
36. Levelt Sengers, J.M.H. Pure and Applied Chemistry 1983, 55, 

437. 
37. Ewing, M.B.; Johnson, K.A.; McGlashan, J.L. J . Chem. 

Thermodynamics 1985, 17, 513; and to be published in the same 
Journal. 

38. Chang, R.F.; Burstyn, H.; Sengers, J.V. Phys. Rev. 1979, A19, 
866. 

39. Giglio, M; Vendramini, A. Optics Comm. 1973, 9, 80. 
40. Bloemen, E.; Thoen, J.; Van Dael, W. J . Chem. Phys. 1981, 75, 

1488. 
41. Wheeler, J.C.; Morrison, G.; Chang, R.F., accepted, J. Chem. 

Phys. 
42. Morrison, G.; Knobler, C.M. J. Chem. Phys. 1976, 65, 5507. 
43. Clerke, E.A.; Sengers, J.V.; Ferrell, R.A.; Battacharjee, J.K. 

Phys. Rev., 1983, 27, 2140. 
44. Krichevskii, I.R. Russ. J . Phys. Chem. 1967, 41, 1332. 
45. Khazanova, N.E.; Sominskaya, E.E. Russ. J . Phys. Chem. 1971, 

45, 1485. 
46. Rozen, A.M. Russ. J. Phys. Chem. 1976, 50, 837. 
47. Wheeler, J.C. Ber. Bunsenges, Phys. Chem. 1972, 76, 308. 
48. Chang, R.F.; Morrison, G.; Levelt Sengers, J.M.H. J . Phys. 

Chem. Letter 1984, 88, 3389. 
49. Eckert, C.A.; Ziger, D.H.; Johnston, K.P.; Ellison, T.K. Fluid 

Phase Equilibria 1983, 14, 167. 
50. Morrison, G.; Levelt Sengers, J.M.H.; Chang, R.F.; 

Christensen, J.J. in "Proceedings of the Symposium on 
Supercritical Fluids", (J. Penninger, Ed.). In press, 
Elsevier, Netherlands. 

51. Levelt Sengers, J.M.H.; Morrison, G.; Chang, R.F. Fluid Phase 
Equilibria 1983, 14, 19. 

52. Gitterman, M; Procaccia, I. J. Chem. Phys. 1983, 78, 2648. 
53. Hastings, J.R.; Levelt Sengers, J.M.H.; Balfour, F.W. J. Chem. 

Thermodynamics 1980, 12, 1009. 

RECEIVED November 8, 1985 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

5

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



6 

Prediction of Binary Critical Loci by Cubic Equations 
of State 

Robert M. Palenchar1, Dale D. Erickson2, and Thomas W. Leland2 

1Olefins Technology Division, Exxon Chemical Company, Raton Rouge, LA 70821 
2Department of Chemical Engineering, Rice University, Houston, TX 77251 

This paper compares reduced forms of five different cubic 
equations of state of the van der Waals family as to their 
ability to predict critical loci of binary mixtures. For 
the calculation of binary critical loci, the constants for 
each equation were expressed as functions of composition 
by the same mixing rules which involve two unlike pair 
coefficients evaluated by fitting to the experimental 
critical temperature and critical pressure at the same 
single composition. 

Only the critical temperature and critical pressure 
loci of van Konynenburg and Scott's Type I systems are 
predicted quantitatively over their entire composition 
range by the equations examined in this way. Critical 
volumes in all systems and critical temperature and 
pressure loci in Type II systems are only qualitatively 
predicted. Unlike pair coefficients evaluated at one 
point on a critical line in a two-phase region do not 
produce satisfactory predictions in portions of a critical 
locus where a third phase appears. There are no major 
differences in accuracy among any of the equations in 
predicting Type I critical loci. However, the Teja 
equation gave best predictions of Type I critical 
temperatures and pressures. The Peng-Robinson equation 
gave best predictions of Type I critical volumes. In 
Class 1, Type II and in all Class 2 systems, the two-
constant Soave and Redlich-Kwong equations generally 
predict critical temperatures and critical pressures 
better than the more elaborate three-constant equations 
and two constant equations whose form has a larger 
deviation from that of the original van der Waals 
equation. 

The accurate prediction of the properties of equilibrium phases and 
vapor-liquid equilibria in mixtures near their c r i t i c a l is an 

0097-6156/86/0300-0132$07.00/0 
© 1986 American Chemical Society 
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6. PALENCHAR ET AL. Prediction of Binary Critical Loci 133 

important unsolved problem. The b a s i c d i f f i c u l t y i s that there i s 
at present no accurate n o n - a n a l y t i c equat ion of s ta t e f o r 
m i x t u r e s . The use of t y p i c a l eng ineer ing type a n a l y t i c a l equations 
of s ta te with e s s e n t i a l l y e m p i r i c a l mixing r u l e s f a i l s i n the near 
c r i t i c a l r e g i o n . The nature of t h i s f a i l u r e i s w e l l understood. 
The divergence of the p a r t i a l molar volume of a s o l u t e as i t becomes 
i n f i n i t e l y d i l u t e when the system approaches the so lvent c r i t i c a l 
cond i t ions has r e c e n t l y been expla ined c l e a r l y by Chang, M o r r i s o n , 
and L e v e l t Sengers (1). At f i n i t e concentrat ions the vapor and 
l i q u i d phase p r o p e r t i e s p r e d i c t e d by reduced a n a l y t i c a l equations 
us ing p s e u d o - c r i t i c a l s approach each other too r a p i d l y as the system 
approaches i t s c r i t i c a l c o n d i t i o n s . When determined from reduced 
equations i n terms of p s e u d o - c r i t i c a l s these p r o p e r t i e s tend to 
p r e d i c t c r i t i c a l cond i t i ons which l i e below the true c r i t i c a l 
l o c u s . The t r a d i t i o n a l method of d e a l i n g wi th t h i s problem has been 
to stop phase e q u i l i b r i u m c a l c u l a t i o n s w e l l below the c r i t i c a l locus 
and to make an e m p i r i c a l e x t r a p o l a t i o n to an est imate of the t rue 
c r i t i c a l p r o p e r t i e s of the system. 

I t may be p o s s i b l e to overcome these problems w i t h 
corresponding s ta tes methods which use a p r o p e r l y s c a l e d re ference 
f l u i d e q u a t i o n . P s e u d o - c r i t i c a l r e l a t i o n s at present cannot 
a c c u r a t e l y p r e d i c t the second and t h i r d d e r i v a t i v e s of the Gibbs 
f ree energy with respect to composit ion which are needed to def ine 
the c r i t i c a l of a m i x t u r e . Furthermore, a d d i t i o n a l research i s 
needed to determine the best way to map the c r i t i c a l reg ion of a 
mixture on to the c r i t i c a l reg ion of a pure sca l ed re ference without 
d e s t r o y i n g the e f f e c t i v e r e p r e s e n t a t i o n of multicomponent 
e q u i l i b r i u m phases which i s c u r r e n t l y p o s s i b l e below the near 
c r i t i c a l r e g i o n . Although research wi th these and other methods f o r 
improving p r e d i c t i o n s i n the c r i t i c a l r eg ion i s c o n t i n u i n g , a common 
need wi th any method under i n v e s t i g a t i o n i s a procedure f o r 
e s t imat ing the true c r i t i c a l locus of the mix ture . 

For t h i s reason , t h i s paper examines a feature of the c l a s s i c a l 
van der Waals fami ly of equations which enables them to g ive a very 
good r e p r e s e n t a t i o n of the c r i t i c a l l o c i of simple mixtures by us ing 
p r o p e r l y ass igned u n l i k e p a i r i n t e r a c t i o n c o e f f i c i e n t s . Th i s 
procedure may cause p r o p e r t i e s near the mixture c r i t i c a l to be 
p r e d i c t e d p o o r l y , but the c r i t i c a l locus i t s e l f i s de scr ibed 
remarkably w e l l . 

During the l a s t twenty years a great dea l of work has been done 
to study the p r e d i c t i o n of b inary c r i t i c a l l o c i i n t h i s manner ( 2 -
] ) . Using the o r i g i n a l van der Waals equat ion , van Konynenburg and 
Scott (8) q u a l i t a t i v e l y p r e d i c t e d nine d i f f e r e n t types of b i n a r y 
c r i t i c a l l o c i . These d i f f e r e n t types are i d e n t i f i e d by the behavior 
of c r i t i c a l p r o p e r t i e s i n a p r o j e c t i o n of the Ρ , Τ , χ surface of the 
system on to a pressure - temperature p l a n e . These types are 
summarized i n Table I . 

Thermodynamics of the C r i t i c a l Point 
The thermodynamic cond i t ions for the ex i s tence of a c r i t i c a l po int 
were f i r s t d e r i v e d by Gibbs (9) more than a hundred years ago. The 
d e f i n i n g equations for b inary system c r i t i c a l po int s are as f o l l o w s : 
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134 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

( φ Ρ,Τ = 0 <» 

When working with pressure explicit equations of state i t is more 
convenient to express the above equations in terms of their 
relationship to the Helmholtz free energy, which depend on the 
measured variables Ρ, V, T, and x. This relationship has been 
developed by Redlich and Kister (10) . The Redlich and Kister form 
for a binary system i s : 

2 2 

d 1 Ρ,Τ X 1 X 2 V d X l V,T 

d X l V,T d X l Ρ,Τ 
%3C RT(x -x 9) 3 

- riL-i r d 2 v Ϊ - ril-ï2 r a 2 p ι 
l d X i J v , T

 1^Ρ,Τ l d Xi JP,T
 l d V d X i J T 

d X l Ρ,Τ d x i V,T 
Equations of State Examined 

The c r i t i c a l l o c i c r i t e r i a in Equations (3) and (4) can be evaluated 
with an equation of state relating the variables P,V,T and x. For 
this work five reduced equations of state of the van der Waals 
family were used. These equations contain two, and sometimes three, 
constants which are universal functions of the reduced temperature, 
c r i t i c a l constants, and the acentric factor, ω . 

Redlich - Kwong (11): 

Ρ - R T - * 
* V-b Τ ϋ· i>V(V+b) K ' 
a 0.4278 R2 Τ

 2>5/P„ 
b - 0.0867 R T c/P c 

Soave (12): 

Ρ - RT _ a(T) f 6 . 
V=b V(V+b) K 0 ) 

a(T) = 0.42747 a(T) R2 Τ 2/P 
c c 

b - 0.08664 R T c/P c 

a(t) =* {l+m(l-TrO'5)}2 

m - 0.480 + 1 . 5 7 4 ω - 0 . 1 7 6 ω 2 
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Adachi (13): 
RT a(T) m 

Y ' l^b V(V+c) w ; 

a(T) - A Q Z c{l+a(l-Tr°- 5)} 2R 2 T c
2/P c 

b = Β Z c R T c/P c 

c = C Z c R T c/P c 

a - 0.479817 + 1.55553ω - 0.287787ω2 

A 0 = B (l+C) 3/(l-B) 3 

Β = 0.260796 - 0.0682692ω - 0.0367338ω2 

C = [{(4/Β)-3}°·5-3]/2 

Z c = [1/(1-B)]-A0/(1+C) 

Peng and Robinson (14): 
p — _RT _ a(T) ( 8 ) 
r " V-b V(V+b)+b(V-b) 

a(T) = 0.45724 a(T) R2 T c
2/P c 

b - 0.07780 R T c/P c 

o(T) - {1+Κ(1- Τ Γ Ο * 5 ) } 2 

κ - 0.37464 + 1.54226ω - 0.26992ω2 

Teja U5): 
RT _ a(T) ( 9 ) 

Y ~ V-b V(V+b)+c(V-b) ' 
a(T) = Ω α ( Τ ) R2 T 2/Pc a c 

b = Ω, R Τ /P b c e 
c - Ω R Τ /Ρ 

c c e 
Ω = 3Z 2 + 3(1-2Z )Ω Κ + Ω 2 + 1-3Z^ a c C D D c 
Ω, equals the smallest positive root of: 

b Ω J + (2-3Z )Ω 2 + 3Z 2 Ω Κ - Ζ 3 - ο b c b c b c 

Ω = 1 - 3Z c c 
Ζ = 0.329032 - 0.076799ω + 0.0211947ω2 

c 
α ( Τ ) = {1+F(l-Tr°«5)}2 

F - 0.452413 + 1.30982ω - 0.295937ω2 
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l o c i predicted by various equations using two unlike pair 
coefficients obtained from a single data point are illustrated in 
Figures 1-13. The errors reported in Table II for a l l the c r i t i c a l 
properties are obtained by the procedure shown below for the 
c r i t i c a l temperature: 

|( T ) - (χ ) I 
Average % Relative - S-^S c expt w 1 Q Q ) 

Absolute Error 3
 k Vexpt 3 (15) 

The subscript j in Equation (15) indicates a data point and Ν 
represents the total number of data points. 

Unlike Pair Interaction Coefficients 

Table III shows the values of the unlike pair coefficients 
ζ 1 2 and λ 1 2 in Equations (10) and (11) obtained by f i t t i n g to the 

experimentally measured c r i t i c a l temperature and c r i t i c a l pressure 
in an equi-molar, or nearly equi-molar, mixture. Because of the 
empirical nature of the equations of state in which these 
coefficients are used, their actual relationship to any effective 
pair potential is rather obscure. The name "unlike pair interaction 
coefficients" i s used in an ideal sense only. Furthermore, i t is 
important to note that these values apply only to the projected 
c r i t i c a l l o c i and bear l i t t l e resemblance to their optimal values 
obtained by f i t t i n g other portions of the P-T-x surface. 

Even when f i t t i n g c r i t i c a l l o c i alone, a significantly better 
correlation could obviously be obtained with any of the equations 
tested by optimizing either ζ^2 when λχ 2 *-s s e t a t 1·0> or by 
optimizing both ζ 1 2 and X^2 together, over the entire composition 
range. This, however, obscures the relative degree of composition 
dependence of these unlike pair coefficients in the various 
equations of state and is less revealing of the shape of the 
c r i t i c a l locus predicted by the analytical form of any particular 
equation of state. However, among the equations with the same 
mixing rules with unlike pair coefficients evaluated in the same way 
from the same single data point within the same group of data 
points, the equation which produces the lowest average absolute 
error for the entire group of these data points should produce the 
best correlation when i t s unlike pair coefficients are optimized for 
a l l data points in the group. 

In a few cases i t was not possible to obtain an accurate 
prediction of both the c r i t i c a l pressure and the c r i t i c a l 
temperature with any combination of ζχ 2

 a n ^ λχ2 values. These cases 
are indicated with a * in Table III and the values presented are 
those giving the best prediction of T c and P c. 

The policy of f i t t i n g the unlike pair coefficients at a single 
data point gives information regarding the relative degree of 
composition independence in the values of these coefficients among 
the various equations of state tested. Furthermore, this policy 
also gives information about the shape of the c r i t i c a l l o c i 
predicted by the various equations. This is illustrated by Figures 
10 and 11 where the c r i t i c a l temperatures and c r i t i c a l pressures of 
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TABLE I 
van Konynenburg and Scott Classification of Binary C r i t i c a l Loci 

Class 1 
Type Description 

I. One continuous gas-liquid c r i t i c a l line connecting the two pure 
component c r i t i c a l points CI and C2. CI represents the 
c r i t i c a l of the component with the lowest c r i t i c a l temperature 
and C2 is the c r i t i c a l of the other component. 

I- A. The same as I, with the addition of a negative azeotrope. 

II. Two c r i t i c a l lines: One is a vapor-liquid c r i t i c a l line 
between the pure component c r i t i c a l s CI and C2. The second is 
a liquid-liquid c r i t i c a l line representing the merger of two 
liquids with limited miscibility in the presence of a solid 
phase. Because of the limited miscibility, this c r i t i c a l line 
persists to Immeasurably high pressures so that i t s origin may 
be regarded as occurring at an i n f i n i t e l y large pressure. From 
this i n f i n i t e pressure this liquid-liquid c r i t i c a l line 
connects at lower pressure with an upper c r i t i c a l end point 
(UCEP), representing the high pressure termination point of a 
three-phase liquid-liquid-solid l i n e . At this termination 
point the two liquid phases become identical. 

The origin of this liquid-liquid line at an i n f i n i t e 
c r i t i c a l pressure is designated with the symbol C m by van 
Konynenburg and Scott (8). 

II- A. The same as II, but with the addition of a positive 
azeotrope. 

Class 2 
Type Description 

III-HA. Two c r i t i c a l lines, but no continuous c r i t i c a l line runs 
between CI and C2. The f i r s t of the c r i t i c a l lines is a vapor-
liquid c r i t i c a l line from CI to the high temperature 
termination point (UCEP) of a liquid-liquid-gas three phase 
line where the liquid richest in the component with the lowest 
c r i t i c a l temperature and the gas phase become identical. The 
other c r i t i c a l line connects one of two possible low 
temperature origins to the c r i t i c a l C2 of the component with 
the higher c r i t i c a l temperature. The portion of this second 
c r i t i c a l line near i t s low temperature origin is a l i q u i d -
liquid c r i t i c a l line which changes to a vapor-liquid c r i t i c a l 
line before approaching C2. 

The two points of origin for this second c r i t i c a l line 
identify two sub-types of Type III-HA defined as IIla-HA and 
IIIb-HA as follows: 

Continued on next page 
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Table I Continued 
IIIa-HA. In Type IIIa-HA the two liquids which merge along the low 

temperature portion of the second c r i t i c a l line have limited 
miscibility so that their merger requires increasingly higher 
c r i t i c a l pressures as the c r i t i c a l temperature is lowered. The 
low temperature origin of this liquid-liquid c r i t i c a l line in 
this case may be regarded as occurring at an i n f i n i t e c r i t i c a l 
pressure and is given the symbol C m by van Konynenburg and 
Scott (8). 

IIIb-HA. The second low temperature point of origin for the 
c r i t i c a l line to C2 occurs at the high pressure termination 
point, or UCEP, of a three phase liquid-liquid-solid line at a 
point where the two liquid phases become identical in the 
presence of the solid. Type IIIb-HA was not considered by van 
Konynenburg and Scott because i t s origin at the UCEP of a three 
phase liquid-liquid-solid line cannot be represented by the 
original van der Waals equation. 

In Type IIIa-HA or Type IIIb-HA the entire three phase l i q u i d -
liquid-gas line l i e s at pressures above the vapor pressure 
curves of both of the two pure components. This condition 
represents what is called "hetero-azeotropic" behavior and is 
designated by the symbol "HA" in the classification of this 
type of c r i t i c a l behavior. 

III. The same as III-HA except that the three phase liquid-liquid-
gas line ending with the UCEP lie s between the vapor pressure 
curves of the two pure components. Like Type III-HA, Type III 
may be subdivided into two sub-types I l i a and I l l b , depending 
upon the origin of the c r i t i c a l line to C 2 . Type I l i a 
originates at and Type I l l b originates at the UCEP 
terminating a three phase liquid-liquid-solid line. Because 
the three phase liquid-liquid-gas line does not l i e outside the 
two pure component vapor pressure curves, there is no hetero-
azeotropic behavior in Type I l i a or Type I l l b systems. 

IV. Three c r i t i c a l lines: A vapor-liquid c r i t i c a l line runs from 
CI to the high temperature UCEP termination of a liquid-liquid-
gas three phase line where a liquid and the gas phase become 
identical. In this case, however, this liquid-liquid-gas line 
i s discontinuous. As the temperature is lowered, i t ends at a 
LCEP where the two liquid phases merge. At temperatures below 
this LCEP there is a short range where the liquids are 
completely miscible and only a liquid and gas phase are 
present. At s t i l l lower temperatures, there is a second UCEP 
where two liquid phases are again c r i t i c a l . Below this second, 
or low temperature, UCEP the liquid-liquid-gas three phase line 
continues with decreasing temperature unt i l i t ends with the 
formation of a solid phase at a quadruple point. 

A second c r i t i c a l line runs from the LCEP to C 2 . Near the 
LCEP i t is a liquid-liquid c r i t i c a l line and in aproaching C2 
i t changes to a vapor-liquid c r i t i c a l l ine. 
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Table I Continued 
The third c r i t i c a l line is a liquid-liquid c r i t i c a l locus 

between the second or low temperature UCEP and a C m point at an 
immeasurably high pressure. 

V. Two c r i t i c a l lines: In this system there is a single three 
phase liquid-liquid-gas line ending at a UCEP where one of the 
liquids and the gas phase become identical. As the temperature 
is lowered, this three phase line stops at a LCEP where the two 
liquid phases merge. 

One of the c r i t i c a l lines is a gas-liquid c r i t i c a l locus 
from CI to the UCEP. The second c r i t i c a l line runs from the 
LCEP to C2 and consists of a liquid-liquid c r i t i c a l line near 
the LCEP which changes to a vapor-liquid c r i t i c a l line when 
approaching C2. 

V-A. The same as Type V but with the addition of a negative 
azeotrope. 

Class 3 

The van Konynenburg and Scott classification includes a Class 3 
behavior which is exhibited by very complex mixtures with strong 
specific interactions, usually involving hydrogen bonds, between the 
components. These systems have LCSTs where there is a minimum in a 
T-x coexistence curve. Systems in this class cannot be represented 
by equations of state of the van der Waals family. 
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Figure 3. C r i t i c a l l o c i of butane-carbon dioxide system. 
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Figure 10. C r i t i c a l temperature of m ethane-car bon dioxide system. 
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Figure 12. C r i t i c a l l o c i of m ethane-heptane system near methane 
c r i t i c a l point. 

Figure 13. C r i t i c a l l o c i of methane-heptane system near methane 
c r i t i c a l point. 
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TABLE II 
Average Percent Relative Absolute Error in Predicting Binary 

C r i t i c a l Loci by Cubic Equations of State 

System 
Redlich 
Kwong Soave Adachi 

Peng and 
Robinson Teja 

propane CD 0.37 0.08 0.14 0.80 0.05 
hexane (2) 1.09 0.49 0.73 2.52 0.33 

C3) 18.31 19.51 16.78 7.70 16.78 

methane/ CD 2.53 2.18 2.88 3.64 2.16 
co 2 [2) 6.32 5.86 7.99 8.58 5.82 

butane/ CD 0.77 0.54 1.18 1.28 0.51 
co 2 C2) 2.62 1.77 2.96 2.47 1.56 

C3) 17.00 20.96 28.06 7.99 13.38 

decane/ { CD .81 1.67 2.81 3.63 2.33 
co 2 ( C2) 10.23 9.63 16.72 27.92 29.72 

benzene/I CD .96 .77 .69 1.18 1.35 
water C2) 6.25 7.81 7.93 8.32 7.78 

water/ ( CD 1.38 1.14 6.61 1.28 2.02 
co 2 < C2) 21.66 16.62 224.55 35.84 27.70 

methane/{ CD 10.17 4.91 17.16 10.02 6.14 
hexane 4 C2) 12.44 19.42 29.91 11.13 22.67 

methane/( CD 2.92 2.43 9.36 5.01 4.90 
heptane C2) 11.49 3.39 24.31 5.72 8.30 

C3) 12.31 18.89 23.50 8.65 22.23 

(1) percent relative absolute error in c r i t i c a l temperature 
prediction 

(2) percent relative absolute error in c r i t i c a l pressure prediction 
(3) percent relative absolute error in c r i t i c a l volume prediction 

( i f available) 
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TABLE III 

Values of fitted parameters γ 12 a n ^ 

ζ 12 for each Cubic Equation of State 

Redlich Peng and 
system Kwong Soave Adachi Robinson Teja 

propane/( 0·9244 1.0097 0.9094 0.8320 0.9897 
hexane < [2) 0.9111 0.9734 0.8846 0.8245 0.9771 

methane/( ID 0.9558 1.0524 1.0990 0.7476 1.0465 
co 2 ( [2) 0.8765 0.9222 0.8871 0.7893 0.9250 

butane/ ( ID 0.9182 0.9990 1.2607 0.6600 0.9578 
co 2 < [2) 0.7567 0.8390 0.9713 0.7475 0.8294 

decane/ I <l) 1.2319 1.3268 -.2422 .4455 1.400* 
co 2 < [2] .5940 0.9352 -1.0090 1.5599 .700 

benzene/ ( [I) 0.8015 0.8019 .7257 .7210 .7562 
water < [2) 0.6556 0.5980 .5536 .7694 .6110 

water/ i [I) 1.0546 1.0446 1.000* .6260 1.2307 
co 2 < [2) 0.8828 1.0407 1.000 .95154 1.2927 

methane / ( [I) .9950 1.1310 .5000* .6091 1.0682 
hexane { [2} .9545 1.1441 .6000 .7347 0.9661 

methane/( [I) .9093 1.0237 -.0096 .3793 0.8861 
heptane < [2) .7319 0.9661 -.2814 .6732 0.7446 

(1) Calculated value for λι 2 

(2) Calculated value for ς 1 2 

* Values for \ i 2 and ς 1 2 do not f i t the midpoint data exactly 

American Chemical Society 
Library 

1155 16th St., N.W. 
Washington, D.G. 20036 
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The cone tante a, b, and c In the above equations are calculated 
entirely from pure component properties* To extend the equations to 
mixtures, the following mixing rules were used: 

a - [ /α]χχ + / a 2 x 2 ] 2 + 2 x
1

x
2

( ^ i 2 " 1 ) y ^ 2 ( 1 0 ) 

b - [b l X ] L + b 2x 2] + 2 χ ι Χ 2 ( λ 1 2 - 1)( l
i
 2) (11) 

c « c 1 x 1 + c 2 x 2 (12) 

The constants in these mixture equations can be evaluated entirely 
from pure component properties alone by equating the parameters 

ς 12 and λ ι 2 to unity. Equations (10) and (11) then become the 
mixing rules of the original van der Waals equation. The 
ζ 1 2 and λi2 parameters other than unity, must be determined by 

f i t t i n g the equation to actual experimental data for the mixture. 

Equations (3) and (4), together with an equation of state make 
up a system of non-linear equations in three unknowns: T c, P c and 
V c. For a given composition, the free energy equations were solved 
for the c r i t i c a l temperature and c r i t i c a l volume of the system. The 
c r i t i c a l pressure was then determined from the equation of state. 
To calculate the values for λ ι 2

 a n a" ζ 12» U 8 e a < i n
 this work, the 

following functions were calculated at s 0.50: 
F l - l<Tc>exp " <Vcald <13> 
F2 » Kpc>exp - (pc)calcl <14> 

If experimental data at - 0.50 were unavailable, then the closest 
experimental value to Xi « 0.50 was used. Values of 
λ 1 2

 a n a* ζ i2 w e r e calculated by using a damped Newton Raphson 
method, until the functions Fi and F2 were less than 0.001. In most 
cases i n i t i a l starting values of λ ι 2 • 1·0 and ζ 12 « 1.0 converged 
satisfactorily. In other cases much lower i n i t i a l t r i a l s were 
required. The values of λ ι 2 and c i 2 obtained from data at X i « 0.5 
were then used to calculate the entire c r i t i c a l locus from X i - 0.0 
to x i » 1.0. 

Systems Selected for Study 

The P-T projections of the P-T-x c r i t i c a l surface of eight different 
binary systems were selected for study. The systems selected 
represent six of the nine different c r i t i c a l behavior types 
discussed by van Konynenburg and Scott (8) and summarized in Table 
I. For each of these projected c r i t i c a l l o c i , the c r i t i c a l 
temperature, c r i t i c a l pressure, and c r i t i c a l volume were calculated 
from the five cubic equations of state in Equations (5) - (9). 

As indicated in Table I, the Class 1 Type I projections are 
characterized by a single continuous c r i t i c a l line connecting the 
pure component c r i t i c a l temperatures. Binary mixtures which exhibit 
Class 1 Type I behavior have pure component c r i t i c a l temperatures 
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are in the range T c l / T c 2 < 2 (8). The Class 1 Type I systems 
studied are: 

(1) Propane and n-Hexane, Kay (16) 
(2) Methane and Carbon Dioxide, Donnelly and Katz (17) 
(3) η-Butane and Carbon Dioxide, Poettmann and Katz~~(18) 

and Redlich, Kister, and Lacy (19) 

More complicated Class 1 systems are those of Class 1 Type II, 
which exhibit not only a continuous gas-liquid c r i t i c a l line between 
the pure component c r i t i c a l s , but also a liquid-liquid c r i t i c a l line 
from C m to the UCEP termination of a three phase liquid-liquid-solid 
line, as described in Table I. One system of Class 1 Type II was 
studied in this work. This system i s : 

(4) n-Decane and Carbon Dioxide, Reamer and Sage (20) 

Class II behavior is exhibited in binary systems in which the 
c r i t i c a l temperature of one of the pure components is usually more 
than twice the c r i t i c a l temperature of the other. In Class II 
systems there is no continuous c r i t i c a l line connecting the two pure 
component c r i t i c a l points. Four different examples of Class 2 
systems were studied in this paper. These Include a Class 2 Type 
IIIa-HA system in which the liquid-liquid c r i t i c a l line between C2 
and C m, as described in Table I, actually passes through a minimum 
temperature before diverging to the immeasurably high pressure at 
C m. It is therefore characterized as a Type IIIa-HAm system. The 
example chosen was: 

5) Benzene and Water, Rebert & Kay (21), and Schneider (22) 

Class 2 Type III systems, as indicated in Table I, are the same 
as Type III-HA except that the three phase liquid-liquid-gas line 
lies between the two pure component vapor pressure curves so that 
there is no hetero-azetropic behavior, as discussed by Rowlinson 
( 23). Two sample systems representing Type I l i a and Type I l l b were 
selected. These are: 

6) Carbon Dioxide - Water, Takenouchi (24), Type I l i a 
7) Methane-η-Heptane, Kohn (27); Chang, Hurt & Kobayashi (28); 

and Reamer, Sage and Lacey (29), Type I l l b 

The f i n a l c r i t i c a l behavior studied in this work is that of 
Class 2 Type V. In this case there are two c r i t i c a l lines, one from 
the pure component c r i t i c a l CI to a UCEP and a second from the other 
pure component c r i t i c a l C2 to a LCEP, as described in Table I. One 
example of this behavior was examined. This was: 

8) Methane-n-Hexane, Shim & Kohn (25) and Poston & McKetta 
(26) — 

Results and C r i t i c a l Loci Predictions 

The average percent relative absolute error in predicting the 
selected binary c r i t i c a l l o c i is shown in Table II and the c r i t i c a l 
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methane-carbon dioxide mixtures are plotted as a function of 
composition as predicted by the Teja equation. The c r i t i c a l values 
were fitted exactly at a methane mole fraction of 0.457. As shown 
in Figures 10 and 11, the equation generally follows the trend of 
the data but predicts c r i t i c a l temperatures slightly too high at 
mole fractions less than 0.457 and slightly too low at larger mole 
fractions. The same trends are exhibited by the other equations and 
the shapes of the predicted lo c i are similar. 

Accuracy of the c r i t i c a l l o c i predictions is considerably 
enhanced by the use of two unlike pair parameters, instead of a 
single ζ 1 2 parameter only, as is a common practice. This is 
particularly true when the members of the binary mixture have large 
dissimilarities in size and character. Usually, the assignment 
of ζ i2 = 1·0 a n <* λ ΐ 2 " predicts the c r i t i c a l temperature much 
more accurately than the c r i t i c a l pressure. The c r i t i c a l pressure 
in the cases studied here, is always extremely low, frequently by 
more than 30%. These large Pc errors can be remedied by 
changing ζΐ2> usually decreasing i t s value. Unfortunately, when the 
calculated and experimental Pc values are brought into good 
agreement by this process, the error in the calculated Tc is made 
larger than the i n i t i a l result obtained with both X i 2 and ζ Χ 2 equal 
to 1.0 . 

Discussion 

As indicated in Table II, the c r i t i c a l temperatures and c r i t i c a l 
pressures in systems of Class 1 Type I are predicted accurately by 
a l l equations of the van der Waals family. Best results for the 
predicted c r i t i c a l temperatures and pressures of these systems were 
obtained with the Teja equation. It is important to note that this 
comparison applies only to c r i t i c a l l o c i tested by the procedures 
described here. It does not imply that this ranking is valid over 
the entire P-T-x diagram for these systems. 

The excellent results for the Class 1 Type I systems gives some 
support to the mixing rules adopted in Equations (10)-(11). The 
results indicate that the two fitted unlike pair coefficients in 
these mixing rules resemble true molecular properties in that the 
same values are valid over the entire composition range. 

A remarkable feature of the van der Waals family of equations 
is the ability of a l l the equations tested to predict the local 
minimum in the c r i t i c a l locus of the η-butane-carbon dioxide system 
at high concentrations of carbon dioxide, as shown in Figure 3. 
This phenomenon is well established experimentally for Class 1 Type 
I systems involving carbon dioxide. Morrison and Kincaid (30) have 
shown experimentally that this minimum exists both for the n-butane-
carbon dioxide and also for the propane-carbon dioxide systems. 

It is clear from Table II that the excellent accuracy of the 
c r i t i c a l temperature and c r i t i c a l pressure predictions for Class 1 
Type I systems does not extend at a l l to the c r i t i c a l volumes. A 
common feature of the van der Waals family of equations is that they 
predict pure component c r i t i c a l compressibility factors which are 
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too large for components whose molecules contain more than one 
atom. This results in c r i t i c a l volume predictions which are always 
too high. The best prediction of c r i t i c a l volumes is given by the 
Peng-Robinson equation which predicts a c r i t i c a l compressibility 
factor of 0.307 (5). Although this value is higher than the 
c r i t i c a l compressibility factor of the components in the test 
systems, i t is the lowest among the equations tested. 

For a system belonging to Class 1, Type I, a more accurate 
method of predicting its mixture c r i t i c a l volume V c m i s to use a 
simple linear average in the form: 

Vcm - X l V c l + x2 Vc2 ( 1 6 ) 

Equation (16) gives a relative absolute error of 3.56% for the 
propane-hexane system and 6.5% for η-butane-carbon dioxide. These 
errors are much less than any of those in Table II obtained with a 
van der Waals type equation of state for these systems. Results of 
Equation (15) for the propane-hexane system are shown graphically in 
Figure 5. 

Unfortunately, Equation (16) is not an effective method for 
predicting c r i t i c a l volumes in systems of more complicated types. 
It obviously f a i l s for Class 2 systems where there is no continuous 
c r i t i c a l line between the pure component c r i t i c a l s . For the Class 2 
Type V system methane-n-heptane, for example, Equation (16) predicts 
a c r i t i c a l volume which is generally worse than the equation of 
state predictions shown in Table II for the c r i t i c a l volume of this 
system. 

A l l equations tested predict c r i t i c a l loci in Class 2 systems 
and in Class 1 Type II systems with much less accuracy than for the 
Class 1 Type I systems. In contrast to the results with Type I 
systems, the two-constant equations of state with the smallest 
deviation from the form of the original van der Waals equation, such 
as the Redlich-Kwong and Soave equations, give better predictions of 
c r i t i c a l temperature and c r i t i c a l pressure in Class 1 Type II and in 
Class 2 systems than the more elaborate three-constant equations and 
equations which deviate farther from the original van der Waals 
form. 

An example of a Class 1 Type II system is shown in Figure 4 for 
the n-decane-carbon dioxide system, where predictions of the Soave 
equation are illustrated. The c r i t i c a l line between the pure 
component c r i t i c a l s was f i t exactly at a mole fraction of carbon 
dioxide • 0.5 by the unlike pair coefficients shown in Table III. 
At lower carbon dioxide concentrations the predictions are 
excellent, as shown in Figure 4. At carbon dioxide mole fractions 
greater than 0.5, approaching the pure carbon dioxide c r i t i c a l , the 
predicted c r i t i c a l pressures are much too low. No predictions at 
a l l are possible for the liquid-liquid c r i t i c a l line from the UCEP 
to higher pressures. 

Among the Class 2 systems, the benzene-water system is an 
example of Type III-HAm behavior, where the "m" indicates a minimum 
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in the c r i t i c a l line between the c r i t i c a l of water (C2) and the high 
pressure point at C m. The results obtained with the Soave and 
Redlich-Kwong equations, which gave the best results for this 
system, are shown in Figure 6. Although the f i t t i n g point at 0.4895 
m.f. benzene lies on the vapor-liquid c r i t i c a l line between the UCEP 
and the benzene c r i t i c a l (CI), the predictions are qualitatively 
correct along the other c r i t i c a l line between C2 and C m. It is 
remarkable also that the Redlich-Kwong equation shows the required 
minimum in this c r i t i c a l line, although i t does not occur at the 
precisely correct pressure and temperature values. 

C r i t i c a l temperature and pressure predictions for the Class 2 
Type I l i a system carbon dioxide-water are shown in Figure 7 for the 
Soave equation. Because there is no c r i t i c a l locus at X ^ q o = 0.5 
the unlike pair coefficients for the Soave equation were obtained at 
XC02 = 0*321, corresponding to the highest pressure data point on 
the c r i t i c a l line between C m and the c r i t i c a l point of water, C2. 
With coefficients evaluated at this concentration, the Soave 
equation can predict both parts of the c r i t i c a l line, although the 
UCEP is not located precisely so that results along the c r i t i c a l 
line from CI to UCEP are only qualitatively predicted. 

Among the other equations, i t was possible to find unlike pair 
coefficients which could f i t both the c r i t i c a l pressure and c r i t i c a l 
temperature at this same C0 2 composition only for the Teja 
equation. The nearest composition where most of the others could be 
f i t to both the c r i t i c a l pressure and temperature was the data point 
in Figure 7 at 0.270 m.f. C02, corresponding to a c r i t i c a l pressure 
of 12,836 psia, although the predictions at other compositions are 
poor, particularly for the steeply rising pressure. For a l l 
equations except the Soave and Teja equations the errors in Table II 
are those obtained when using unlike pair coefficients f i t t e d at 
0.270 m.f. C0 2. Only for the Soave equation could the unlike pair 
coefficients, which were fitted exactly to the single data point at 
0.321 m.f. C0 2, produce accurate pressure predictions along the 
c r i t i c a l line from C m to C2 at other compositions. For the other 
equations, reasonable predictions over the entire c r i t i c a l line 
cannot be obtained from unlike pair coefficients fi t t e d at a single 
composition. 

C r i t i c a l behavior of the Type I l l b methane-n-heptane system has 
been explained in detail by Chang, Hurt and Kobayashi (28). 
Calculated results are shown in Figure 9. Accurate results are 
obtained only at low methane concentrations along the c r i t i c a l line 
from the heptane c r i t i c a l (C2) to the UCEP at the termination point 
of a liquid-liquid-solid line when the two liquid phases become 
identical. Reasonable results are obtained only along this c r i t i c a l 
line between the heptane c r i t i c a l and a methane concentration of 
about 0.7 mole fraction at a temperature of 775°R. At higher 
methane concentrations the calculated c r i t i c a l pressures are much 
too large. Reasonable results are also obtained along the very 
short second c r i t i c a l line from the methane c r i t i c a l to the UCEP at 
the limit of the liquid-liquid-gas line. 

Results for the Class 2 Type V me thane-n-hexane system are 
shown in Figure 8. This system is predicted only qualitatively by 
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the procedure used here for evaluating the unlike pair 
coefficients. On the c r i t i c a l line between the LCEP and the hexane 
c r i t i c a l (C2), methane concentrations above the f i t t i n g point of 
XCH4 s 0*^25 at a c r i t i c a l temperature of 762°R give predicted 
pressures which are much too low with a l l the equations. It is 
possible to calculate some points on the gas-liquid c r i t i c a l line 
between the UCEP and the methane c r i t i c a l (CI) but the accuracy is 
extremely poor with the calculated c r i t i c a l pressure much too 
small. Reasonable results are obtained only at low methane 
concentrations near the hexane c r i t i c a l . Accuracy deteriorates 
rapidly as methane concentrations approach those where three phase 
conditions occur between the LCEP and the UCEP when the unlike pair 
coefficients are evaluated at conditions far from the three phase 
region. 

Predictions of Class 2 c r i t i c a l l o c i by equations of the van 
der Waals family are limited by their inability to predict c r i t i c a l 
end points of three phase lines. As an example, Figures 12 and 13 
show the experimental and predicted UCEP conditions for the 
termination of the liquid-liquid-solid line in the Type I l l b 
methane-n-heptane system. Results obtained with the Soave and Teja 
equations are shown. None of the equations tested here produced 
accurate UCEP values. 

Conclusions 

The results of this study may be summarized as follows: 

1. C r i t i c a l temperatures and c r i t i c a l pressures of Class 1, 
Type I, binary systems can be predicted successfully by a l l cubic 
equations of state of the van der Waals family tested in this 
paper. The mixing rules used in each equation studied here are 
those of the original van der Waals equation with an added 
correction. This correction is for the deviation of the 
contributions of unlike pair interactions from the form of these 
contributions assumed in the original van der Waals equation. It is 
described by two adjustable unlike pair interaction coefficients. 

2. In most, but not a l l , of the cubic equations tested the 
unlike pair interaction coefficients required for Class 1, Type I 
systems do not depend appreciably on composition, temperature, or 
pressure. This is shown by the fact that when these coefficients 
are evaluated by f i t t i n g them to a single experimental data point 
for an approximately equi-molar mixture, the c r i t i c a l temperature 
and pressure at a l l other compositions on the c r i t i c a l locus are 
predicted with an average absolute relative error of less than 1%. 
Best accuracy in predicting Class 1, Type I c r i t i c a l temperatures 
and pressures in this way was obtained by using the Teja equation. 

3. C r i t i c a l volumes predicted at a l l compositions, when the 
unlike pair coefficients are evaluated to predict the c r i t i c a l 
temperature and pressure at a single data point, are always too 
large for a l l the equations tested. For a l l Class 1, Type I systems 
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the Peng-Robinson equation gave the best prediction of the c r i t i c a l 
volume with the unlike pair coefficients fitted to the c r i t i c a l 
temperature and pressure at a single data point. In Class 1, Type I 
systems a simple linear average of the pure component c r i t i c a l 
volumes gave a significantly better prediction of the mixture 
c r i t i c a l volume than any of the equations of state tested. 

4. In Class 1, Type II systems and in a l l Class 2 systems, a l l 
the equations predict c r i t i c a l temperatures and pressures with much 
less accuracy than for Type I systems when using the test procedures 
of this study. The results, showed that c r i t i c a l temperature 
predictions are much more accurate than those for c r i t i c a l pressure. 

5. In Class 1, Type II, and in a l l Class 2 systems, the region 
of a c r i t i c a l locus near the formation conditions for a second 
liquid phase or a solid phase cannot be predicted reliably when 
using unlike pair coefficients evaluated at a data point on a vapor-
liquid or liquid-liquid c r i t i c a l locus far removed from the point of 
appearance of a third phase. 

6. In Class 1, Type II, and in a l l Class 2 systems, either the 
Redlich - Kwong or the Soave equation shows the least variation of 
the unlike pair coefficients with composition, temperature, and 
pressure and gives best predictions of c r i t i c a l properties at a l l 
compositions from pair coefficients evaluated at a single data 
point. For these more complicated systems, i t appears that the 
simpler two-constant equations, like the Redlich - Kwong and Soave, 
give better c r i t i c a l l o c i predictions than the more elaborate 
equations whose form deviates farther from that of the original van 
der Waals equation. 

Acknowledgments 

The authors appreciate the support of this research at Rice 
University by the Gas Research Institute. 

The authors also appreciate the helpful suggestions made by Dr. 
J.M.H. Levelt Sengers. 

Literature Cited 

1. Chang, R. F.; Morrison, G.; Levelt Sengers, J.M.H. J. Phys. 
Chem. 1984, 88, 3389. 

2. Joffe, J.; and Zudkevitch, D. Chem. Eng. Prog. Symp. S. 1967, 
63, 43. 

3. Spear, R. R.; Robinson, R.L.; Chao, K.C. Ind. Eng. Chem. 
Fundam. 1969, 8, 2. 

4. Hissong, D. W.; Kay, W. B. AIChE J. 1970, 16, 580. 

5. Peng, D.-Y.; Robinson, D. B. AIChE J. 1977, 23, 137. 

6. Teja, A. S.; Rowlinson, J. S. Chem. Eng. Sci. 1973, 28, 529. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

6

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



6. PALENCHAR ET AL. Prediction of Binary Critical Loci 155 

7. Teja, A. S. Smith, R. L.; Sandler, S. I. Fluid Phase 
Equilibria 1983, 14, 265. 

8. van Konynenburg, P. H.; Scott, R. L. Phil. Trans. Roy. Soc. 
Lond. 1980, 298, 495. 

9. Gibbs, J. W. "Collected Works"; Longmans, Green, and Company; 
New York, 1928, Vol. 1, 129. 

10. Redlich, O.; Kister H. Ind. Eng. Chem. 1948, 40, 345. 

11. Redlich, O.; Kwong, J. N. S. Chem. Rev. 1949, 44, 233. 

12. Soave, G. Chem. Eng. Sci. 1972, 27, 1197. 

13. Adachi, Y.; Lu Β. C.-Y.; Sugie, H. Fluid Phase Equilibria 1983, 
13, 133. 

14. Peng, D.-Y; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 15, 
59. 

15. Teja, A. S.: Patel, N. C. Chem. Eng. Sci. 1982, 37, 463. 

16. Kay, W. B., J. Chem. Eng. Data 1971, 16, 137. 

17. Donnelly, H. G.; Katz, D. L. Ind. Eng. Chem. 1954, 46, 511. 

18. Poettmann, F. H.; Katz, D. L. Ind. Eng. Chem. 1945, 37, 59. 

19. Redlich, O.; Kister H.; Lacey, W. N. Ind. Eng. Chem. 1949, 
841, 475. 

20. Reamer, H. H.; Sage, B. H. J. Chem. Eng. Data 1963, 8, 508. 

21. Rebert, C. J.; Kay, W. B. AIChE J. 1959, 5, 285. 

22. Schneider, G. M. Ber. Bunsenges. Physik. Chem. 1972, 76, 325. 

23. Rowlinson, J. S. "Liquids and Liquid Mixtures" 2nd Edition, 
Butterworth and Co., 1969, 203-216. 

24. Takenouchi, S.; Kennedy, G. C. Am. J. Sci. 1964, 262, 1055. 

25. Shim, J.; Kohn, J. P. J. Chem. Eng. Data 1962, 7, 3. 

26. Poston, R. S.; McKetta, J. J. J. Chem. Eng. Data 1966, 11, 362. 
27. Kohn, J. P. AIChE J. 1961, 7, 514. 
28. Chang, H. L.; Hurt, L. J.; Kobayashi, R. AIChE J. 1966, 12, 1212. 
29. Reamer, H. H.; Sage, Β. H.; and Lacey, W. N. Chem. Eng. Data 

S. 1956, 1, 29. 
30. Morrison, G.; Kincaid, J. M. AIChE J. 1984, 30, 257. 

RECEIVED November 8, 1985 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

6

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



7 
Equation of State for Supercritical Extraction 

J. S. Haselow, S. J. Han, R. A. Greenkorn, and K. C. Chao 

School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 

Nine equations of state are evaluated regarding their ability to 
describe supercritical extraction. Experimental data on 31 binary 
mixture systems are compared with calculations from the equations of 
Redlich-Kwong, Soave, Peng-Robinson, Schmidt-Wenzel, Harmens, 
Kubic, Heyen, Cubic Chain-of-Rotators, and Han-Cox-Bono-Κ wok-
Starling. Interaction constants of the equations determined from the 
experimental data in the course of the evaluation are reported. 

Supercritical extraction has received much attention recently for its many applica­
tions and potential applications. Supercritical carbon dioxide is used to decaffeinate 
coffee, denicotinize cigarettes, and extract spices ( j_j2 ). Carbon dioxide flooding has 
assumed major importance in petroleum production ( 3 ). Extraction of coal with a 
supercritical solvent has been the subject of investigation by the British Coal 
Board ( 4J) ), Maddocks et al. ( 6 ), Blessing and Ross ( 7 ), Ross and Blessing ( 8 ), 
and Vasilakos et al. ( 9 ). Kerr McGee Oil Company developed supercritical extrac­
tion for the deashing of coal liquefaction reactor products in the ROSE process 
(10). 

The design and operation of a supercritical extraction process requires the estima­
tion of solute solubility in a supercritical solvent. Equation of state can be useful to 
satisfy this need. In this work, equations are screened regarding their applicability to 
the calculation of supercritical solubility, and the applicable equations are evaluated 
regarding their ability to quantitatively describe experimental solubility data. 

0097-6156/ 86/ 0300-0156S07.00/ 0 
© 1986 American Chemical Society 
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The Equations of State 

From the large number of equations of state that have been proposed in the litera­
ture, we have found only a small number of them to show promise of being useful for 
the estimation of supercritical solubility. A severe limitation is the availability of the 
equation constants. Equations that require their constants to be determined by 
fitting extensive experimental data on the pure substances to the equation are not 
useful, for rarely are experimental data available for the complex solutes of interest. 
We are thus forced to discard complex equations such as the Benedict-Webb-
Rubin ( U ), Jacobsen ( 12 ), Goodwin ( JL3 ), Perturbed-Hard-Chain ( 14 ), and 
Chain-of-Rotators ( 1_5 ). 

For detailed evaluation, we have selected nine equations from among those that 
have been in use in phase equilibrium calculations and newer equations that show 
promise. Eight of these are cubic equations, and one (Han-Cox-Bono-Kwok-Starling) 
is complex. But all have been generalized to express the equation constants in terms 
of critical properties, which are known for a large number of substances. Group con­
tribution ( 16,17 ) and other methods ( 18,19 ) are widely used for the estimation of 
the critical properties where experimental values have not been reported. 

Table I presents the nine equations of state that are studied in this work. Table 
II shows the critical properties of the substances that are used in the calculations. 
For many higher molecular weight compounds T c , p c , and ω were estimated, T c 

and p c by the method of Lydersen ( 18 ) and υ by the method of Edmister ( 19 ). 

Mixing rules described in the original papers are used in the calculations reported 
here for the Redlich-Kwong, HCBKS, Peng-Robinson, Kubic, Heyen, and CCOR 
equations. No interaction constant was employed by Soave in the mixing rules for 
his equation. We introduced an interaction constant k 1 2 to the constant a, as we 
found it quite necessary. The Schmidt-Wenzel and Harmens-Knapp equations con­
tained no mixing rules at all. We employ the classical one-fluid mixing rules to 
extend these equations to mixtures as follows: 

i J 

Where θ may be either a or b, and the cross parameter θι} is given by 

a y = ( l - k y K a u a j j ) 1 ^ < 2 ) 

and 

h = ( bH + b i j ) / 2 < 3 ) 

These are, in fact, the same rules employed in the other equations studied in this 
work. 
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Table I. Equations of State 

1. Redlich-Kwong equation 
Source: Redlich, O., and Kwong, J.N.S., Chem. Rev. (1949) 44 , 223. 

R T a 
Ρ (v_b) To . 5 v ( v + b ) 

2. HCBKS equation 
Sources: Cox, K.W. , Bono, J.L., Kwok, Y.C. , and Starling, 
K . E . , Ind. Eng. Chem. Fundamen. (1971) 10 , 245. Starling, K . E . , and Han, M.S., 

Hydrocarbon Processing (1972), 4 , 129. 

p ^ R T + Î B j t T - A . - ^ + ^ - ^ p » 

+ ( b R T - a - ^ ) / + a(a + ^Ve 

+ -^"(1 + 7P2)exp( - ΊΡ2) 

3. Soave equation 
Source: Soave, G., Chemical Engineering Science (1972) 27 , 1197. 

R T _ a(T) 
P (v-b) v(v+b) 

4. Peng-Robinson equation 
Source: Peng, D., and Robinson, D.B., Ind. Eng. Chem. Fund. (1976) 15 , 59. 

R T a(T) 
P (v-b) [v(v-b)+b(v-b)] 

5. Schmidt-Wenzel equation 
Source: Schmidt, G., and Wenzel, H., Chemical Engineering Science (1980) 35 , 1503. 

R T a 
P (v-b) v

2 + ubV+wb 2 
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Table I Continued 

6. Harmens-Knapp equation 
Source: Harmens, Α., and Knapp, H., Ind. Eng. Chem. Fundam. (1980) 19 , 291. 

R T a 
P (v-b) v 2 + cbV-(c-l)b 2 

7. Kubic equation 
Source: Kubic, W.L., Fluid Phase Equilibria (1982) 9 , 79. 

R T _ a 
P (v-b) (v+c)2 

8. Heyen equation 
Source: Heyen, G., "A Cubic Equation of State with Extended Range of Application" in 
"Chemical Engineering Thermodynamics", Ann Arbor Science. (Ann Arbor), (1983). 

R T a 
P (v-b) v 2+(b + c)v-bc 

9. CCOR equation 
Source: Kim, H., Lin, H.M., and Chao, K . C . , Ind. Eng. Chem. Fundam., (1985) in press. 

_ R T ( l + 0.77b/v) 0.055cRRTb/v a bd 
P (v-0.42b) (v-0.42b) v(v+c) v(v+c)(v-0.42b) 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

7

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



160 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

Table II. Critical Properties Used and Sources 

Compound Tc(K) Pc(atm) ω Vc(cm3/mol) Réf. 

Carbon Dioxide 304.2 72.8 0. .225 94.0 a 
Ethylene 282.4 49.7 0, .085 129.0 a 
Benzoic Acid 752.0 45.0 0. .620 341.0 a 
Phenanthrene 890.0 32.5 0 .429 644d b 

2,3-Dimethylnaphthalene 785.0 31.748 0 .42403 522d c 
2,6-Dimethylnaphthalene 777.0 31.796 0 .42013 516d c 
Naphthalene 748.4 40.0 0 .302 410.0 a 
Ethane 305.4 48.2 0 .091 148.0 a 
Fluorene 821e 29.5e 0 407f 590.0d 

1,4-Naphthoquinone 792* 40.7* 0 .575* 257.0d 

Acridine 883* 31.5* 0, .498* 399d 

Phenol 694.2 60.5 0 .440 229 a 
Hexamethylbenzene 752e 23.5e 0 498f 659d 

Triphenylmethane 863e 22.1e 0 .576f 785d 

Pyrene 936e 25.7e 0 494f 751d 

Trifluoromethane 299 48.2 0 .275 133 a 
Chlorotrifluoromethane 302 38.7 0 .180 180 a 
Hexachloroethane 698.4e 32.97e 0 .255h 470d 

a Reid, R.C. , Prausnitz, J.M., and Sherwood, T.K. , "The Properties of Liquids and Gases", 
3rd éd.; McGraw-Hill: New York, 1977. 

b GPA Research Report RR-30, "High Temperature V - L - E Measurements for Substitute Gas 
Components"; Tulsa, Oklahoma, 1978. 

c Driesbach, R.R., "Physical Properties of Chemical Componds", American Chemical Society, 
Washington, D.C., 1955. 

d Estimated by Zc = 0.291-0.008u;,Vc = ZcRTc/Pc . 

e Estimated by Lydersen's method. 

f Estimated by Edmister's method. 

* Estimated by method of Joback (R.C. Reid, Personal Communication). 

h Perry, R.H., and Chilton, C H . , "Chemical Engineers Handbook", 5th ed.; McGraw-Hill: 
New York, 1973, for vapor pressures, definition of acentric factor. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

7

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



7. H A S E L O W E T A L . Supercritical Extraction 161 

Calculation of Supercritical Solubility 

Solubility of a solid solute in a supercritical solvent is given by 

y, = p^fexp^p-pn/RT] /(ρΦ,) 
(4) 

where the symbols are defined in Glossary of Symbols. In Equation 4 it is assumed 
that the solvent is not dissolved in the condensed phase, which is valid when the 
condensed phase is a solid. We exclude solubility data of liquids. Equation 4 addi­
tionally assumes that the solid phase is incompressible. The fugacity coefficient of 
the saturated pure vapor of the solute is set to be equal to 1 in view of the small 
vapor pressures. 

The calculation of solubility V j according to Equation 4 requires the \rapor pres­
sure pf and molal volume V s of the solid solute to be known. Table III shows the 
sources from which vapor pressures of the solutes were obtained. Table IV shows the 
solid volume data that were used in the calculations. Since data were not available 
at the various temperatures of interest and since the effect of inaccuracy of solid 
volume is small, variation of the solid volume with temperature was ignored in the 
calculations. 

The variation of supercritical solubility with pressure is given by ρ and Φι in 
Equation 4. The characteristic supercritical effect of solute-solvent interaction is 
expressed by Φ .̂ The calculation of Φγ by an equation of state, and the use of it in 
Equation 4 to calculate V j for comparison with experimental data constitutes the 
test of the equation of state. 

Calculation of Φ γ by an equation of state follows the standard thermodynamic 
procedure described in textbooks. The calculation is sensitively dependent on the 
value of the interaction constant(s). A value of kjj of an equation of state is deter­
mined for each solute + solvent system from experimental solubility data for the 
best fitting of the data. The objective function 

is minimized in searching for the kjj value. Here η stands for number of solubility 
data points. The kjj thus determined is employed in a final round of calculations to 
give the calculated solubilities. The quality of the calculated supercritical solubility 
is expressed in terms of an average % deviation of the equation of state from the 
data given by 

Ω = Σ [ln(yi,exp/yi,cal)]2 (5) 
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162 E Q U A T I O N S O F STATE: T H E O R I E S A N D A P P L I C A T I O N S 

Table III. Vapor Pressure Data Sources 

Compound Reference 

2,3-Dimethylnaphthalene a 

2,6-Dimethylnaphthalene a 
Phenanthrene b 

Benzoic Acid b 

Hexachloroethane c 
Naphthalene d,e 

Fluorene f 

1,4-Naphthoquinone g 
Acridine g 
Phenol h 
Hexamethylbenzene i 
Triphenylmethane i 
Pyrene h 

* Osborn, A.G. , and Douslin, D.R., J. Chem. Eng. Data (1975) 20 , 229. 

b deKrulf, C.G. , and van Grunkel, C.H.D., presented at the Quatrième Conference Intera-
tionale de Thermodynamique Chimique, 26 au 30, Montpellier, France, 1975. 

c Sax, N.I., "Dangerous Properties of Industrial Materials", Van Nostrand Reinhold; Prince­
ton, 1979. 

d Diepen, G.A., and Scheffer, F .E .C. , J. Am. Chem. Soc. (1948) 70 , 4085. 

e Fowler, L . , Trump, W., and Vogler, C , J. Chem. Eng. Data (1968) 13 , 209. 

f Johnston, K.P., Ziger, D.H., and Eckert, C.A., Ind. Eng. Chem. Fundam. (1982) 21 , 191. 

g Schmitt, W.J., and Reid, R.C. , presented at Annual AIChE Meeting, San Francisco, C A 
(1984). 

h Weast, R.C. , "Handbook of Chemistry and Physics", 55th ed.; Chemical Rubber Company: 
U.S.A., 1975. 

Ambrose, D., Lawrenson, I.J., and Sprake, C.H.S., J. Chem. Thermodyn. (1975)8 , 503. 

Aihara, B., Chem. Soc, Japan, in Weast, op. cit. 
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7. H A S E L O W ET A L . Supercritical Extraction 163 

Table IV. Solid Volume Data and Sources 

Compound V8(cms/gmole) Reference 

Benzoic Acid 15 154.60 a 
Hexachloroethane 20 113.22 a 
Naphthalene 20 125.03 a 
Phenanthrene 4 181.9 a 
2,3-Dimethylnaphthalene 20 155.76 a 
2,6-Dimethylnaphthalene 20 155.76 a 
Phenol 20 89.0 a 
Fluorene 0 138.18 a 
1,4-Naphthoquinone - 111.2 b 
Acridine - 178.3 b 
Hexamethylbenzene 25 152.66 a 
Triphenylmethanec 20 245 a 
Pyrene 23 159.13 a 

a Weast, R.C. , "Handbook of Chemitry and Physics", 55th éd.; Chemical Rubber Co.: U.S.A. 
(1975). 

b Schmitt, W.J., and Reid, R.C. , presented at AIChE Annual Meeting, San Francisco, CA 
(1984). 

c The density of diphenylmethane was used to calculate V 8 
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164 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

% deviation = 100" exp [(Ω/η)1/2] -1 (6) 

The use of logarithm in eq. 5 in preference to the sum of squares of relative devia­
tions avoids the bias that would be produced when the calculated values are either 
very large or very small when compared to data. 

Data and Results 

Table V presents the sources of experimental supercritical solubility data for the 31 
systems studied. Many more systems have been measured. Reid (20) made an 
extensive compilation. But limitations on available vapor pressure or solid volume 
data prevented some of them from being analyzed here. 

Table VI presents the summary of the comparison of the equation of state in 31 
parts. In each part, experimental y's of the solute in a supercritical solvent are com­
pared with calculations with the nine equations of state. The average % deviation is 
shown for each equation. Interaction constants are presented, one for each equation 
of state, except for the CCOR equation for which two interaction constants k a j 2 and 
k c l 2 are given in this order. 

The calculated results appear to depend on the source of the critical constants. 
The deviations are significantly larger for those solutes whose critical constants have 
been estimated by Lydersen's and Edmister's methods. The 31 systems studied are, 
therefore, arranged into two groups: the 14 systems with known T c p c and υ are 
shown in parts 1 through 14 in Table VI and the results are summarized in Table 
VII; the remaining 17 systems with estimated T c p c and ω are shown in parts 15 
through 31 in Table VI. The overall summary comparison for all 31 systems is 
presented in Table VIII. 

For systems of known critical constants, the Redlich-Kwong appears to give the 
best overall description of supercritical solubility, showing an average deviation of 
17% in Tble VII. The HCBKS, Peng-Robinson, and Heyen equations belong 
together showing average percent deviations in the middle twenties. Soave, 
Schmidt-Wenzel and CCOR equations form the next group with average percent 
deviations in the lower thirties. Harmen-Knapp equation follows with a somewhat 
higher percent deviation of 41. The Kubic equation, showing a very large deviation, 
does not even qualitatively describe supercritical solubility. The cross interaction 
constant of the Kubic equation is not given by Equation 2, but by a different for­
mula, which causes the failure. 
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7. H A S E L O W E T A L . Supercritical Extraction 165 

Table V. Supercritical Solubility Data Sources 

Mixture System 
(Solvent; Solute) Reference 

Carbon Dioxide, Benzoic Acid a 
Ethylene, Benzoic Acid a 
C 0 2 , Hexachloroethane a 
Ethylene, Phenanthrene a 
C 0 2 , Phenanthrene a 
Ethylene, 2,3-Dimethylnaphthalene a 
Ethylene, 2,6-Dimethylnaphthalene a 
C 0 2 , 2,3-Dimethylnaphthalene a 
C 0 2 , 2,6-Dimethylnaphthalene a 
Ethylene, Phenanthrene a 
Ethane, Naphthalene b 
Ethane, Phenanthrene b 
Ethane, Triphenylmethane b 
C 0 2 , Triphenylmethane b 
Ethylene, Hexamethylbenzene b 
C 0 2 , Hexamethylbenzene b 
Ethylene, Fluorene b 
C 0 2 , Fluorene b 
C 0 2 , Pyrene b 
Ethylene, Pyrene b 
C 0 2 , Phenol c 
C H F 3 , Naphthalene d 
CCIF 3 , Naphthalene d 
C 0 2 , 1,4-Naphthoquinone d 
C H F 3 , 1,4-Naphthoquinone d 
C C I F 3 , 1,4-Naphthoquinone d 
Ethane, 1,4-Naphthoquinone d 
C 0 2 , Acridine d 
Ethane, Acridine d 
C H F 3 , Acridine d 

a Kurnick, R,T. , Holla, S.J., and Reid, R.C. , J. Chem. Eng. Data (1981) 26 , 47. 

b Johnston, K.P., Ziger, D.H., and Eckert, C.A., Ind. Eng. Chem. Fundamen. (1982) 21 , 191. 

c VanLeer, R.A., and Paulaitis, M.E. , J.Chem. Eng. Data (1980) 25 , 257. 

d Schmitt, W.J., and Reid, R.C. , presented at AIChE Annual Meeting, San Francisco, CA, 
(1984). 
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EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Table VI. Deviations of Equation of State from Solubility Data 

1. Benzoic acid 2. Benzoic acid 3. Naphthalene in 
in Carbon Dioxide in Ethylene Trifluorochloromethane 

Equation av. % dev. av. % dev ki2 av. % dev. 

Redlich-Kwong -.1797 16.8 -.2686 11.3 .0145 10.5 
HCBKS .0118 21.5 -.0381 36.5 .0571 11.2 
Soave .0433 43.2 -.0080 19.6 .0959 17.7 
Peng-Robinson .0381 36.8 -.0118 14.8 .0983 16.4 
Schmidt-Wenzel .0256 279 -.0557 31.2 .0907 27.6 
Harmens-Knapp .0156 40.2 -.0633 37.9 .0883 35.2 
Kubic -.1257 409.8 -.1696 153.9 -.0582 139.7 
Heyen -.0509 10.3 -.0845 23.1 .0644 21.2 
CCOR* .3796 19.0 .3969 13.4 .3644 16.5 

.5227 .5178 .4351 

4. Phenanthrene 5. Phenanthrane in 6. 2,3-dimethyInaphthalene 
in Ethylene Carbon Dioxide in Ethylene 

Equation ki2 av. % dev. ki2 av. % dev. ki2 av. % dev. 

Redlich-Kwong -.0820 19.4 .0094 9.9 -.1108 30.2 
HCBKS .0256 26.5 .0571 18.5 .0207 25.7 
Soave .0782 284 .1371 37.5 -.0546 39.1 
Peng-Robinson .0734 20.5 .1284 30.0 .0509 29.6 
Schmidt-Wenzel .0658 36.1 .1384 31.9 .0457 30.0 
Harmens-Knapp .0519 44.3 .1246 45.7 .0357 37.2 
Kubic -.2374 1611.1 -.1935 13523.2 -.1585 439.8 
Heyen -.0207 23.4 .0283 14.8 -.0270 24.7 
CCOR .4422 34.8 .4724 21.5 .3572 110.0 

.6242 .6694 .5103 

7. 2,6-dimethylnaphthalene 8. 2,3-dimethylnaphthaIene 9. 2,6-dimethylnaphthalene 
in Ethylene in Carbon Dioxide in Carbon Dioxide 

Equation av. % dev. k 1 2 a v. % dev. k^ av. % dev. 

Redlich-Kwong -.1045 18.7 -.0045 12.8 -.0031 9.1 
HCBKS .0181 16.0 .0506 26.1 .0495 19.4 
Soave .0544 40.0 -.1197 41.9 .1170 33.7 
Peng-Robinson .0509 31.1 .1132 36.5 .1108 28.5 
Schmidt-Wenzel .0443 25.6 .1284 22.9 .1257 20.6 
Harmens-Knapp .0332 33.0 .1184 32.4 .1159 29.9 
Kubic -.1561 467.4 -.1222 1638.6 -.1197 1733.9 
Heyen -.0218 17.6 .0308 23.3 .0319 12.9 
CCOR .3894 56.5 .4261 32.2 .4248 31.2 

.5493 .6043 .6054 

First constant is k^, second kcl2-
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H A S E L O W E T A L . Supercritical Extraction 

T a b l e V I C o n t i n u e d 

10. Naphthalene in 11. Phenanthrene in 12. Naphthalene in 
Ethane Ethane Carbon Dioxide 

Equation ki2 av. % dev. av. % dev. k^ av. % dev. 

Redlich-Kwong -.0519 29.9 -.0533 23.4 .0308 16.7 
HCBKS .0343 31.0 .0357 29.2 .0557 21.9 
Soave .0405 32.8 .0831 23.4 .1208 38.3 
Peng-Robinson .0405 30.6 .0807 17.1 .1146 32.9 
Schmidt-Wenzel .0471 44.3 .1032 51.0 .1032 21.8 
Harmens-Knapp .0433 47.1 .0945 60.2 .0934 33.7 
Kubic -.0796 84.3 -.2510 10600.3 -.0218 202.2 
Heyen .0083 20.7 -.0007 35.5 .0481 16.2 
CCOR .2932 31.9 .4285 30.2 .3518 60.6 

.3888 .5979 .4815 

13. Naphthalene in 14. Phenol in 15. Fluorene in 
trifluoromethane Carbon Dioxide Ethylene 

Equation k^ av. % dev. kj2 av. % dev. ki2 av. % dev. 

Redlich-Kwong .0232 14.3 -.0308 17.5 -.1121 33.0 
HCBKS .0606 14.7 .0495 23.4 .0183 32.6 
Soave .1083 18.8 .1007 16.2 .0433 57.8 
Peng-Robinson .1070 17.8 .0983 17.4 .0419 43.0 
Schmidt-Wenzel .0896 39.5 .1059 32.9 .0405 47.2 
Harmens-Knapp .0820 53.3 .1032 39.2 .0294 58.5 
Kubic -.0332 156.9 -.0408 22.7 -.2245 10224.6 
Heyen .0644 36.2 .0533 37.2 -.0457 29.6 
CCOR .3543 19.7 .3010 3.0 .3922 118.4 

.4552 .3462 .5843 

16. Hexachloroethane 17. 1,4-Naphthoquinone in 18. 1,4-Naphthoquinone 
in Carbon Dioxide Carbon Dioxide in Ethane 

Equation kl2 av. % dev. ki2 av. 1 % dev. ki2 av. % dev. 

Redlich-Kwong .0734 18.7 -.1135 19.0 -.0519 27.6 
HCBKS .0595 17.2 .0332 26.4 .0357 33.4 
Soave .1371 26.6 .0907 36.8 .1260 16.3 
Peng-Robinson .1322 21.4 .0834 30.6 .1233 15.8 
Schmidt-Wenzel .1322 9.5 .0758 68.7 .1308 55.5 
Harmens-Knapp .1295 12.6 .0633 88.9 .1270 64.8 
Kubic 0218 71.6 -.1371 1270.0 -.1797 2494.8 
Heyen .0820 11.2 -.0194 42.2 .0571 26.2 
CCOR .3795 37.4 .3849 351: .4330 23.1 

.5192 .5292 .5067 

C o n t i n u e d o n n e x t p a g e 
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EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Table VI Continued 
19. 1,4-Naphthoquinone in 20. 1,4-Naphthoquinone in 21. Acridine in 

Trifluoromethane Trifluorochloromethane Carbon Dioxide 

Equation av. % dev. k^ av. % dev. k^ av. % dev. 

Redlich-Kwong .1623 86.3 -.0433 31.1 -.0045 20.1 
HCBKS .0294 85.4 .0519 31.7 .0582 37.1 
Soave .0509 51.1 .1371 20.3 .1433 64.2 
Peng-Robinson .0481 56.3 .1357 22.0 .1357 51.7 
Schmidt-Wenzel .0180 147.9 .1260 63.8 .1485 36.7 
Harmens-Knapp .0045 173.3 .1208 77.3 .1346 54.1 
Kubic .1332 742.2 -.1384 749.2 -.2336 11211.1 
Heyen .0370 132.1 .0671 47.1 .0256 19.1 
CCOR .3323 69.5 .4248 15.1 .4836 26.7 

.4414 .4579 .6632 

22. Acridine in 23. Acridine in 24. Acridine in 
Ethane Trifluoromethane Trifluorochloromethane 

Equation ki2 av. % dev. ki2 av. % dev. ki2 av. % dev. 

Redlich-Kwong -.0533 72.4 -.0332 34.4 -.0145 33.3 
HCBKS .0381 58.4 .0620 24.6 .0609 33.8 
Soave .1045 43.4 .1284 29.7 .1360 12.2 
Peng-Robinson .0997 43.9 .1233 21.7 .1333 19.2 
Schmidt-Wenzel .1146 106.8 .1083 96.0 .1360 74.0 
Harmens-Knapp .1059 117.3 .0921 124.9 .1260 91.6 
Kubic -.2561 87120.0 -.1948 41167.0 -.1284 12516.7 
Heyen 0183 54.9 .0256 70.0 .0544 48.4 
CCOR .4337 40.0 .4423 37.5 .4500 7.7 

.5805 .5581 .5553 

25. Fluorene in 26. Hexamethylbenzene 27. Hexamethylbenzene in 
Carbon Dioxide in Ethylene Carbon Dioxide 

Equation ki2 av. % dev. ki2 av. % dev. ki2 av. % dev. 

Redlich-Kwong -.0107 28.3 -.1246 28.5 -.0183 43.5 
HCBKS .0495 39.6 .0094 38.4 .0457 37.8 
Soave .1108 59.3 .0571 59.1 .1333 77.0 
Peng-Robinson .1059 49.1 .0533 41.6 .1257 63.4 
Schmidt-Wenzel .1184 18.0 .0658 55.6 .1409 28.0 
Harmens-Knapp .1083 28.6 .0557 66.7 .1295 33.4 
Kubic -.1609 27634.7 -.1911 6485.9 -.0772 1920.7 
Heyen .0142 35.6 -.0471 31.5 .0232 41.4 
CCOR .4387 44.8 .4009 73.3 .4422 33.8 

.6431 .5930 .6393 
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T a b l e V I C o n t i n u e d 

28. Triphenylmethane 29. Triphenylmethane 30. Pyrene in 
in Ethane in Carbon Dioxide Ethylene 

Equation ki2 av. % dev. av. % dev. k^ av. % dev. 

Redlich-Kwong -.1159 15.5 -.0481 43.1 -.0921 32.6 
HCBKS .0169 15.6 .0470 46.8 .0495 19.3 
Soave .0807 33.6 .1284 85.1 .0959 90.4 
Peng-Robinson .0720 25.5 .1195 64.7 .0945 68.5 
Schmidt-Wenzel .0969 39.5 .1561 28.5 .0571 35.6 
Harmens-Knapp .0858 52.4 .1433 43.5 .0343 51.9 
Kubic -.2423 6066.4 -.2412 525956.7 -.2059 5907.1 
Heyen -.0370 28.1 -.0194 45.1 -.0495 39.0 
CCOR .4486 28.3 .4922 62.4 .4798 25.2 

.6280 .6494 .6719 

31. Pyrene in 
Carbon Dioxide 

Equation k^ ave. % dev. 

Redlich-Kwong .0180 114.2 
HCBKS .0671 163.8 
Soave .1748 244.8 
Peng-Robinson .1658 202.1 
Schmidt-Wenzel .1696 45.5 
Harmens-Knapp .1534 43.5 
Kubic -.2250 1697621.0 
Heyen .0343 104.0 
CCOR .5498 34.0 

.7319 
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EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Table VII. Summary of Equation of State Calculations for 
14 Systems with Known Tc, Pc, and ω 

Equation of State Av. % Deviation 

Redlich-Kwong 17 
HCBKS 24 
Soave 31 
Peng-Robinson 26 
Schmidt-Wenzel 32 
Harmens-Knapp 41 
Kubic > 10,000 
Heyen 25 
CCOR 34 

Table VIII. Summary of Equation of State Calculations 
for all 31 Systems 

Equation of State Av. % Deviation 

Redlich-Kwong 34 
HCBKS 38 
Soave 51 
Peng-Robinson 43 
Schmidt-Wenzel 49 
Harmens-Knapp 60 
Kubic > 10,000 

Heyen 40 
CCOR 38 
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7. H A S E L O W ET A L . Supercritical Extraction 171 

The results shown in Table VIII include all mixtures. For seventeen of these mix­
tures the critical properties of the solutes have to be estimated. There is a general 
increase in the deviation of the calculated solubility from the experimental value for 
all equations when the relatively uncertain critical properties are employed in the cal­
culations. The distinction among the equations becomes blurred at the same time. 
Thus, the Redlich-Kwong, HCBKS, and CCOR equation appear together with per­
cent deviations in the thirties. The Peng-Robinson, Schmidt-Wenzel, and Heyen 
equations form the next group with percent deviations in the forties. The total sum­
mary for all of the 31 mixtures in Table VIII appears less meaningful than the par­
tial summary of Table VII. 

Representation of the solubility data by an equation of state is examined in detail 
in Figures 1 through 10 for five equations - the Redlich-Kwong, HCBKS, Peng-
Robinson, Heyen, and CCOR. 

Calculations by the R-K equation are compared with experimental data on ben­
zoic acid solubility in C 0 2 in Figure 1. This mixture is chosen for illustration owing 
to the pure component properties being known, and the pressure range of the data 
being quite large. However, the temperature range is narrow, which is common for 
supercritical extraction experiments. Figure 1 shows that the equation does not 
describe the variation with temperature very well; the calculated temperature depen­
dence is too weak. The calculated pressure dependence is qualitatively correct but 
misses the fine points. 

Figure 2 shows the Redlich-Kwong equation in comparison with data on fluorene 
solubility in ethylene. This mixture is chosen for illustration for the large tempera­
ture range of the data. The critical properties of fluorene are estimated. The calcu­
lation describes the lower pressure data well, but departs from the data significantly 
at 200 bars and above. 

The Heyen equation is compared with the same two mixtures in Figures 3 and 4, 
and the Peng-Robinson equation in Figures 5 and 6. The HCBKS equation is like­
wise shown in figures 7 and 8. 

The CCOR equation is shown in Figure 9 for phenol in carbon dioxide, and in 
Figure 10 for acridine in C C I F 3 . The critical properties of phenol are known, but 
those of acridine are estimated. The CCOR equation calculations agree with data 
about equally well for both mixtures. The comparison shown in the two figures illus­
trates that the CCOR calculations are quite independent of the source of critical pro­
perties, estimated or known. This is also shown in Tables VII and VIII. 

It seems clear from this work that the quantitative representation of supercritical 
solubility by the currently available equations of state with their classical one fluid 
mixing rules is not adequate. In view of the many applications and potential appli­
cations of supercritical extraction, there is a need for new development of an equa­
tion and mixing rules for the improved representation of supercritical extraction. 
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Figure 1. Solubility of Benzoic Acid in C0 2 by the Redlich-Kwong Equation 
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Figure 2 Solubility of Fluorene in Ethylene by the Redlich-Kwong Equation 
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Figure 3. Solubility of Benzoic Acid in C 0 2 by the Heyen Equation 

ί ο " 1 ρ 1 1 1 Ξ 

5 — -

1 0 - 5 I 1 1 1 1 
0 150 300 450 600 

p, bars 

Figure 4. Solubility of Fluorene in Ethylene by the Heyen Equation 
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Figure 5. Solubility of Benzoic Acid in C0 2 by the Peng-Robinson Equation 
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Figure 6. Solubility of Fluorene in Ethylene by the Peng-Robinson Equation 
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Figure 7. Solubility of Benzoic Acid in C0 2 by the HCBKS Equation 
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Figure 8. Solubility of Fluorene in Ethylene by the HCBKS Equation 
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Figure 9. Solubility of Phenol in C 0 2 by the CCOR Equation 
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Figure 10. Solubility of Acridine in CC1F3 by the CCOR Equation 
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Glossary of Symbols 

a 

b 

c 

cr 

> equation of state parameters 

kjj binary interaction parameter 

η number of data points in a binary system 

ρ pressure 

p° vapor pressure 

R gas constant 

Τ temperature 

u equation of state parameter 

V molar volume 

V s solid molar volume 

w equation of state parameter 

y fluid phase mole fraction 

Greek Letters 

ρ molar density 

φ fugacity coefficient of fluid phase 

φ° fugacity coefficient of saturated vapor 

ω acentric factor 

Ω objective function 

Subscripts 

1 solid component 

2 fluid component 

c critical property 
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8 
The Generalized van der Waals Partition Function 
as a Basis for Equations of State 
Mixing Rules and Activity Coefficient Models 

S. I. Sandler, K.-H. Lee, and H. Kim 

Department of Chemical Engineering, University of Delaware, Newark, DE 19716 

The generalized van der Waals (GVDW) partition 
function provides a basis for understanding the 
molecular level assumptions underlying presently used 
equations of state, their mixing rules including the 
new local composition (density dependent) models, and 
activity coefficient models. Further, our Monte Carlo 
computer simulation results for mixtures of square-
well fluids provide a method of testing these assump­
tions, many of which are found to be incorrect. Using 
the combination of the GVDW partition function and 
computer simulation results, we have formulated new 
equations of state and local composition models which 
are simple and accurate. 

Thermodynamic modelling of real fluids and mixtures, using both 
equations of state and activity coefficients, is an area in which 
there is a strong temptation to introduce empiricism. The various 
modifications of the van der Waals equation, which now number in 
the hundreds, i s one example of this. Statistical mechanics, on 
the other hand, leads to the detailed calculation of the properties 
of model fluids with very simple intermolecular potential functions, 
but few generalizations to real fluids. For the last several years 
we have been pursuing a different approach wherein we start from a 
firm s t a t i s t i c a l mechanical basis, but seek results of general 
validity, rather than to calculate numbers for an idealized inter­
action potential model. In particular, we are seeking answers 
to such questions as: 

(1) Why are present equations of state and their mixing rules 
not applicable to mixtures of molecules of greatly differing 
functionality or size?, and 

(2) What is the molecular basis for local composition and 
density dependent mixing rules, and how can such rules be improved? 
This communication is a progress report on our efforts. 

The basic idea in our work is the use of the rigorous 
generalized van der Waals partition function, which we consider in 
the following sections, to understand the molecular level 
assumptions imbedded in presently used equations of state, their 

0097-6156/ 86/ 0300-0180$06.50/ 0 
© 1986 American Chemical Society 
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8. S A N D L E R ET A L . Generalized van der Waals Partition Function 181 

mixing rules, and activity coefficient models, and then to test 
these assumptions using computer simulation. In addition, we have 
been using the results of our simulations to formulate new and 
better molecular thermodynamic models. Our progress to date w i l l be 
reviewed here. 

Pure Fluids 

The starting point for our study of pure fluids i s a new form of the 
generalized van der Waals partition function we have derived [1]: 

Q(N,V,T) A - 3 N ( q r q v q e ) N V f e x P < ^ f > < X ) 

where Q is the canonical partition function for Ν molecules in a 
volume V at temperature T, q r, q v and q e are the single particle 
rotational, vibrational and electronic partition functions, respec­
tively, Λ is the de Broglie wave-length and k is the Boltzmann 
constant. Also, Vf i s the free volume defined such that 

V fN = z H C(N,V) (2) 

where i s the configurâtional integral for hard core molecules. 
The configuration integral for spherical particles i s 

-u (£!,... r^/kT 
Z(N,V,T) - J...Je d£ 1...dr N (3) 

V 

where u(r_j, £2,...) i s the intermolecular potential function when a 
molecule i s located at position vector _rj, a second molecule is 
located at position vector _r_2 > etc. [The extension to nonspherical 
particles i s considered briefly i n reference 1.] Finally, Ê ONF̂  the 
energy of interaction, for a pair-wise additive system is given by 

ECONF M J u(r)g(r;N,V,T)clr (4) 

and the mean potential 

ψ JT ^ d T (5) 

is the free energy of bringing the system from T=« (where only hard­
core repulsive forces are important) to the temperature of interest. 
In these last equations, u(r) i s the two-body intermolecular poten­
t i a l and g(r;N,V,T) i s the two-body radial distribution function, 
which is a function of density, temperature and intermolecular 
separation distance. 

Once the partition function is known, a l l thermodynamic 
properties can be found. For example, 
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182 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

P(N,V,T) = kT(4^) 3V N,T 
(6) 

and 

A(N,V,T) = -kTlnQ ( 7 ) 

The f i r s t of these equations provides a method of obtaining the 
volumetric equation of state from the partition function, while from 
the second the fundamental equation of state in the sense of Gibbs 
is obtained. 

The importance of equations (1-5) i s that they focus attention 
on the two quantities which are needed for thermodynamic model-
building, the temperature and density dependence of the free volume 
Vf and the configurâtional energy, E^ONFe Indeed, these are central 
to obtaining good equations of state, as w i l l be seen shortly. As 
an aside, we note that for the square-well potential 

» r<a 

u(r) o<r<Ro (8) 

r>Ro 

we have that 

pCONF -Ν 2ε Κα 
f f - J g(r;N,V,T)dr 

σ 
-Νε NC(N,V,T) (9) 

and 

-2kT 
Ν / 

T=oo 

Τ gCONF 
kT z 

Τ NC(N,V,T) 
dT = ekT / — τ, dT 

T = i kT 2 
(10) 

where 

NC(N,V,T) e f J g(r;N,V,T)dr 
σ 

is the number of molecules i n the potential well of central mole­
cule; we w i l l refer to this quantity as the coordination number. 
Thus, i n general, what is needed for applied thermodynamic modelling 
i s the temperature and density dependence of the configuration 
energy; for the special case of the square-well molecule, tempera­
ture and density dependence of the coordination number suffices. 
This comment has special relevance to mixture local composition 
models, which w i l l be considered later. 

To illustrate how the generalized van der Waals partition 
function may be used, we restrict our attention here to the square-
well f l u i d ; the extension to real fluids is simply accomplished as 
described in reference 1. For the square-well f l u i d , the hardcore 
free volume is best given by the Carnahan and Starling [8J 
expression 
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8. S A N D L E R E T A L . Generalized van der Waals Partition Function 183 

v f - ν · e x P ( η ( 4 - 3 η ) } 

(1-η) 2 

with η • ïïpcrVo, though the less accurate van der Waals expression 

V f = V-b (12) 

with b - 4η has been incorporated into many cubic equations of state 
used in engineering. 

There has been l i t t l e consideration given to the coordination 
number i n the thermodynamic literature. Implicit in the van der 
Waals model is the assumption that the coordination number, that is 
the number of molecules interacting with a central molecule, is 
linearly proportional to the density, 

N c = ! C = pC (13) 

Ra 
where C - J g(r;N,V,T)d_r is assumed to be independent of temper-

σ 
ature and density. In this case, 

ECONF . _ .^|Ç f φ . _ ψ, a n d p . p H S _ M | ( 1 4 ) 

where a = Ce/2. Using the c r i t i c a l point conditions, we find that 

2 7 kT c 

At low densities, we have that 

Lim g(r;N,V,T) = e " u ( r ) / k T (15) 
p+0 

Assuming that this equation i s valid at a l l densities for the 
square-well f l u i d yields 

N c = | * l £ ( R3_ 1 ) ee/kT ( 1 6 ) 

and an equation of state whose volume dependence is like the van 
der Waals equation, but with the a parameter given by the 
temperature dependent function 

a = 2» σ3 ( Β 3 - ι ) Μ ( β ε / Μ - 1 ) (17) 

The coordination number models built into other equations of 
state can also be obtained, and several are shown i n Table I. The 
f i r s t three, the van der Waals, Redlich-Kwong [3J and Peng-
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184 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Robinson [41 equations, are representative of commonly used cubic 
equations of state, and the fourth is a twenty-seven constant 
equation of the extended v i r i a l form developed by Alder et a l . [2] 
to f i t their computer simulation data for the square-well f l u i d . It 
is interesting to note that i t is this equation, with slightly 
modified parameters, that is used in the perturbed hard chain theory 
of Beret and Prausnitz [5J and Donohue and Prausnitz [6], and 
largely gives rise to i t s complexity. The remaining two equations 
w i l l be discussed shortly. 

It is now of interest to compare several of these coordination 
number models with data for the square-well f l u i d . We have obtained 
such data from our own Monte Carlo simulations described elsewhere 
[7J. Some of these data, together with the predictions of the 
various cubic equation of state models, are shown as a function of 
reduced temperature kT/ε and reduced density pcP in Figure 1. This 
figure is for an R • 1.5 square-well f l u i d , and we have used the 
estimates of Alder et a l [2J for the c r i t i c a l properties of the 
square-well f l u i d 

kT c V c Pco3 — - = 1.260, —5- = 3.006 and — — =0.120 
ε Νσ 3 ε 

to interrelate the square-well and c r i t i c a l parameters. As we can 
see from the figure, none of the coordination number models built 
into existing cubic equations of state are very good. 

Based on a lattice-gas model, we have developed the simple 
expression [7J 

Z mV 0 exp(e/2kT) 
N c = V + V 0 {exp(e/2kT)-l} ( 1 8 ) 

where Z m i s the close-packed coordination number (Z m - 18 for R • 
1.5) and V Q = Νσ^//2. Figure 1 also shows the coordination number 
predictions for this model, which are better than any of the ones 
considered previously. Using this coordination number model in the 
generalized van der Waals partition function we obtain 

ZmVo(e e / 2 k T-l) .... 
NkT-NkT v ( v + V o [ e e / 2 k T . 1 J ) 

Note that the density dependence of the attractive term in this new 
equation is like the Redlich-Kwong equation, but the denominator is 
temperature dependent. Thus, at low density, N c should be propor­
tional to exp (ε/kT) while in equation (18) i t is proportional to 
exp (e/2kT), which from our data appears appropriate at high 
density. Therefore, an empirical modification of Eq. (18) is 

Z mV 0exp( e/akT) y 

Ν = where a • „ „ (20) 
V + ν0{βχρ(ε/ο&Τ)-1} V-V0 
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8. S A N D L E R E T A L . Generalized van der Waals Partition Function 185 

TABLE I. Coordination Number Models f o r the Square-Well 
F l u i d i n Various Equations of State 

Equation of State 

27 k T c 2 
van der -^r ( ) · ( ~) · po° 
Waals 5 1 ε Ροσ 3 

R e d l i c h - 3(0.4g8) ^ , 1 . 5 ^ , 0 . 5 l n [ 1 + 0 . 0 8 6 7 <-JL^£ç, ρ σ3] 
Kwong 0.0867 ε kT p c„3 ε 

P ( £ c , ( 1 + Κ ) Ι 1 + Κ { 1 - / I }J 1 η [ 1 + ( ^ + 1 ) Δ ] 
Robinson 0.07789/2 ε i c l-(/2 - 1)Δ 

where κ - 0.37464 + 1.54226ω - 0.26992UJ2 

kT 
and Δ - 0.07780 ( — ) ( - £ — ) ( ρ σ 3 ) 

ε Pco 3 

η=1 m=l (/2) 

Z mV 0exp( £/2kT) 
E q n # ( 1 8 ) V + V 0{exp( £/2kT)-l} 

Eqn. (20) where α 
ε 

^akT' 
V + ν0{βχρ<-^)-1}  P
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186 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

Figure 1. Predictions of coordination number for square-well 
f l u i d : 
(o) Monte Carlo simulation; (····) van der Waals; 
( ) Redlich-Kwong; ( — - ) Peng-Robinson; 
( ) Eqn. (18); ( ) Eqn. (20) 
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The predictions of this model are also shown in Figure 1, where they 
are found to be in very good agreement with computer simulation. 
Using this expression we obtain 

vo ^ε/ctkT 

NkT NkT 2 t 
Ρ _ P H S Z m f V 0 l n [ l + ^ ( e e ' ° ^ - l ) ] 

(V-V0)2 

V o [ ( l - f ^ ) e e / a k T - l ] 
+ — } (21) 

(V-V 0)[V + V 0 ( e e / a k - l ) j 

To test the accuracy of these and other equations of state, we 
compare, in Table II, the predicted compressibility factor for the 
square-well f l u i d with the data of Alder et a l . [2]. For this 
comparison we have used the Carnahan and Starling [8J expression for 
the hard-sphere pressure, and restricted our attention to the vapor 
and liquid one-phase regions of the Alder simulation data. We have 
also included i n Table II the predictions of the equations of Aim 
and Nezbeda [9] and Ponce and Renon [10J, both of which are meant to 
describe the square-well f l u i d . It is interesting to note that 
equation (19) which is one of the simplest equations considered, is 
also the most accurate. Its accuracy is further demonstrated i n 

Table II. Absolute Average Deviation in the Compressibility 
Factor of the Square-Well Fluid as 

Predicted by Various Equations of State 

Equation of State Average Absolute Deviation 

van der Waals 8.380 

Redlich-Kwong 1.332 

Peng-Robinson 2.159 

Alder, et a l . 0.380 

Aim-Nezbeda w/o 3 body 0.418 

Aim-Nezbeda with 3 body 0.323 

Ponce-Renon 0.378 

This work, Eqn. (19) 0.240 

This work, Eqn. (21) 0.269 

Figure 2 where the compressibility factor along several isotherms 
for various equations of state are plotted as a function of density 
together with the results of our Monte Carlo simulations. 
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τ 1 1 1 1 1 1 1 Γ 

Figure 2. Predictions of compressibility for square-well f l u i d : 
(o) Monte Carlo simulation; (····) van der Waals; 
( ) Redlich-Kwong; ( ) Peng-Robinson; 
( ) Eqn. (19); ( ) Eqn. (21) 
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8. S A N D L E R ET A L . Generalized van der Waals Partition Function 189 

Based on our results, two conclusions can be drawn. Fi r s t , i s 
that there is an advantage to using the generalized van der Waals 
partition function as a basis for developing equations of state. 
This is demonstrated by the fact that by using this approach, we 
could develop simple equations with _no adjustable parameters, that 
are much more accurate than the empirical or semitheoretical 
equations for the square-well flu i d that had been used heretofore. 
Second, from this analysis, we have developed an equation of state 
which, as a result of it s accuracy, is an obvious candidate for 
generalization to real fluids. 

Mixtures and Local Compositions 

Mixture behavior, and especially local composition effects and 
density dependent mixing rules, are of considerable practical 
interest. Here the generalized van der Waals partition function i s 
of great u t i l i t y in understanding the assumptions contained in 
presently used models for activity coefficients and equation of 
state mixing rules, and as a basis for improving upon them. 

The extension of the generalized van der Waals partition 
function of the previous section to mixtures yields [lj 

Q(N1,N2,...V,T) « 

ι q rq vqp ^ Ν -N<&(T,V,NI,N2...) 
π [ ^ ^ i p - ) 1 JV f (T,V, N l , N 2 ,...)exp( 9 ! l * 2 ) 
ι l N i * A J 1 (22) 

where 

_-2kT rT E C O N F ( N I > N 2 > . , . > V > T ) φ ( Ν 1 , Ν 2 , · . . ν , Τ ) = - ^ - Γ * — - A i T ( 2 3 ) 
Ν T l œ k T 2 

with 
C O N F 

E C O N F ( N I , N 2 > . . # J V , T ) = I I E±i ( N ! , N 2 , . . . , V , T ) ( 2 4 ) 
i J 

and 

CONF Ν,· Ni 
Eij (NX,N2,...,V,T) j u i j(r)g i j(N 1,N 2,...,V,T;r)dr 

N 2 

2v x i x j / u i j ( r ) g i j ( N l > N 2 > - - « > v > T ; r > d £ 

( 25 ) 

The form of Eqn. ( 22 ) is useful for the study of mixture 
equations of state and parameter mixing rules. For the study of 
excess free energy or activity coefficient models, i t is more 
convenient to use the difference between Equation ( 22 ) and the 
analogous equations for the pure components to obtain the expression 
below for mixing at constant temperature and total volume (so that V 
= l Vi) 
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A ^ X „ - %IX<T>V> N l fN 2 ,...)-£ AiCT.Vi.Ni^kTjNilnxi T,V ± 

Q ( T , V , N i , N 2 , . . . ) 0 Ni N . 
- k T l n t ^ ( T ^ ) J ^ Σ ^ " 1 TTQICT 

i 

Z ( T — , ν , Ν ^ , . . . ) , 
-kTln[ J 

w I Z t d - . V i . N i ) ^ / ! ] (26) 

CONF 
E C 0 N F ( T > v > N l ^ N 2 # e e ) _ £ E i ( T > V i , N i ) 

Τ i dT 
kT / [ 

T=« 
kT 2 

EX EX 
^T,V 

CONF 

T=oo 
- / T t -

T=oo 

E C O N F ( T ^ V f N X , N 2 . . . ) - j E ± i T , V ± , N ± ) 
dT 

(27) 

The f i r s t term on the righthand side of this equation is the excess 
free energy of mixing when only repulsive forces are important. 
This term accounts for size and shape effects, and may be modelled 
by the Flory-Huggins 11 l j , Guggenheim-Stave man [12] or other 
suitable expressions. The second term is the excess free energy of 
mixing for bringing the system from T=<» to the temperature of 
interest at constant composition and total volume. This term is the 
contribution of the soft portions of the intermolecular potential to 
the free energy of mixing. 

As shown by Hildebrand [13J, at low and moderate pressures, 
A| x

v * G|Xp, where G| X
p i s the excess Gibbs free energy change on 

mixing at constant temperature and pressure. It is from G| x
p that 

activity coefficient expressions are most easily obtained. ' 
We want to stress that, i n Equations (22-27), i t is the 

configurational energies 

CONF 2πΝιΝ4 « 0 

E ± j V " Q / u i j ( r ) g i j ( r ) r 2 d r (28) 

that are important, rather than the (ambiguously defined) species 
coordination numbers 
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8. S A N D L E R E T A L . Generalized van der Waals Partition Function 191 

4πΝ4 L i j 0 

N ± j 'IT- J g i j ( r ) r 2 d r (29) 

or local mole fractions 
N l i 

x i i - (30) J plj 
There are two problems with the species coordination numbers or mole 
fractions. F i r s t , since the cut-off distance L-y is somewhat 
arbitrary, neither N - JJ nor X j _ j are uniquely defined. Second, i t is 
the clearly defined configurâtional energies which appear i n the 
generalized van der Waals analysis, and, i n general, these cannot be 
gotten from the local compositions. It is only for square-well 
molecules, with i t s well-defined range, for which 

ECONF . ^ L N l j e i j (31) 

with 
N i , R 0 " i i 

N i j - V ~ / g i j(N 1,N 2,...,V,T;r)dr (32) 
°±3 

that the local species-species coordination numbers (or local 
compositions) are unambiguous and contain equivalent information to 
the configurâtional energies. This is an important point since most 
local composition studies in the past for the Lennard-Jones 6-12 
f l u i d [14, 15, 16J have concentrated on the species coordination 
numbers or local mole fractions, rather than the configurational 
energies, which are really needed. 

A very useful characteristic of Equations (22-25) is that they 
are in a form which makes i t possible to determine the applied 
thermodynamic model which results from any molecular level 
assumption. We demonstrate this here by considering a mixture of 
square-well molecules. In this case, Equation (31) i s applicable, 
and the local coordination numbers, N-y, are useful in thermo­
dynamic modelling. 

Clearly, different models for the local coordination number 
w i l l give different equations of state, mixing rules, and activity 
coefficient models. For example, i f we were, i n analogy with the 
pure fl u i d van der Waals model, to assume that 

My - ± C (33a) 

where C is a constant (which is reasonable only for similar size 
molecules), or even 

N i 
N i j " 7" Cij (33b) 
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where C J J can have a different numerical value for 1 - 1 , 2-2, 1-2, 
etc., interactions, we find that the van der Waals equation of 
state is again obtained with the attraction parameter given by 

A = I Σ x i x j a i j <34> 
Equation (34) i s referred to as the van der Waals one-fluid mixing 
rule. Since i t i s known from s t a t i s t i c a l mechanics [ 1 7 ] that the 
second v i r i a l coefficient depends quadratically on mole fraction 
(and not on surface fraction or volume fraction), an important 
boundary condition on any cubic equation of state mixing rule is 
that the a and b parameters for the mixture at low density reduce to 
the one-fluid form. 

Proceeding, we could instead assume that 

•υ -11 cu eEij/kT (35> 
As indicated in the previous section, Equation (35) i s the exact low 
density expression for the local coordination number in a 
square-well f l u i d i f 

C i j * a i j " * ( R i j ^ - * ) · Assuming this equation is valid for both the 

pure f l u i d and the mixture, we find that once again the van der 
Waals equation of state and one-fluid mixing rules apply, except 
that in this case 

* i j = s | I C i j ( e e i J / k T - l ) (36) 

instead of being a constant. 
Continuing further, we find that while different assumptions of 

the type 

N ± J - y=- f(N,V,T > e i j,Oij) ( 3 7 ) 

where f is any function of Ν, V, Τ and the potential parameters of 
a l l species, but independent of composition, lead to different forms 
of the attractive term in the equation of state, in each case the 
van der Waals one-fluid mixing rule of Equation (34) applies at a l l 
densities. 

Defining Nc^ to be the total coordination number for a species 
i molecule in the mixture, from Equation (33a) we have (for similar 
size molecules) that 

Nci « »il + Nji - f C = N c l (38) 

so that 
ο ο 

«il - x i N c i = x j N c i (39) 
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8. S A N D L E R ET A L . Generalized van der Waals Partition Function 193 

where N C£ i s the coordination number for pure species i molecules at 
the same density. Using these results in Equation (2 7) yields 

T , V 

AEX 
T -oo + Ν Χ Ι Χ 2 Θ (40) 

1 ° 1 ° where 0 - j N c l ^ e l l ~ e 1 2 ^ + J N c 2 ^ ε 2 2 " ε 1 2 ^ · F o r R e c u l e s of similar 

size and shape, the f i r s t term on the right-hand side of Equation 
(40) vanishes, and we have the one constant Margules expansion. 

If, on the other hand, Equation (33b) i s assumed, we then find 
that each species coordination number is a linear function of mole 
fraction, 

N, 

that 

Nij 

and that 

AEX 
T , V 

N c j + Xiôj 

x i N c j 

EX 
_ ^ A T , V 

X j N c j 

+ Νχ^Χ2Θ!+ΝχΐΧ2(χι~Χ2)Φ 

(41) 

(42) 

(43) 

with Θ 1 - Θ - j 1<5ι(ειι+ε2ΐ) + <$2(ε22 + ε 12^ a n d Φ = 

j [δ2(ε22""ε ΐ2^~ δΐ ( ε 11"" ε 2Ρ J* T n i s i s t n e two-constant Margules 

expansion i f the T - « term i s neglected, or an augmented two-constant 
Margules expansion i f the Flory-Huggins 

AEX 
T=oo k j N ± l n 

x i 
(44) 

or similar expressions are used for 

species i molecules 

EX 
A T , V In Equation (44), 

Τ 

Φι * X i v i / I x i v j > where v± i s some measure of the molecular volume of 
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If we assume that Equation (35) is applicable 
to each species in the mixture, then Equation (41) is again 
obtained, and the two-constant Margules expansion results, though 
with slightly different expressions for the Margules coeffcients. 
Indeed, whenever we start from local coordination number models of 
the type we have been considering, the excess Helmholtz (or Gibbs) 
free energy is always of the Margules form, and the equation of 
state mixing rules are of the van der Waals one-fluid form at a l l 
densities. 

We now consider another class of local composition assumptions. 
Suppose, instead of Equations (33) we assume 

N l j - N i C i j , x i C i j (45) 

where C-y i s some constant. [A common choice for the constants C is 
some measure of the molecular volume v, so that = C - M β v-̂ , and 
Cjj = C j i = V j . In this case the ratio of the local coordination 
numbers, that is the local composition ratio, is equal to the ratio 
of volume fractions.] By i t s e l f , Equation (45) is insufficient, 
since each species coordination number (i.e., the separate Njj and 
Njj) i s needed i n the generalized van der Waals partition function 
analysis. Implicit in many activity coefficient models is the 
additional and quite separate assumption that the total coordination 
number for each species in the mixture, N cj = N - J J + ^jj> * s 

independent of mole fraction, and therefore equal to tne pure 
component coordination number. That i s , the assumption i s 

N c j - N c j 
(46) 

Equation (46) has i t origin in lattice theory where a molecule is 
presumed to have a fixed coordination number; i t may be valid for 
similar size molecules at high density, but is incorrect for 
molecules of different size, or at low and moderate densities. 

Solving Equations (45 and 46) yields 

X±Ay*i and Xj+xiAij H3i 

x j N c j 
Xj+xiAij (47) 

where Aij = cij/ cjj« [Equations for Nj£ and N i A are gotten from the 
expressions above by an interchange of indices.] Assuming that Ay 
" v i / v j yields 

G E X = A E X = τ Τ,Ρ ^T,V 
Δ Ε Χ 
Ατ,ν Ι t Ν x J V i x j V j 

[Τ-» 2 XiVi+XjVj (48) 

where 

m (eji-ejj) n ^ + ( e j j - s j j ) 

If the Τ-» term is set equal to zero, Equation (48) is the excess 
free energy expression which gives rise to the van Laar and 
Hildebrand-Scatchard Regular Solution activity coefficient models. 
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8. S A N D L E R ET A L . Generalized van der Waals Partition Function 195 

Alternatively, using Equation (44) the Flory-Huggins activity 
coefficient model is obtained. One could instead choose the 
molecular surface areas for the C^j's instead of molecular volumes, 
to obtain a variant of these models in which surface area fractions 
rather than volume fractions appear. 

If, instead, we use Equation (47) and the assumption that the 
total coordination number i s a linear function of density i n 
Equation (22) we obtain the following equation of state mixing rule 
for the a parameter 

A = <Σ x i v i > · Σ Î M3 ^f- <«> 

This mixing rule does not satisfy the low density van der Waals 
one-fluid boundary condition (unless =* V j ) , which is not 
surprising since Equation (47) on which i t is based is incorrect at 
low density. 

Next consider yet another local composition model 

£ i i = £ i £ i i e < e i r e j j ) / k T ( 5 0 ) 

which is the ratio form of Equation (35). If we choose Cj^ = Cjj β 

v-£, we have the local composition assumption of Wilson. If one 
further assumes that the total coordination number i s constant 
(Equation (46)) then Equations (47) are again obtained, but with 

c e ( e i r e j j ) / k T ( 5 1 ) 

Using these results in Equation (2 7) leads to the Wilson activity 
coefficient model; when used in Equation (22) with the assumption 
that the total coordination number is a linear function of density 
we obtain an a parameter mixing rule in the form of Equation (49) 
which, as already mentioned, does not satisfy the low density 
one-fluid mixing rule boundary condition. 

While the various local composition models considered so far 
lead to different equation of state mixing rules and activity 
coefficient models, none result in density dependent mixing rules 
which have been of much interest lately. From the analysis using the 
generalized van der Waals partition function, i t is evident that 
density dependent mixing rules can only result from a density 
dependent local composition model. Two such density dependent 
mixing rules have been suggested recently. The f i r s t , due to 
Whiting and Prausnitz [18J i s of the form 

|u = a ^ i e ( e i r e j j ) N c j / 2 k T ( 5 2 ) 

N j j N j C J J 
where the total coordination number for eacn species N cj = Njj + Njj 
is assumed to be linearly dependent on density, but independent of 
mole fraction. This local composition model leads to the following 
mixing rule 
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" Λ XijVj E X P ( * ^ Γ $ * E X P ( 5 3 ) 

where b i s a size parameter and » b^^N/4V. Also an activity 
coefficient model i s obtained which is similar to the three 
parameter Wilson equation. However, this model should not be 
expected to be very good since i t predicts that the effect of 
attractive forces (the exponential term in Equation (53)) vanishes 
at low density (where N cj > 0), and i s largest at high density. 
This is opposite to what should be expected since Equation (50) is 
correct at low density, and as attractive forces are of l i t t l e 
importance at high densities, the exponential term should approach 
unity (rather than increase i n value) in this limit. 

The recent "practical" local composition model of Hu et a l . 
[19] 

N i j s f ^ R i j 3 - ^ ^ 3 ψ- expiaey/kT] (54) 

where 
0.1865 

a - 0.60-0.58 ( ρ ^ σ ϋ 3 ) 
i 

has a density dependence which i s qualitatively in agreement with 
the observations above. This local composition model leads to the 
density dependent mixing rule given in reference 19. Many of the 
local composition models discussed above are summarized in 
Table III. 

Which Local Composition Model Is Best? 

In the previous section we considered numerous local composition 
models, and i t is reasonable to ask which is best? To answer this 
question we have been calculating local compositions in mixtures of 
square-well fluids using Monte Carlo simulation and integral 
equation methods. We report briefly some of our simulation results 
here. 

In Figure 3 we have plotted the quantity 

»21 N l d N 1 2 N 2 

N l l N2 a n N 2 2 Νχ 

as a function of density and composition for a mixture of square-
well molecules of equal diameter σ, but different well depths. The 
points represent our simulation results, and the arrows are the 
exact low density limits. For completely random mixing, both these 
ratios would be unity, which is clearly not the case. Since the 
molecules are of equal diameter, = v 2, and the local composition 
ratios of Equation (45) also reduce to a unity at a l l densities. 
The Wilson local composition model of Equation (50) i s independent 
of density, and i s seen to be correct at zero density, but to 
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8. S A N D L E R ET A L . Generalized van der Waals Partition Function 197 

Table III 

Local Coordination 
Number Model 

Equation of State 
Mixing Rule Free Energy 

Ni 
Nlj - V - C vdW 1-fluid 1-constant Margules 

Ni 

N i j = ν " °±3 vdW 1-fluid 2-constant Margules 

Ν-; 
N J j = v "a 

i/kT 
vdW 1-fluid 2-constant Margules 

N j j - y -

N I J + N J J 

ebrand 
i f 

Ν 
ν C J 

Regular 
Solution and FIory=HuggIns 

N i j " ^ ^ . < ' * ™ ) / Κ a = (Ix i V i) Π Φ ΐ Φ ^ Wilson 

i f 

N^ + Njj - N c j 
N c j - ν C J 
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Ζ 
CM 
Ζ 

Ζ 
Z~ 

Ζ 
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ζ 
(VI 
CVJ 

Ζ 

Figure 3. 

0.7 
0 . 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

REDUCED DENSITY, ρ σ 3 

0.8 

Extent of local composition in square-well mixture for 
εχι/kT - 0.4, 622/ k T β °·8> o"ll = <>22> R l " R2 = U 5 : 

(·, 0 and +) Monte Carlo simulation; (····) Wilson 
(1964); ( ) Whiting and Prausnitz (ref. 18); ( 

) Hu et a l . (ref. 19); ( ) Lee, Sandler and Patel 
(ref. 21); ( ) random mixing. (-• shows the 
theoretical low density limit) 
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overpredict local composition effects at a l l other densities, 
random mixing at low density, and strong local composition effects 
at high density. As can be seen, this is completely opposite from 
the computer simulation results which are in agreement with both the 
exact low density result and the Weeks et a l . [20J conclusion that 
attractive forces are of l i t t l e importance in determining local 
composition at high density. Also, the Whiting-Prausnitz model 
shows no composition dependence. Since the underlying local 
composition mixing rule i s incorrect, i t is not surprising that in 
application, the density dependent mixing rule of Equation (53) is 
found to be of l i t t l e u t i l i t y . Recently, Hu et a l . [19J have 
proposed the local composition model of Equation (54); the results 
of this model also appear in Figure 3. There we see that for equal-
size molecules, the Hu et a l . model predicts local composition 
effects which qualitatively have the correct density dependence, but 
are too small at a l l densities. The model of Hu et a l . , like the 
other models considered previously, shows no composition dependence 
in the ratios we have plotted. 

Also shown in Figure 3 are the predictions for the local 
composition ratios of Equation (2 0) from a model we have proposed 
recently [21J· This model has the correct low density and high 
density limits, a slight composition dependence, and is in better 
agreement with simulation results than the other models considered 
here. At present we are considering the extension of this model to 
molecules of unequal size, and this work w i l l be presented 
separately [22]. Also, we consider elsewhere [23J the composition 
variation of the total coordination number in mixtures of unequal 
size molecules. 

Conclusions 

Fi r s t , we have shown the u t i l i t y of the generalized van der Waals 
partition function in that i t allows us to interrelate molecular 
level assumptions to applied thermodynamic models. This was used, 
in Section II, to ascertain the coordination number models used in a 
number of equations of state. These coordination number models were 
tested against our Monte Carlo simulation data for a square-well 
f l u i d , and none were found to be satisfactory. A new coordination 
number model was proposed, and this was found to lead to an equation 
of state, with no adjustable parameters, which is more accurate for 
the square-well flu i d than multiconstant equations currently in use. 

In Section III, the generalized van der Waals partition 
function for mixtures was used to identify the molecular-level local 
composition and other assumptions imbedded in commonly used equation 
of state mixing rules and activity coefficient models. We then 
compared these assumptions for local composition effects with the 
results of our own Monte Carlo simulation studies for mixtures of 
square-well molecules in Section IV. There we found that the models 
currently in use do not properly account for nonrandom mixing due to 
attractive energy effects. This suggests that better local 
composition models are needed. Once they are obtained, the 
generalized van der Waals partition function w i l l again be useful in 
developing the macroscopic thermodynamic models which results from 
these molecular level assumptions. 
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9 
Local Structure of Fluids Containing Short-Chain 
Molecules via Monte Carlo Simulation 

K. G. Honnell and C. K. Hall1 

Department of Chemical Engineering, Princeton University, Princeton, Ν J 08544 

Monte Carlo simulation has been used to investigate 
local structure of model systems of butane and octane 
at volume fractions ranging from 0.001 to 0.3. At 
low and moderate densities the bead-bead inter-
molecular radial distribution function, g(r), near 
contact was found to be significantly less than one, 
indicating the presence of an excluded volume sur­
rounding each bead. The value of g(r) near contact 
increased with increased density, and decreased with 
increased chain length. 

In recent years there has been increased demand for general equa­
tions of state for fluids and fluid mixtures of interest to the 
natural gas and petroleum industries. The techniques of s t a t i s t i c a l 
mechanics offer an attractive route to the development of such equa­
tions of state since they are based upon fundamental physical con­
siderations. An historical survey of the scientific literature shows 
however that up un t i l the 19701 s most research in s t a t i s t i c a l mechan­
ics was limited to the development of theories for highly idealized 
monatomic fluids containing spherically symmetric molecules, e.g., 
argon, which were relatively uninteresting from an industrial point 
of view. In the mid 19701 s however, research efforts began to focus 
on more industrially relevant compounds including rigid asymmetric 
molecules, e.g., rigid polar molecules, e.g., H 2 O , and very long 
and very flexible molecules, e.g., polymers. The perhaps more d i f f i ­
cult problem of intermediate length molecules such as hydrocarbons, 
which are long and flexible compared to diatomics but short and s t i f f 
compared to polymers, also began to receive some attention, largely 
because such fluids are of great industrial interest. 

The primary d i f f i c u l t y in applying s t a t i s t i c a l mechanics to 
systems of short chains l i e s in rigorously accounting for their 
asymmetric structure and their f l e x i b i l i t y . The two major analytical 

1 Current address: Department of Chemical Engineering, North Carolina State University, 
Raleigh, NC 27695-7905. 

0097-6156/ 86/ 0300-0201 $06.00/0 
© 1986 American Chemical Society 
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approaches taken to t h i s problem, the perturbed hard chain theories 
(1) and the l a t t i c e f l u i d theories (2), of n e c e s s i t y must r e s o r t to 
r e l a t i v e l y crude approximations i n order to account f o r molecular 
asymmetry and f l e x i b i l i t y . In contrast, computer simulation i s cap­
able of d e a l i n g e x p l i c i t l y with these aspects of molecular shape. 
Thus, computer simulation presents an a t t r a c t i v e way to d i r e c t l y 
examine the cause-effect r e l a t i o n s h i p between the molecular s t r u c t u r e 
of short f l e x i b l e chains and the macroscopic or thermodynamic 
behavior of these systems. In a d d i t i o n , the simulated data can be 
used as a reference against which a n a l y t i c a l theories may be tested. 

Most of the e a r l y simulation work on many-chain systems was done 
on a l a t t i c e (3). The f i r s t o f f - l a t t i c e Monte Carlo c a l c u l a t i o n s 
appear to be those of Curro (4) who simulated chains of f i f t e e n and 
twenty beads i n an e f f o r t to compute the bead-bead r a d i a l d i s t r i ­
bution f u n c t i o n and the r e s u l t i n g equation of s t a t e . His molecular 
model consisted of f i x e d bond lengths and angles, a r o t a t i o n a l 
isomeric s t a t e approximation and a hard-sphere intermolecular 
p o t e n t i a l . Curro had d i f f i c u l t y simulating at reduced d e n s i t i e s ρ 
above 0.25 (where ρ = volume occupied by chains/volume of the 
system). Bishop, et a l . (_5) a l s o used a Monte Carlo technique to 
c a l c u l a t e the center of mass-center of mass r a d i a l d i s t r i b u t i o n 
f u n c t i o n f o r f l e x i b l e m u l t i c h a i n systems but t h e i r r e s u l t i n g curves 
are hard to i n t e r p r e t . 

The molecular dynamics simulation technique has also been used 
to examine more s o p h i s t i c a t e d molecular models. Ryckaert and 
Bellemans (6) studied s t a t i c and dynamic p r o p e r t i e s of butane and 
decane, using a Lennard-Jones intermolecular p o t e n t i a l , a continuous 
t o r s i o n a l r o t a t i o n p o t e n t i a l , and f i x e d bond angles and bond lengths. 
Weber (_7) also i n v e s t i g a t e d butane and octane using a Lennard-Jones 
p o t e n t i a l coupled to a continuous t o r s i o n a l r o t a t i o n p o t e n t i a l , but 
he relaxed the c o n s t r a i n t s of constant bond angles and bond lengths. 
The r e s u l t s of Ryckaert and Bellemans and of Weber are reasonable f o r 
most q u a n t i t i e s measured with the exception of the pressure, which i s 
quite poorly p r e d i c t e d . 

In t h i s paper we report preliminary Monte Carlo r e s u l t s on the 
l o c a l s t r u c t u r e of model systems of butane, octane and dodecane. We 
have focused our a t t e n t i o n on the intermolecular r a d i a l d i s t r i b u t i o n 
f u n c t i o n , since t h i s may be used i n p r e d i c t i n g the pressure. A 
future paper w i l l report more extensive simulation r e s u l t s f o r the 
d i s t r i b u t i o n f u n c t i o n as w e l l as r e s u l t s f o r the pressure. 

The Model 

A s i m p l i f i e d s k e l e t a l alkane model was constructed c o n s i s t i n g of an η 
bead chain (where η i s the number of carbons) x^ith bond angles, Θ, 
and bond lengths, £, f i x e d at 109°28' and 1.53A, r e s p e c t i v e l y . The 
diameter of each bead (methyl group), σ, was also f i x e d . T o r s i o n a l 
r o t a t i o n s through the angle <J>j_ were modelled using the r o t a t i o n a l 
isomeric s t a t e p o t e n t i a l , which allows for j u s t three d i s c r e t e 
r o t a t i o n a l states — trans, gauche"*", and gauche". The p o t e n t i a l s 
employed were s i m i l a r to those of Curro (4). The energy of the 
gauche states was set at 700 cal/mol above that of the trans. 

Neighboring g +/g" combinations along chain backbones were given 
an a d d i t i o n a l energy of 2300 cal/mol, to account f o r the s o - c a l l e d 
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pentane effect arising from steric interactions between beads sepa­
rated by four bonds (6). Intermolecular interactions and intra­
molecular interactions between beads separated by more than four 
bonds were accounted for by a hard sphere potential. 

The molecular model chosen for the Monte Carlo studies is not 
substance specific but is instead highly idealized. The goal has 
been to simplify the potential to the point where i t may be treated 
using some analytical s t a t i s t i c a l mechanical technique but not 
beyond the point where those essential features of the potential 
responsible for the fluid*s thermodynamic behavior are obscured. In 
this respect, these studies can serve as a bridge between developing 
analytical theories and existing experimental and simulated data. 

Monte Carlo Simulations 

Simulations are performed within the general framework of the 
algorithm developed by Metropolis, et a l . (9). The Monte Carlo 
program randomly generates a large number of t r i a l configurations for 
a system of twenty-seven model molecules in a box of size appropriate 
to give the desired density. Periodic boundary conditions were 
employed to minimize wall effects. The program begins with an 
i n i t i a l configuration at a specified temperature and density. Sub­
sequent configurations are generated by moving one molecule at a 
time. After allowing the system to relax from i t s i n i t i a l state, the 
properties of each configuration are recorded and at the end of the 
simulation are averaged to yield equilibrium properties. I n i t i a l 
configurations for the low density simulations were obtained by 
placing the molecules on a la t t i c e with a l l torsional angles in the 
trans position. Higher density i n i t i a l configurations were obtained 
by compressing equilibrated low density configurations from previous 
runs. Starting with a low density system, t r i a l moves were performed 
unti l the molecule closest to the wall of the box was displaced 
toward the center. At this point the wall of the box was moved in 
toward the center resulting in a smaller container. This shrinking 
process was repeated un t i l the desired density was reached. 

The program uses four different methods to move the molecules: 
rigid translation of the center of mass, rigid rotation about a 
central bead, torsional rotation of an end bead, and a reptation 
technique known as the slithering snake (10). In the slithering 
snake moves, a new torsional angle is chosen for the chain, but 
rather than simply rotating into this state, the " t a i l " of the chain 
i s detached and reattached at the other end, creating a new torsional 
angle in the process. The net effect is a snake-like wiggling motion 
of the molecules along their axis throughout the box. 

After each attempted move, the new position of the chain is 
checked against the positions of the other molecules to insure that 
there is no overlap. In addition, i f a torsional rotation or slither 
results in an increase in the intramolecular energy of the t r i a l 
chain, the move is accepted with a probability Ρ equal to the 
Boltzman factor, Ρ = exp(-AE/kT), where ΔΕ is the change in the 
intramolecular energy caused by the move. Moves which result in a 
decrease in the intramolecular energy of the chain but do not result 
in overlap are always accepted. For the r i g i d translational and 
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rotational moves, the maximum displacement parameters were adjusted 
so that, on average, half of the t r i a l moves were accepted. 

Butane, octane and dodecane were simulated at a temperature of 
700K and at dimensionless densities ranging from 0.001 to 0.30. The 
relatively high temperature was chosen to encourage torsional 
rotation to gauche states and does not influence intermolecular 
interactions. The dimensionless density is defined to be the volume 
fraction of the box occupied by molecules and is given by 

where Ν is the number of molecules, η is the number of beads per 
chain, σ is the hard sphere diameter, and V is the volume. The hard 
sphere diameter, σ, was set equal to the bond length for these 
studies. While a more r e a l i s t i c value of σ would be larger, this 
"pearl necklace" model allows for a number of simplifications in 
theoretical treatments that larger diameter beads do not (11). 

For butane, two hundred thousand configurations were generated 
at each density, requiring approximately 45 minutes of CPU time each 
on the Princeton University IBM 3081. The computer time required to 
adequately generate and sample enough configurations to get reliable 
statistics increases with increasing chain length and/or density. 
For example, the generation of 75,000 configurations for dodecane 
required one hour and fifteen minutes. Equilibration generally 
required between twenty and forty thousand configurations. 

In order to test the r e l i a b i l i t y of the program, several runs 
were repeated using different starting configurations and strings of 
random numbers. Approximate error estimates were obtained by parti­
tioning each simulation into five to ten blocks in which subaverages 
of S i n t e r w e r e calculated. These subaverages were treated as 
independent samples contributing to the overall ginter^ 1")" Analysis 
of the standard deviation of the subaverages about the overall 
average indicates that the results are accurate to ^ 4%. 

The structure of the simulated f l u i d was examined by calcu­
lating the bead-bead intermolecular radial distribution function. 
The bead-bead intermolecular radial distribution function, g i n t e r ( r ) 
is proportional to the probability of finding two beads (methyl 
groups) on different chains separated by a distance r. Thus, 
g i n t e r ( r ) is a measure of the local density of the f l u i d . A value 
of ginter( r) > 1 implies that the local density i s greater than the 
bulk density and conversely, when g i n t e r ( r ) < 1» t* i e l° c al density is 
less than the bulk density. By monitoring the local density of the 
system of chains throughout the course of the simulation, ginter( r) 
can be found from 

Νηπσ' 
6V 

.3 
Ρ = 

'inter 4ΤΤΓ Ar 

<M> 

where <M> is the average number of beads located at a distance 
between r and r + Ar from a neighboring bead on a different chain. 
Correlations were monitored out to a maximum distance of one half the 
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box length in order to avoid the periodicity introduced at larger 
separations by the boundary conditions. In addition to describing 
the local structure of the fl u i d , g i n t e r ( r ) c a n ^ e u s e < * t o calculate 
the pressure and is the key to investigating other model potentials 
through perturbation expansions. 

Results 

The results for our Monte Carlo simulations are illustrated in 
Figs. 1 through 9. Figure 1 shows the intermolecular radial d i s t r i ­
bution function for butane at reduced densities of 0.01, 0.10 and 
0.30 as a function of r/σ where σ is the bead diameter. Also shown 
for comparison in the inset is the radial distribution function for a 
monatomic hard sphere fl u i d which illustrates the familiar peak and 
valley structure, reflecting the shells of nearest neighbors, 
followed by a gradual loss of correlations as ginter( r) decays to 1. 
This behavior i s characteristic of a l l monatomic fluids. What is 
striking about the lower-density butane results i s that 8 i n t e r ( r ) a t 

contact is significantly less than 1, indicating a relative absence 
of neighboring beads in the immediate vi c i n i t y of a central bead. 
The origin of this "correlation hole" can be seen by constructing a 
physical picture of what may be happening on a molecular level. 

A comparison of Figures 2a and 2b provides an explanation for 
the correlation hole. Figure 2a shows a cluster of monatomic mole­
cules surrounding a central (shaded) monatomic molecule. The mon­
atomic molecules are able to approach each other with relative ease 
resulting in the familiar shells of neighboring beads, f i r s t nearest 
neighbors, second nearest neighbors, and so on, shown in the inset on 
Fig. 1. In the case of chain molecules shown in Fig. 2b, neighboring 
beads on the same chain as the central (shaded) bead are not counted 
in computing intermolecular correlations. The presence of these 
adjoining beads, in turn, leads to a shielding effect which makes i t 
more d i f f i c u l t for surrounding chains to approach the central bead. 
The net effect of this shielding is the creation of an excluded 
volume surrounding each bead, the so called correlation hole. 

If this exclusion effect is indeed the correct explanation for 
the correlation hole, then one might expect that the value of 
g i n t e r ( r ) at contact (i.e. at r = σ) would increase with density as 
more and more chains are packed together. This trend is observed in 
Figure 1; at a reduced density of 0.3, ginter( r) n a s a n intercept 
greater than 1, and the curve begins to take on a shape reminiscent 
of a monatomic system. 

Another interesting feature of the local structure is i l l u s ­
trated in Figure 3 which show cusps in the g(r) curve for butane at 
σ = 0.25 occurring at distances r/σ = 2 and r/σ = 2.666. These cusps 
may be explained by recalling that discontinuities in the inter­
molecular potential result in corresponding discontinuities in the 
in the pair correlation function. For example, in the monatomic 
hard-sphere model, the discontinuity in the potential at r = σ 
results in a discontinuity in g(r) at r = σ. Likewise, in the mon­
atomic square well model, discontinuities in g(r) occur at r = σ and 
at r = ko, ko being the width of the well (12). For chains however, 
the contact between a bead such as the one labeled 1 in Figure 2b and 
the central bead can become an effective contact between the central 
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206 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

Fig. 1. Comparison of g i n t e r ( r ) ^ o r butane a t Ρ = 0.01, 0.15 and 
0.3 obtained from Monte Carlo simulations at 700K. The inset 
shows the radial distribution for a monatomic hard sphere system. 

Op J D - ® 
ÇrOm><£ 

(a) (b) 

Fig. 2. Local correlations for: (a) flui d of hard sphere mon-
atomics, (b) fl u i d of hard bead chains. 

1.0 

0.9 

0.8 

0.7 1.0 1.5 2.0 2.5 3.0 

Fig. 3. Intermolecular radial distribution function for butane 
at ρ = 0.25 predicted by Monte Carlo simulations. 
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b e a d a n d b e a d s 2, 3 o r 4 s i n c e t h e r i g i d b o n d a n g l e s a n d l e n g t h s w i l l 
n o t a l l o w b e a d s 2, 3 o r 4 t o a p p r o a c h t h e c e n t r a l b e a d a n y c l o s e r . 
D i s c o n t i n u i t i e s i n t h e p a i r p o t e n t i a l a t r > σ w i l l o c c u r w h e n e v e r 
b e a d s 2, 3, o r 4 become c o l i n e a r w i t h t h e c e n t r a l b e a d a n d b e a d 1 ( a s 
i s t h e c a s e f o r b e a d 2 i n F i g . 2b). T h e s e e f f e c t i v e c o n t a c t d i s ­
t a n c e s a r e r e f l e c t e d i n t h e c u s p s w h i c h a p p e a r i n t h e a n g l e - a v e r a g e d 
g i n t e r ( r ) a t r / σ = 2 f o r b e a d 2 and r / σ = 2.66 f o r b e a d 3. T h e 
e x i s t e n c e o f t h e s e c u s p s h a s b e e n p r e d i c t e d b y H s u , P r a t t , a n d 
C h a n d l e r u s i n g R I S M (13). 

F i g u r e 4 i l l u s t r a t e s t h e e f f e c t o f c h a i n l e n g t h o n g i n t e r ^ ) * 
R e s u l t s a r e shown f o r b u t a n e , o c t a n e and d o d e c a n e a t a r e d u c e d 
d e n s i t y o f 0.15. A l t h o u g h t h e o v e r a l l s h a p e s o f t h e c u r v e s a r e t h e 
same , t h e s i z e o f t h e c o r r e l a t i o n h o l e i s s e e n t o i n c r e a s e w i t h c h a i n 
l e n g t h . L o n g e r c h a i n s , w i t h more t o r s i o n a l r o t a t i o n a n g l e s , c a n c o i l 
a r o u n d t h e m s e l v e s t o a g r e a t e r e x t e n t t h a n s h o r t e r m o l e c u l e s l e a d i n g 
t o a n i n c r e a s e d d e g r e e o f s h i e l d i n g a n d a l a r g e r c o r r e l a t i o n h o l e . 

T h e e f f e c t o f t e m p e r a t u r e o n l o c a l s t r u c t u r e i s i l l u s t r a t e d i n 
F i g . 5, w h e r e g i n t e r ( r ) "*"s p l ° t t e d f ° r o c t a n e a t a d i m e n s i o n l e s s 
d e n s i t y o f 0.2 a n d t e m p e r a t u r e s o f 300K and 700K. A s m i g h t be 
e x p e c t e d w i t h a h a r d s p h e r e p o t e n t i a l , d e c r e a s i n g t h e t e m p e r a t u r e h a d 
v e r y l i t t l e e f f e c t o n t h e l o c a l s t r u c t u r e o f t h e f l u i d . T h u s , t h e 
s i m u l a t e d r e s u l t s a t 700K a r e p r o b a b l y i n d i c a t i v e o f t h e l o c a l 
s t r u c t u r e o v e r a f a i r l y b r o a d t e m p e r a t u r e r a n g e . I t i s i n t e r e s t i n g 
t o n o t e , h o w e v e r , t h a t t h e g i n t e r ( r ) a t 300K i s a l w a y s g r e a t e r t h a n 
a t 700K. A t 300K t h e c h a i n s a r e more l i k e l y t o b e i n a t r a n s c o n ­
f o r m a t i o n , m a k i n g i t e a s i e r f o r n e i g h b o r i n g c h a i n s t o a p p r o a c h e a c h 
o t h e r . One w o u l d t h e r e f o r e e x p e c t t h a t t h e m a g n i t u d e o f t h e t e m p e r a ­
t u r e e f f e c t , l i k e t h e s i z e o f t h e c o r r e l a t i o n h o l e , s h o u l d i n c r e a s e 
w i t h c h a i n l e n g t h . 

I n a d d i t i o n t o t h e s i m u l a t i o n s d e s c r i b e d p r e v i o u s l y i n w h i c h t h e 
b e a d d i a m e t e r was s e t e q u a l t o t h e b o n d l e n g t h , s e v e r a l s t u d i e s w e r e 
p e r f o r m e d t o t r y t o d e t e r m i n e t h e e f f e c t o f v a r y i n g t h e b e a d d i a m e t e r 
w h i l e m a i n t a i n i n g a c o n s t a n t v a l u e f o r t h e b o n d l e n g t h . I n o r d e r t o 
r e l a t e t o more r e a l i s t i c m o d e l s o f a l k a n e s , a v a l u e o f σ / £ 0 = 2.48 was 
c o n s i d e r e d . T h i s c o r r e s p o n d s t o a b o n d l e n g t h o f I = 1.53A a n d a 
h a r d s p h e r e d i a m e t e r o f 3.7889Â. T h i s h a r d s p h e r e d i a m e t e r was 
c h o s e n u s i n g a m e t h o d d e v e l o p e d b y V e r l e t a n d W e i s s (14) t o r e p r e s e n t 
a n e f f e c t i v e h a r d s p h e r e d i a m e t e r f o r a L e n n a r d J o n e s s y s t e m a t 298K. 

F i g u r e 6 c o m p a r e s g i n t e r ( r ) v s . r f o r o / l - 1 a n d o i l - 2.48 f o r 
o c t a n e a t a t e m p e r a t u r e o f 298K a n d a m o l e c u l a r number d e n s i t y N / V o f 
0.00333/Â = 0.631 g / c c . We now r e f e r t o t h e number d e n s i t y r a t h e r 
t h a n t h e r e d u c e d d e n s i t y b e c a u s e , i n t h e l a r g e r d i a m e t e r m o d e l , t h e 
amount o f o v e r l a p b e t w e e n b e a d s s e p a r a t e d b y t h r e e o r f o u r b o n d s 
v a r i e s w i t h t h e i s o m e r i c s t a t e . C o n s e q u e n t l y t h e v o l u m e o f t h e c h a i n 
c h a n g e s w i t h c h a i n c o n f o r m a t i o n . F o r a g i v e n number d e n s i t y , t h e 
b e a d d i a m e t e r t o b o n d l e n g t h r a t i o i s s e e n t o h a v e a l a r g e e f f e c t o n 
f l u i d s t r u c t u r e . T h e b u l k i e r m o l e c u l e s o c c u p y much more o f t h e 
a v a i l a b l e v o l u m e t h a n do t h e i r s k i n n y c o u n t e r p a r t s , l e a d i n g t o a 
t i g h t e r p a c k i n g o f c h a i n s . T h i s r e s u l t s i n a l a r g e r v a l u e o f 
g i n t e r ( r ) a t c o n t a c t , a s m a l l e r c o r r e l a t i o n h o l e , a n d a more s t r u c ­
t u r e d a p p e a r a n c e o f g i n t e r ( r ) ^ u e t o t ^ i e P r e s e n c e ° f n e i g h b o r i n g 
b e a d s . A t o / l - 1 t h e r e i s c o n s i d e r a b l y more v o i d s p a c e i n t h e b o x 
a n d c h a i n s t e n d t o r e m a i n r e l a t i v e l y f a r a p a r t b e c a u s e o f s t e r i c 
i n t e r a c t i o n s . T h e r e s u l t i n g g i n t e r ( r ) ^ s c n a r a c t e r i s t i c ° f a l ° w 
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208 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Fig. 6. Effect of bead diameter on g i n t e r ( r ) ^ o r o c t a n e a t a 

number density of 0.00333/Â3 at Τ = 298K. 
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9. H O N N E L L A N D H A L L Local Structure of Fluids 209 

density system, with only a small change in slope at a distance 
r = σ + £. These results indicate that thermodynamic properties of 
such model systems, particularly the pressure, w i l l be very sensitive 
to the size of the hard sphere diameter employed. 

In Fig. 7, g i n t e r ( r ) for butane at a temperature of 298K, 
reduced density of 0.25 and o/l = 1 is compared with the predictions 
of RISM, a computationally convenient integral theory for local 
structure (15). At values of r/σ > 1.3, good agreement between 
theory and simulation i s obtained, including the prediction of the 
cusps at r/σ = 2 and r/σ = 2.67. Near contact however, RISM predicts 
a tighter clustering of chains than is observed in our simulations. 
Since for hard chain systems the pressure is related to the value of 
the distribution function at contact, these two curves w i l l lead to 
different perdictions for the pressure. Similar discrepancies near 
contact between RISM predictions and simulation results have been 
observed in systems of dimers and trimers (16). In Figure 8, RISM 
and Monte Carlo results are compared for octane at a temperature of 
298K, reduced density of .05, and o/l ratio of one. Both simulation 
and theory predict a sizable correlation hole although the overall 
agreement is not as good as i t was for butane. Again the discrepancy 
between the two curves is largest near contact. 

Further insights into the local structure of short chain fluids 
can be gained by examining the individual correlations between beads 
at specific locations along the chain backbone. Figure 9 shows 
g ( l , l ) , g(l,2), and g(4,4) for octane at N/V = 0.0033/Â3 and 
o/l - 2.48, where the pairs of numbers refer to the locations of the 
two beads along the chain backbone, relative to the ends of the 
chains. For example, g(1,1) represents the distribution function for 
end beads on different chains, while g(4,4) refers to correlations 
between center beads on different chains. See Figure 10. Because 
the chains can be numbered from either end, beads 1 and 8, 2 and 7, 
3 and 6, and 4 and 5 are equivalent, resulting in only ten distinct 
bead-bead pairs comprising g ^ n t e r ^ * 

The distribution function g(1,1) has i t s greatest value at 
contact, as i t is relatively easy for two end beads to approach each 
other. However, at larger distances g(1,1) drops below one, since 
i f two "heads" of chains are adjacent, their " t a i l s " must be rela­
tively far apart. The (1,2) correlation has i t s maximum at a 
distance of a diameter plus a bond length, which corresponds to the 
distance that would be between beads 1 and 2 i f the two heads of the 
chain were in contact. Near contact, g(1,2) is less than one, since 
i t i s more d i f f i c u l t for a bead in the second position to approach 
another chain end without steric interference from i t s bonded 
neighbors. At larger distances g(1,2) begins to resemble g(1,1) 
since, i f beads 1 and 2 are in relative proximity, beads 7 and 8 are 
likely to be far apart. Steric hindrance plays the biggest role in 
the (4,4) correlation. Near contact g(4,4) is much less than one, 
implying that the centers of chains rarely come into contact. At 
larger values of r however, g(4,4) has a relatively broad peak. This 
is because the distances between equivalent pairs (4,4), (4,5), 
(5,4) and (5,5) are li k e l y to be about the same, unlike the pairs 
contributing to g( l , l ) and g(l,2). The behaviors of the seven 
remaining correlation functions l i e in between that of g(1,2) and 
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l.5r-

σ> 0.5 

Fig. 7. Comparison of RISM and Monte Carlo predictions of 
g i n t e r ( r ) for butane at ρ = 0.25, o/l = 1, Τ = 298K. Solid curve 
is RISM, boxes are simulation results, 
for r/o>2. 

The two curves coincide 

1.5 

1.0 - -

0.5 - -

xlO 

Fig. 8. Comparison of RISM and Monte Carlo predictions for 
octane at ρ = .05, a/I = 1, Τ = 298K. Solid curve is RISM, boxes 
are simulation results. 
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0I 1 ! 1 1 1 
Ο 0.5 1.0 1.5 2.0 2.5 

r /σ 
Fig. 9. Comparison of g ( l , l ) , g(l,2), and g(4,4) bead correla­
tions for octane at a number density of 0.00333(1/Â3), all = 2.48 
Τ = 298K. 

Fig. 10. Location of individual beads along chain backbone.  P
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212 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

g(4,4). Each has a contact value l e s s than one, which, when super­
imposed, leads to the c o r r e l a t i o n hole seen i n ginter( r)« 

Conclusions and Discussion 

Monte Carlo simulation has been used to obtain the intermolecular 
r a d i a l d i s t r i b u t i o n f u n c t i o n f o r systems of i n t e r a c t i n g short chain 
molecules. At low and moderate d e n s i t i e s , the value of g i n t e r ( r ) 
near contact i s s i g n i f i c a n t l y l e s s than one, i n d i c a t i n g the presence 
of an excluded volume surrounding each bead. The existence of t h i s 
" c o r r e l a t i o n hole" appears to stem from a s h i e l d i n g e f f e c t associated 
with neighboring beads along the same chain backbone. An examination 
of the i n d i v i d u a l bead-bead c o r r e l a t i o n s comprising g i n t e r n ) i n d i ­
cates that i n t e r i o r beads along the chains are much more h e a v i l y 
shielded than beads near the chain ends. 

The s i z e of the c o r r e l a t i o n hole i s seen to increase with 
i n c r e a s i n g chain length and decrease with i n c r e a s i n g density. One 
would expect the c o r r e l a t i o n hole to be quite small f o r dimers and 
trimers. L o c a l s t r u c t u r e i s str o n g l y dependent on the hard sphere 
diameter. Preliminary comparisons with RISM c a l c u l a t i o n s show over­
a l l good agreement except near contact. 

C a l c u l a t i o n s are c u r r e n t l y underway to more thoroughly i n v e s t i ­
gate the e f f e c t of bead diameter on l o c a l s t r u c t u r e as w e l l as to 
more c l o s e l y examine the i n d i v i d u a l end-end, end-middle, and middle-
middle c o r r e l a t i o n s which comprise g i n t e r ( r ) * Simulations are being 
performed at higher d e n s i t i e s and at longer chain lengths i n order to 
more f u l l y i n v e s t i g a t e the e f f e c t of density and chain length on 
l o c a l s t r u c t u r e . We are also t r y i n g to develop simple c o r r e l a t i o n s 
which summarize the e f f e c t of varying molecular parameters on the 
r a d i a l d i s t r i b u t i o n f u n c t i o n . 

F i n a l l y , we should point out that due to our r e l a t i v e l y small 
sample s i z e and r e l a t i v e l y short runs the r e s u l t s presented i n t h i s 
paper should be considered suggestive rather than conclusive. More 
extensive simulations w i l l be reported i n a future paper. 

Acknowledgments 

The authors would l i k e to thank the Gas Research I n s t i t u t e (Grant No. 
5082-260-0724) and the Petroleum Research Fund (Grant No. 14851-AC5) 
fo r supporting t h i s research. Ms. D. C h i r i c h i l l a i s g r a t e f u l l y 
acknowledged f o r her help i n performing the RISM c a l c u l a t i o n s . The 
authors a l s o wish to thank Dr. L. P r a t t , E. Helfand, and J . Curro f o r 
h e l p f u l discussions and suggestions. 

Literature Cited 

1. Donohue, M. O.; Prausnitz, J. M. AIChE J. 1978, 24, 849. 
2. Sanchez, I.; Lacombe, R.; J. Chem. Phys. 1976, 80, 2352, Lacombe, 

R.; Sanchez, I., J. Chem. Phys. 1976, 80, 2568; Simha, R., 
Macromolecules, 1977, 10, 1025. 

3. DeVos, E.; Bellemans, Α., Macromolecules 1975, 8, 651; ibid, 
1974, 7, 812. 

4. Curro, J. G., J. Chem. Phys. 1976, 64, 2496. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

9

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



9. HONNELL AND HALL Local Structure of Fluids 213 

5. Bishop, M.; Ceperley, D.; Frisch, H. L.; Kalos, M. H., J. Chem. 
Phys. 1980, 72, 3228. 

6. Ryckaert, J.-P.; Bellemans, Α., Chem. Phys. Lett. 1975, 30, 
123; Faraday Soc. Disc 1978, 66, 95. 

7. Weber, Τ. Α., J. Chem. Phys. 1979, 69, 2347; 1979, 70, 4277. 
8. Flory, P. J. "Statistical Mechanics of Chain Molecules", John 

Wiley & Sons, 1969, pp. 55-56. 
9. Metropolis, N.; Metropolis, Α.; Rosenblush, M.; Teller, Α.; 

Teller, E.; J. Chem. Phys. 1953, 21, 1087. 
10. Wall, F. T.; Mandel, P., J. Chem. Phys. 1975, 63, 4593. 
11. Curro, J. G.; Blatz, P. J.; Pings, C. J., J. Chem. Phys. 1969, 

50, 2199. 
12. Nelson, P. A. Ph.D. Thesis, Princeton University, New Jersey, 

1967. 
13. Hsu, C. S.; Pratt, L. R.; Chandler, D., J. Chem. Phys. 1978, 

68, 4213. 
14. Verlet, M.; Weis, J., Phys. Rev. A 1972, 5, 939. 
15. Ladanyi, Β. M.; Chandler, D., J. Chem. Phys. 1975, 62, 4308. 
16. Gray, C. G.; Gubbins, Κ. E. "Theory of Molecular Fluids"; 

Oxford: Clarendon Press, 1984, Vol. I, pp. 400-403. 
RECEIVED November 18, 1985 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
00

9

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



10 
Local Composition of Square-Well Molecules 
by Monte Carlo Simulation 

R. J. Lee and K. C. Chao 

School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 

Local composition in mixtures is determined for square-well molecules 
by means of Monte Carlo simulation at 29 states from dilute gas to 
dense liquid at a wide range of temperature for divergent energies of 
interactions and varying compositions. The results are compared with 
models in the literature, and a new local composition model is pro­
posed. 

Local composition about a molecule in a mixture can differ from the total bulk com­
position as a result of divergent energies of interaction and molecular size differences. 
The difference between local composition and bulk composition reflects molecular 
segregation and preferential orientation. Debye and Huckel ( ! ) developed their 
ionic solution theory by recognizing the local composition of ions. Wilson ( 2 ) postu­
lated the dependence of partial entropy on local composition. Whiting and Prausnitz 
( 3 ) based their mixture thermodynamics on local composition. The occurrence of 
local composition is fundamental to thermodynamics and transport properties of 
mixtures. 

Local composition cannot be determined by experiments in the laboratory, but 
can be simulated by computer calculations. Nakanishi and co-workers ( A£J_ ) and 
Hoheisel and Kohler ( 8 ) obtained local composition in mixtures of Lennard-Jones 
molecules by means of molecular dynamics simulation. In this work we determine 
local composition of square-well molecules by means of Monte Carlo simulation. 
Square-well molecules offer the special advantage of an unambiguously defined neigh­
borhood in which local composition occurs. We carry out calculations to states pre­
viously unexplored by extending to wide ranges of density, temperature, bulk compo­
sition, and energies of interaction. 

0097-6156/ 86/ 0300-0214$06.00/ 0 
© 1986 American Chemical Society 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

0

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



10. L E E A N D C H A O Local Composition of Square- Well Molecules 215 

Model and Method 

The system investigated in this work is a binary mixture in which molecules interact 
via the square-well potential, 

oo 
ÎTjj < Γ < K<7jj 

K^j < r 

(1) 

where φ χ ] is the potential energy between molecules i and j at center-to-center dis­
tance r; e is the well depth; σ is the diameter and Κ is the energy well width factor. 
In this work Κ = 1.5, and all σΧ] are equal; the investigation is directed at energy 
effects. 

The number of molecules j at a distance r to r + dr from a molecule i is given by 

dz^ = 4πρβ}]{τ)τ2άτ ^ 

where p^ is the number density of molecules j and g is the radial distribution func­
tion. The local composition of j at r from i is therefore 

Σ PkSki(r) 
k 

(3) 

where χ denotes a mole fraction. 

We have obtained the total number of molecules j in the energy well of i , 

Κσ 

Zji = 4πΡ} j gji(r)r2dr (4) 

from which we have evaluated the average local composition 

Κσ 

Pi / S j i ( r ) r 2 d r 

ο 
Κσ 

Σ Pv / gki(r)r2dr 

(5) 

In this work we report the average local composition as the local composition for 
brevity and in agreement with the usage of previous investigators ( 4̂ 8 ). We have 
also obtained gjj (r) and Xjj (r) which we will report elsewhere. 
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The upper limit of integration of Equations 4 and 5 is denned without ambiguity 
for the square-well molecules, while there is an element of arbitrariness in setting the 
upper limit for continuous potentials such as the Lennard-Jones. 

We simulated Equations 2 through 5 with the canonical ensemble method. The 
procedure of Metropolis et al. ( 9 ) was applied to 108 molecules in a central cell 
with periodic boundary conditions and following the minimum distance convention. 
The procedure was initiated by randomly displacing molecules from a regular face -
centered cubic lattice. About 1.0 χ 105 initial configurations were discarded for 
dilute gases. Up to 1.7 χ 106 initial configurations were discarded for high density 
liquids. The total Markov chain varied from 1.2 χ 106 configurations for a dilute gas 
to 4.5 χ 106 for a dense liquid. About 10 minutes of computing on a CYBER 205 
was required to generate 1 million configurations. 

From the Monte Carlo simulation we obtain the radial distribution function, 

g ( r ) = 3 ( N*>) (6) 

with 

Γ λ = Γ λ - ι + i r 

r = y ( r \ + Γχ-ι) 

where ^Njj ^ is the ensemble average number of molecular pairs j i within the Xth 
distance interval from Γχ-j to Γχ. Equation 5 becomes 

= (Ν^Κσ,) ) 
" Σ Nk,(K<Tki) 1 ' 

k 

where ^Ν^(Κσ^ is the ensemble average number of molecular pairs j i at distances 
of separation up to Κσ^ and is obtained by summing the ^Njj^ . 

Results of Monte Carlo Simulation 

Pure square-well fluid pressure, internal energy, and radial distribution function were 
generated by our computer programs at a large number of states and compared with 
previous results by Alder et al. ( 10 ), Henderson et al. ( JT ) and Smith et al. ( 12 ). 
By setting Κ = 1 for some molecules in our computer programs we simulated mix­
tures of hard sphere and square-well molecules and compared the results with those 
of Alder et al. ( 13 ). Comparison of our results ( 14 ) with these previous studies 
enabled us to check out our programs. 
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10. L E E A N D C H A O Local Composition of Square- Well Molecules 217 

Square-well mixtures have not been simulated before. We compared our results 
with Lennard-Jones mixtures obtained by Nakanishi et al. ( 6 ) at two comparable 
states. Table I shows that comparable local compositions were obtained. 

Our simulated local compositions x n , x 2 2 and number of nearest neighbors ζυ z2 

in square-well fluids are presented in Table II, where ix is given by zji- Four vari-
j 

ables — density, temperature, interaction factors, and composition — are varied suc­
cessively to generate the results of Table II. Density in reduced form ρ* ( = ρσζ) 
varies from 0.01 to 0.8; reduced temperature T* ( = kT/e n ) from 1.0 to 4.0; compo­
sition from 0.25 to 0.75 mole fraction; unlike interaction factor E x ( = e 12/̂11) from 
1.0 to 10.0 and alike interaction factor E 2 ( = ^Λη) from 2.0 to 10.0. The interac­
tion factor ranges are sufficiently wide to include non-polar (except the quantum 
gases), associating, and hydrogen bonding energies. 

The 29 states in Table II are made up of four sections in each of which one vari­
able is systematically varied while all others are held constant. In section 1 consist­
ing of states 1 to 9, density is the variable. At the lowest density of state 1 which is 
a dilute gas, there is the greatest departure of local composition from the bulk. As 
density increases, local composition departs less and less from the bulk and tends to 
approach it as a limit. 

In section 2, consisting of states 10 to 15, temperature is the variable. Two sub 
sections of three states each show the effect of temperature at a different density. 
The effect of increasing temperature is to homogenize local composition toward the 
bulk. This is the most expected part of our results. 

In section 3, consisting of states 16 to 22, the interaction factors are varied. In all 
these states E 2 > 2.0, and x 2 2 is always greater than x n . The tendency to form 
alike pairs of greater energy is favored. For Lorentz-Berthelot mixtures with 
ei2 = (ene22)1^2 both x n and x 2 2 increase with increasing alike interaction factor E 2 . 
The states with a constant E 2 ( = 2.0) show that x n and x 2 2 decrease as the unlike 
interaction factor Ej increases. 

In section 4, consisting of states 23 to 29, bulk composition is changed. Local 
composition is shown to be strongly dependent on bulk composition. Deviation of 
local composition from bulk composition is predominantly on the part of the dilute 
component. 

In addition to the variation of one single variable within a section of Table II, the 
effect of simultaneous variation of two variables can be ascertained upon suitably 
scanning the table entries in different sections. Higher effects can be similarly dis­
cerned. The entire simulated results should be considered in the development of a 
new model. 
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Comparison with Previous Models 

Wilson ( 2 ), Gierycz and Nakanishi (GN) ( 7 ), and Hu, Ludecke, and Prausnitz 
(HLP) ( 15 ) have proposed models of local composition. The models are examined 
with our simulated results. 

Wilson expressed local composition by 

J 1 Σ Xk exp(-Xki/kT) 
k 

Gierycz and Nakanishi's local composition is given by 

_ XjAjBjjexpt-aGji/kT) (9) 
xji xjexp(-aGii/kT) 

Aj - (σησ22 + ^ ϋ σ22 ) / 2 σ ι 22 

a = 0.4 

Hu, Ludecke, and Prausnitz's model is 

(10) 

Bji = exp[a VG„G22(1 - G n G 2 2 / G ? ) / k T ] 

(12) 

x,z t + x 2 z 2 - [(x^! + x 2z 2) 2-4xix 2ziz 2r 2il 1 / 2 (13) 
2x 1z 1r 2 1 

j ά 
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1 - exp(n/kT) 
x l l ,hS x 22,hS 

x12,hSx21,hS 

(15) 

Ω «2l(r«) + « 12(Γΐ2) ~ Cll(rii) " 
(16) 

x J c r | / E k χ ^ 
(17) 

a 0.60 - 0.58p' ,•0.1856 (18) 

Figure 1 shows the substantial local composition variation with density of states 
1 to 9 of Table II. Both the Wilson and the G Ν models are independent of density 
and completely miss this variation. The Wilson model exactly represents the low 
density limiting behavior of LC according to Chao and Leet ( 16 ). The limiting 
behavior is confirmed by the simulated data. 

Figure 2 shows the variation with temperature of our simulated data and the 
models at two liquid-like densities. For the relatively small energy difference shown 
in Figure 2A the HLP model agrees better with the simulated data than the other 
two models. With larger E t ( = f 1 2 / i n ) shown in Figure 2B the HLP model tends to 
be low for both x n and x 2 2

 a n d the deviation becomes larger at lower temperature. 
The G Ν model gives good results for x 2 2

 D U t l ° w χ ι ι · Wilson's model departs widely 
from data for these high density conditions. 

Figure 3 shows the effect of unlike energy factor E1 while ρ*, T*, and E 2 are kept 
constant. For low Ej the HLP equation stays closer to the data than both the Wil­
son and the G Ν equations. All equations become worse with increasing E ^ 
apparently due to the Boltzmann exponential factor lending too much weight. The 
best results of the GN equation are attributable to the use of a factor of a = 0.4 to 
reduce the weight of the Boltzmann term. 

Figure 4 shows the effect of bulk composition while /?*, T*, E 1 ? and E 2 are kept 
constant. All three models are in reasonable agreement with the data in part A of 
Figure 4 where the interaction factor values are not large. The HLP equation 
appears particularly good. However, the equations fail at larger values of the 
interaction factors as shown in Figure 4B. 
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Table I 
Local Compositions in 

Square-Well and Lennard-Jones Fluids 

sw LJ SW LJ 

T* 1.5 1.44 1.5 1.43 
* 

Ρ 0.7 0.716 0.8 0.75 
Ει 1.414 1.414 2.0 2.0 
E 2 2.0 2.0 2.0 2.0 
* i 0.5 0.5 0.5 0.5 
X l l 0.491 0.492 0.438 0.449 
X 2 2 0.518 0.518 0.458 0.465 

.6000 

.5500 

.5000 

.4500 

.4000 

.3500 

-
MC DATA 

I 1 I 

EQUATIONS) 
HILS0N MODEL 
6N MODEL 
HLP MODEL 

ι 1 1 1 1 1 
.000 .200 .400 χ .600 .800 1.000 

Figure 1. M 

Local Composition as a Function of Density and Comparison of MC Data with Four 
Models at T = 2.0, Et = 1.414, E 2 = 2.0, and xt = 0.5. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

0

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



L E E A N D C H A O Local Composition of Square- Well Molecules 

Table II 
Simulated Number of Nearest Neighbors and Local 

Composition in Square Well Mixtures 

State Τ* ρ* E 2 X\ Ζχ z2 x t l x 2 2 

1 2.0 0.01 1.414 2.0 0.5 0.18 0.23 0.447 0.571 
2 0.05 0.89 1.14 0.449 0.572 
3 0.1 1.74 2.28 0.447 0.576 
4 0.2 3.27 4.13 0.456 0.568 
5 0.35 5.24 6.26 0.466 0.553 
6 0.4 5.93 6.92 0.476 0.552 
7 0.5 7.28 8.18 0.482 0.539 
8 0.7 10.40 10.86 0.499 0.520 
9 0.8 11.78 12.17 0.500 0.516 

10 1.5 0.7 1.414 2.0 0.5 10.62 11.23 0.491 0.518 
11 3.0 10.20 10.52 0.500 0.516 
12 4.0 10.09 10.31 0.497 0.508 
13 1.0 0.8 2.0 2.0 0.5 12.60 13.28 0.420 0.450 
14 1.5 12.19 12.64 0.438 0.458 
15 4.0 11.56 11.77 0.470 0.480 

16 2.0 0.8 1.0 2.0 0.5 11.65 12.10 0.579 0.595 
17 2.0 2.0 11.97 12.30 0.448 0.462 
18 2.0 4.0 11.75 12.95 0.563 0.603 
19 3.0 10.0 11.48 14.58 0.607 0.691 
20 5.0 2.0 12.71 13.02 0.363 0.378 
21 10.0 2.0 13.39 13.83 0.315 0.337 
22 10.0 10.0 12.72 15.48 0.364 0.477 

23 2.0 0.7 10.0 2.0 0.25 14.05 11.59 0.074 0.626 
24 0.333 13.30 11.88 0.145 0.521 
25 0.50 12.38 12.73 0.298 0.318 
26 0.67 11.48 13.83 0.498 0.167 
27 0.75 11.11 14.25 0.620 0.111 
28 2.0 0.8 2.0 2.0 0.25 12.10 12.25 0.189 0.733 
29 0.75 11.84 12.38 0.726 0.216 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

0

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



222 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

« ~ ι I 1 « 1 1 1 1 
.000 1.500 * 3.000 4.500 .000 1.500 * 3.000 4.500 

Figure 2 . T T 

Local Composition as a Function of Temperature and Comparison of MC Data with Four 
Models. (A): p* = 0.7, Ex = 1.414, E 2 = 2.0, and x1 = 0.5. (B): p* = 08, Ex = 2.0, 
E 2 = 2.0, and x1 = 0.5. 

' .00 2.00 4.00 6.00 6.00 10.00 

Figure 3. 
Local Composition Changing with El for Four Models at p* — 0.8, T* = 2.0, 
E 2 = 2.0 and xx = 0.5. 
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. 000 . 250 .500 . 750 1.000 

*1 

. 000 . 250 .500 . 750 1.000 

X1 
Figure 4. 
Local Composition Changing with Bulk Composition for Four Models. (A): p* — 0.8, 
T* = 2.0, E1 = 2.0, and E 2 = 2.0 (B): p* - 0.7, T* = 2.0, Ex = 10., and 
E 2 = 2.0. 

Equation(19); Wilson Model; GN Model; HLP 
Model. 
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The comparisons show that the Wilson model is correct at the low density limit. 
Being density independent, it diverges from data at all other densities. The GN 
model gives good results at a liquid-like density. Though density independent it is 
much improved over the Wilson model. The HLP model is density dependent and 
displays the qualitative trend of the data at varying density, temperature, and ener­
gies. Quantitatively the HLP model diverges from the data in density effect, and 
over estimates the effect of high energy factors. 

A New Model 

The comparisons of the last section suggest the need for a new model for the 
representation of the MC data. We propose a new local composition model as fol­
lows, 

χ = Xjexpfrjifrji " cjî)/kT] 
J l S*kexp[7ki(*ki " €k°i)/kT] 

k 

where 

= + (1 - e) f j J < 2 0 ) 

and α is density dependent and is given by 

a = 1 + 0.1057/ - 2.1694/2 + 1.7164/>3 ^ 

For Lorentz-Berthelot mixtures 7μ = 1, Equation 19 reduces to the Wilson model as 
p—*0 and a—*1. 

Comparison of the new model with data is reported in Figures 1 to 4. The den­
sity dependence of local composition is shown in Figure 1. Quantitative representa­
tion of the data in the entire composition range studied is achieved with the new 
model and the low density limit is correctly approached. 

The temperature dependence of local composition is shown in Figure 2 where the 
new model agrees with data better than the other models. Figure 3 shows that the 
new model brings about a substantial improvement at high values of Ex . In Figure 
4A all models show good agreement with data at changing bulk composition when 
the energy differences are not excessive. 

Figure 4B shows a case of large energy difference where the new model holds out 
better than the others. The weight of the Boltzmann factor is reduced in the new 
model to achieve the improved result but the reduction tends to be on the high side. 
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Conclusion 

1. Local composition in square-well fluid mixtures has been simulated with the 
canonical ensemble Monte Carlo method. 

2. Local composition is found to depend on the state of the system and local com­
position values are determined for 29 states at various density, temperature, 
interaction energy, and bulk composition. 

3. The predictions of three models are tested with the simulated results. The Wil­
son and G Ν models do not show any density dependence. The HLP model does, 
but underpredicts the dependence. 

4. A new model is proposed for improved representation of local composition. 
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Glossary of Symbols 

Ej = € 1 2/f ii, unlike interaction factor 

E 2 = ^22/cn> alike interaction factor 

Gjj = energy parameter in G Ν model 

g = radial distribution function 

Κ = energy well width factor 

k = Boltzmann's constant 

ensemble average number of molecular pairs j i within the Xth 
distance interval 

r intermolecular separation 

r , r diameter of the first and second shells respectively 

Τ temperature 

T* k T / f n , reduced temperature 

bulk composition of molecule i 

local composition of molecule j around molecule i 

coordination number of molecule i 

number of molecules j around a central molecule i 

a parameter in GN and HLP model 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

0

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



226 EQUATIONS O F STATE. T H E O R I E S A N D APPLICATIONS 

7 = energy parameter in the new model 

e = well depth of square-well potential 

Xjj = energy parameter in Wilson's equation 

p- = number concentration of molecule j 

ρ* — ρσ3, reduced density 

σ = hard-core diameter 

îj = potential energy between molecules i and j 
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11 
Equations of State for Nonspherical Molecules Based 
on the Distribution Function Theories 

S. B. Kanchanakpan1, L. L. Lee1, and Chorng H. Twu2 

1School of Chemical Engineering and Materials Science, University of Oklahoma, 
Norman, OK 73019 

2Simulation Science, Inc., Fullerton, CA 92633 

Based on the distribution function theories of the 
liquid state, we are able to derive an expression 
for the contribution from the attractive energy to 
the pressure of anisotropic fluids. We have adopted 
the nonspherical square-well potential with Gaussian 
overlap to model moderately anisotropic molecules. 
The repulsive pressure is shown to be given essen­
tially by the underlying hard core repulsion and is 
represented, for example, by the Nezbeda equation of 
state for hard convex bodies. It is found that the 
background correlation function, y(12), plays a 
major role in the determination of attractive pres­
sures. We exhibit the cluster series for this 
correlation function and derive therefrom a resum-
mat ion formula for the pressure. To obtain adequate 
description of real fluid properties, a two-step 
form of the square-well potential as proposed by 
Kreglewski is adopted. The final equation consists 
of three terms, clearly separated into the hard core, 
repulsive and attractive parts. It is used to corre­
late the P-v-T and thermal behavior of some 69 sub­
stances, including hydrocarbons, ketones, alcohols, 
amines and polar solvents. For pressures up to 69 
MPa, the errors in density and vapor pressure pre­
dictions are, with few exceptions, within 1%. 
Comparison with similar equations of state, such 
as the Peng-Robinson and Mohanty-Davis equations, 
shows that the present equation is uniformly 
superior. 

The use of hard convex molecules as a reference f l u i d for real fluids 
has received much attention lately, especially in perturbation theory 
formulations (1-4) dealing with nonspherical molecules. This i s due 
to the recognition that in liquids the structure i s essentially 
determined by the repulsive part of the molecular interaction poten­
t i a l . On the other hand, the attractive interaction makes a major 

0097~6156/86/0300-0227$06.75/0 
© 1986 American Chemical Society 
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contribution to the energy of the liquid (Note: the energy derived 
from the hard convex bodies, HCB, i s zero, and is therefore inade­
quate for thermal properties.) In order to achieve a complete de­
scription of the thermodynamics of the liquid state, both contri­
butions, attractive as well as repulsive, should be considered. 

Beret and Prausnitz (5) proposed the perturbed hard chain (PHC) 
equation of state for long chain hydrocarbons. It contained a 
modified hard sphere term of repulsion and a square well term for 
attractive pressure. It was applied to hydrocarbons such as methane, 
ethane, n-decane and eicosane as well as molecules involving polar 
forces, such as carbon monoxide and water. Later the approach has 
been extended (Donohue and Prausnitz (6) 1978, Gmehling and Prausnitz 
(7) 1979) to mixtures and highly polar substances such as methanol, 
ethanol, acetone and acetic acid by using a chemical theory. The 
BACK (Boublik-Alder-Chen-Kreglewski) equation proposed by Chen and 
Kreglewski (8) and Simnick, Lin and Chao (9) was based on the 
Boublik (10) equation of hard convex bodies. It has been success­
ful l y applied to fluids such as methane, neopentane and hydrogen 
sulfide. In these formulations the attractive contribution to the 
pressure was expressed in a 24-parameter temperature-density double 
power series originally given by Alder, Young and Mark (11). This 
attractive term was later modified to a 21-parameter or a 10-
parameter series. These series, however, are cumbersome to use and 
do not reveal the underlying physical basis. 

We propose here a theoretical formulation of the attractive 
contributions to the equations of state based on the distribution 
function theories of liquids and to derive equations that are appli­
cable to moderately anisotropic fluids. First we use the Gaussian 
overlap potential of Berne and Pechukas (12) to represent aniso­
tropic forces. We note that a continuous potential (see Figure 1) 
can be approximated by an η-step potential. In the limit η—> oo , 
the original potential i s recovered. The validity of this repre­
sentation is closely associated with the Riemann integration theory 
in real analysis. Secondly, we apply the cluster theories of 
correlation functions for the derivation of the attractive pressure. 
The approach is therefore different from the perturbation approach. 
These developments w i l l be presented in Sections 2 and 3. 

Earlier studies on rigid nonspherical molecules were based on 
the so-called scaled particle theory (13) (SPT). This theory made 
use of the fact that the chemical potential of an N-body system i s 
related to the energy required to create a cavity in the f l u i d in 
order to accommodate an additional particle. As developed by Reiss 
et a l . , (13) SPT contains certain approximations. Thus the results 
of the theory are not exact. Gibbons (14,15) f i r s t applied this 
theory to hard convex bodies and obtained an equation of state of 
the form 

P/pkT = l/(l-y) + 3ay/(l-y) 2 + 3a 2y 2/U-y) 3 (1) 

where y is the packing fraction, y=pb, b i s the volume of a single 
hard convex molecule, α is a ratio of geometries of the HCB, 

α = rs/3b (2) 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



11. KANCHANAKPAN ET AL. Nonspherical Molecules 229 

where r is the mean radius of curvature, and s the surface area of 
the HCB molecule. For different shapes, the mean radius of curva­
ture is given by different geometric formulas. As an example, for 
spherocylinders, the geometric factors are 

r = R + L/4, s = 4πϊ12 +2πί&, and b = (4/3)πϊ13 -HrR2L (3) 

where R i s the radius of the hemispheres and L the bond length be­
tween the centers of the hemispheres. For spheres, r = R, the radius 
of the hard sphere (HS). 

Equation 1 is accurate at low densities but deteriorates at 
high densities. Thus i t must be improved. Boublik (10,16) proposed 
a modified form of (1) for prolate spherocylinders that reduces to 
the Camahan-Starling (17) equation at a=l: 

P/pkT = l/(l-y) + 3ay/(l-y) 2 + 3 a 2 y 2 / ( l - y ) 3 - a 2 y 3 / ( l - y ) 3 (4) 

Nezbeda (18) upon considering the v i r i a l coefficients, proposed 
an alternative resummation formula 

P/pkT = [ l+(3a-2)y+(a 2 +a-l)y 2 -a(5a-4)y 3]/(l-y) 3 (5) 

which, in comparison with simulation results for spherocylinders, is 
more accurate than Equation 4, especially at high densities. 

These equations have been developed for the specialized geom­
etry of spherocylinders. In later studies (Nezbeda and Boublik (19, 
20) on fused diatomic hard spheres, i t was found that Equation 4 re­
mains applicable i f one substitutes for the dumb-bell an equivalent 
spherocylinder that has the "neck" f i l l e d in. Thus the fused spheres 
can also be described by the equations developed for hard convex 
bodies. A recent study [Wojcik and Gubbins (21)] showed that 
Equation 4 is also applicable to mixtures of hard dumb-bells. Nez­
beda and Boublik (22) (see also Nezbeda, Smith and Boublik (23), 
Nezbeda, Pavlicek and Labik (24), Boublik (25)) classified hard con­
vex bodies into three major types (i) linear molecules (e.g. prolate 
spherocylinders, linear fused hard spheres and diamonds), ( i i ) disk­
like molecules (e.g. oblate spherocylinders) and ( i i i ) cubes. They 
found that Equation 4, derived for prolate spherocylinders, i s 
accurate for linear molecules, and reasonable for disk molecules, 
but is less satisfactory for cube-like molecule. We shall adopt the 
Nezbeda Equation 5 here to describe the harsh repulsive forces in 
real molecules not of the cubic shape. 

Theoretical Developments 

We formulate our approach in terms of a square-well (SW) potential. 
The SW potential has been extensively studied (for a review, see 
Luks and Kozak (26) and references contained therein). This is a 
simple potential embodying the essential features of the interaction 
forces in real molecules, i.e., the excluded volume and attractive 
forces. For nonspherical molecules, the orientational variations of 
the pair interaction should also be accounted for. One class of 
angle-dependent potentials that can be generated from simple spheri­
cal ones i s the so-called Gaussian overlap model of Corner (27) and 
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230 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Berne and Pechukas (12). They built the molecular anisotropy into 
the potentials by incorporating angle dependence into the potential 
parameters. Therefore a Gaussian overlap model for the square-well 
(GOSW) potential i s , (See Figure 2) 

u(12) =oo, r <ά(ω±ω2) (6) 

-εζογ^), ά(ω1ω2)< r ^ ( ω ^ ) 

0, r > λ ί ω ^ ) 

where the potential parameters, d, λ and ε are functions of relative 
orientation, i.e. the Euler angles and ω 2· We note that although 
Equation 6 is a simple model, i t can be generalized to more elabo­
rate potentials by using multistep square wells. For example, the 
spherical Lennard-Jones potential depicted in Figure 1 can be 
approximated by an η-step spherical square well potential, particu­
la r l y as n~* oo . Thus by increasing the number of steps, one can 
approximate a variety of smooth potentials. The strengths of inter­
action can also be approximated by the heights of the flights (which 
yield impulsive forces at the distances of discontinuities). The 
same procedure can be applied to angle dependent smooth potentials 
when the same angle dependence is reproduced by the Gaussian overlap 
parameters. These multistep SW have been applied to simulate hydro­
gen bonding in water (Dahl and Andersen (28)) and vibrating dumb-bells 
(Chapela and Martinez-Casas (29)> Kincaid, S t e l l and Goldmark (30) 
have shown that with a positive shoulder at λ^, while setting a l l 
attractive energies, ε-̂ =0, the f l u i d can support a c r i t i c a l point 
(see also Kreglewski (31)). For the purpose of this study, we con­
sider a two-step SW potential consisting of a positive shoulder and 
a negative well (Figure 3). 

u(12) = oo, r < dtoy^) (7) 

ε 1(ω 1ω 2), d C c y ^ r ^ ( ( γ ^ ) 

-ε 2(ω χω 2), λ ^ ω ^ ω ^ r ^ ( ω ^ ) 

0, r > λ
2^ ω1 ω2^ 

The v i r i a l equation for anisotropic molecules in s t a t i s t i c a l 
mechanics i s given by [Hansen and MacDonald (32)]. 

P/pkT = 1 - p/6J*dr 4 i T r 2 <r (3&u(12)/3r)g(ra^ 2)> 1 2 

indicate 
2 Jdo^ d« 

(8) 

where the angular brackets <·> indicate the angle average 

<...>12 = 1/(4π) 2 Ιάω 1 άω 2 (...) (9) 

(4π)" 2 / d9 1 sin6 1 άφχ d6 2 sin0 2 àj>2 (...) 
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11. K A N C H A N A K P A N E T A L . Nonspherical Molecules 231 

Figure 1. Approximation of the Lennard-Jones potential by a six-
step square-well potential. Note that there are three repulsive 
shoulders and three attractive wells following thereafter. The 
repulsive step acts effectively as a temperature dependent hard core 
dimension commonly used in perturbation theories for soft repulsion. 

d' d" d" 

! 
Or 

Χ λ" X" 
ι -e" 

-€ 1 
L _ 

...! ; û _ ο r 
-e' 

ι -e" 
-€ 1 

L _ -

Figure 2 . Schematic drawing of the Gaussin overlap anisotropic 
square-well potential, u(r,θχ,Θ2 ,Φΐ2)» at three values of Θ2 ( 0 , 
π/6 and π / 2 ) . θ]_ is kept at 0 . The dependence on the azimuthal 
angle, <j>i2» i s not shown. The parameters, d, ε, and λ are the 
Kihara hard core dimension, the attractive energy and the range of 
attractive interaction, respectively. The primed quantities are 
values at different angles. 
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232 EQUATIONS O F STATE. T H E O R I E S A N D APPLICATIONS 

For nonlinear molecules, one should also integrate over the rotation­
a l angles and normalize by (8π^)2. Note that the gradient of the 
pair potential can be written in terms of the Boltzmann factor, 
e(12) = exp[-$u(12)], as 

3 3 u ( 1 2 ) / 9 r = - (3e(12 ) /8r)exp[$u(12)] (10) 

However, due to the form of the two-step SW potential, the derivative 
8 e ( 1 2 ) / 3 r is a sum of three Dirac deltas, one arising from the hard 
core repulsion at dia^a^), the others from the steps at λχ(ωιω2) and 
λ2(ω^ω2) 

9 e ( 1 2 ) / 8 r = 6(r,d) e x p i - ^ ) + 6(r,X 1) [ e x p ( 3 e 2 ) - (11) 

e x p ( - 3 e 1 ) ] - 6 ( r , X 2 ) [ e x p ( 3 e 2 ) - l ] 

Substitution of Equation 10 and Equation 11 in Equation 8 and inter­
change of r-integration with angle averaging gives 

P/pkT = 1 + (4π/6)ρ <d3 y s w(d,o)l,u)2)> 1 2 (12) 

+ (4π/6)ρ < X l 3 ( e 3 e 2 - e " 3 e l ) y s w ( X l , W l , W 2 ) > 1 2 

- (4π/6)ρ < λ2 3( 6
3 ε 2-1) Υ(λ2,ω1,ω2)> 

sw ± z 

where y i s the background distribution function for the square-
well potential defined as 

y g w(12) = 8 ( 1 2 ) β
β υ ( 1 2 ) (13) 

The second term is the repulsive contribution at the contact of 
hard cores. We note that for SW, the contact value, y g w ( d ) , is not 
the same as that for hard spheres. In the following we shall ana­
lyze the simulation data for spherical SW to determine the relation 
between yg W and y^g. The third term is due to the repulsive shoulder 
at λ^ω^α^)· This term actually plays the role of the temperature-
dependent hard core dimension often used in conventional perturba­
tion theories for soft potentials. The fourth term is the attractive 
contribution. It can be treated as a mean f i e l d value in case of 
continuous potentials. To gain a better understanding, we analyze 
simulation data on spherical square wells next. 

Contact Values of Correlation Functions for the SW Potential 

Henderson et a l . (33,34) have carried out computer simulations for 
the spherical one-step square well potential with different widths, 
λ* = λ/d = 1.125 - 2.0, over wide ranges of state conditions. The 
potential well is a negative step, - ε, beginning at d and vanish­
ing at λ. Table 1 shows the contact values of the background corre­
lation functions for SW and HS, respectively. The hard spheres are 
taken to have the same co l l i s i o n diameter, d, as that of the SW 
(i.e., at 3 ε = 0, the SW reduces to the HS potential). We make the 
following observations : 
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11. K A N C H A N A K P A N ET A L . Nonspherical Molecules 233 

(i) The data clearly show that the Weeks-Chandler-Andersen zeroth 
order approximation 

is inadequate. In fact, i t i s true only in the limit of high tem­
peratures (or low densities). 
( i i ) For a given density, the simple empirical formula 

y s w(d) = y H S(d)exp(C3e) (15) 

is found to apply with surprising accuracy for wide ranges of well 
widths, (λ* from 1.125 to 2.0, see Table 1). The index ζ has the 
values of -1.18 at p* = pd 3 =0.8, -1.16 at p* =0.6 and -1.1 at 
p* =0.4 (for the well width λ* = 1.5). Since at low densities, both 
y s w and y H S approach 1, ζ must approach zero at zero density. Figure 
4 shows the variations of the index, ζ, with density. The contact 
value of yg^W (Note that the y function is continuous at d) is 
also dependent on the well width, λ. We have displayed the ζ values 
for cases λ* = 1.375, 1.5, 1.625 in Figure 4. The three curves are 
f a i r l y consistent in their density dependence, ζ is around -1.0 at 
medium densities (i.e., near p* = 0.5). 
( i i i ) The values of ygy(X) at the attractive wall can be represented 
by 

ySW ( X ) ' ΥΗδ<λ)εχρ(ξ$ε) (16) 

The index ξ has the values -0.6 at p* = 0.8, -0.525 at p* = 0.6 and 
-0.535 at p* = 0.5 (for λ/d = 1.5). Similar results are observed 
for other well widths (see Table 1). The value of ξ is around -0.5 
at high densities. Again, as ρ* -Κ), ξ must be zero. Thus ξ is a 
function of p*. 

Equation 12 reduces, for an angle-independent one-step square-
well potential, to 

P/pkT = 1 + (47r/6)pd 3y s w(d)e 3 e (17) 

-(4TT/6)pA 3(e 3 e-l) y^(X) 

The above observations can be utilized to transcribe the pressure 
equation (for one-step SW) into 

P/pkT = 1 + ( 4 ^ 6 ) p d 3 y H S ( d ) e ( 1 ^ ) 3 e (18) 

-(4π/6)ρλ 3( β
3 ε-1) Υ Η 8 ( λ ) β ξ 3 ε 

We identify the second term as related to the hard sphere pressure, 
written as 

(W6)pd 3y H S(d) = Z R S -1 = Z' H S (19) 

where Z f
H S is the configurational part of the compressibility factor. 

To carry out the calculation, i t is necessary to find an expression 
for the value of yns(X) at the attractive wall. From distribution 
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€ , ( ω , , ω 2 ) 

λ | ( ω , , ω 2 ) λ 2 ( ω , , ω 2 ) 

ω 2 ) r-> 

- € 2 ( ω , , ω 2 ) 

F i g u r e 3. T h e t w o - s t e p s q u a r e - w e l l p o t e n t i a l w i t h a n g l e d e p e n d e n t 
p a r a m e t e r s . T h i s p o t e n t i a l i s u s e d i n t h e p r e s e n t c o r r e l a t i o n . 

2.5 

2.0 

1.5 

1.0 

0 

1 1 I 

- - - λ'= 
— λ"= 

λ*= 

1.375 
1.5 
1.625 

/ 

-

/ / 
/ / 

/ / 

I 
// 
' I I I 
) 0.5 1.0 1.5 

Ρ* 
F i g u r e 4. T h e v a r i a t i o n o f i n d e x ζ w i t h t h e d e n s i t y f o r o n e - s t e p 
s q u a r e - w e l l p o t e n t i a l . T h r e e w e l l w i d t h s a r e s t u d i e d . 
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function theories, we know that the background correlation function 
has the following cluster representation (35) 

yHS(X) = e ^ + <Π + < ^ + ^ + Ι ^ + Ι ^ + °(P 3) (20) 

The cluster integral for hard spheres i s known (36) 

c/\> = (ir/12)ρ* (λ*3-12λ* +16) (21) 

where p* = pd 3. For λ* = 1.5, οΛ> = 0.36 p*. Higher density terms 
of the cluster integrals have also been published (37). However, 
for simplicity we propose to approximate Equation 20 by 

y H S(h) = e ^ [ l + f ] = e ^ + e < \ (22) 

where f is a function of density. We next approximate f by 
cA>- . -a"p*2 , 9 r . e f = a p* e (23) ο 

Obviously, other forms of density dependence could be introduced. 
We used simulation data (33) to determine the constants, a Q and a" 
and found 

a - -0.34378 and a" = 1.2284 (24) ο 
for the case λ* = 1.5. Thus the complete pressure equation can be 
written as 

P/pkT = 1+Ζ ,
Η 8ε(1+ζ)βε (25) 

tt /^\^3r 1 Λ r 0.36p* ̂  . a"p*2] ξ£ε - (4π/6)ρλ (e -1) [e + a p* e e 
ο 

This equation is used to calculate the pressure for SW fl u i d at 
p* = 0.8 and for temperatures $ε = 0.25 to 1.75 at well width λ = 
1.5d. The results are compared with simulation data in Table II. The 
agreement is quite satisfactory over the range of conditions com­
pared. For other densities, similar results are obtained. We there­
fore adopt the form Equation 25 as one of our working equations for 
the equation of state studies. 

Generalization of Equation 25 to angle-dependent GOSW potential 
is straightforward. For example, the one-step form (with negative ε) 
of Equation 12 is 

P/pkT = 1 + (4π/6)ρ <d3 e 3 e y s w(d,o) ru) 2)> 1 2 (26) 

- (4π/6)ρ <X 3(e 3 e -1)7 δ ν(λ,ω 1,ω 2)> 1 2 

By mean value theorem, we may extract out the angle averages 

P/pkT = 1 + (4π/6)ρ33 e 3 e y s w(d) (27) 

- (4π/6)ρλ 3( β
3 ε - l ) Y s w â ) 
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EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Table I. The Contact Values of Correlation Functions for the 
One-Step Spherical Square-Well Potential 

λ* = 1.5 
3ε y (d +) 

SW n,s«>«tBe *sw ( X ) y H S ( A ) e 

(MC) (MC) 
pd 3 = 0.5 ζ = -1.1 ξ = -0.535 
0.0 2.12 2.12 0.98 0.98 
0.25 1.62 1.61 0.864 0.857 
0.50 1.225 1.223 0.77 0.75 
0.75 0.95 0.93 0.675 0.66 
1.00 0.72 0.71 0.574 0.574 

pd 3 = 0.6 ζ = -1.16 ξ = -.525 
0.0 2.56 2.56 0.92 0.92 
0.25 1.92 1.91 0.802 0.807 
0.50 1.41 1.43 0.716 0.708 
0.75 1.02 1.07 0.638 0.621 
1.00 0.80 0.80 0.544 0.544 

Pd 3 = 0.8 ζ = -1.18 ξ = -0.6 
0.0 3.97 3.97 0.73 0.73 
0.25 3.01 2.96 0.63 0.63 
0.50 2.21 2.20 0.55 0.54 
0.75 1.67 1.64 0.487 0.47 
1.00 1.20 1.22 0.423 0.40 
1.25 0.90 0.908 0.35 0.35 
1.50 0.72 0.68 0.315 0.3 
1.75 0.58 0.50 0.27 0.26 

λ* = 1.625 
pd 3 = 0.4 ζ = -1.0 
0.0 1.812// 
0.333 1.30 
0.5 1.10 
0.80 0.85 

Pd 3 = 0.6 ζ = - ι . 15 ξ = -0.538 
0.0 2.56 2.56 — (0.861)* 
0.333 1.78 1.74 0.72 0.72 
0.50 1.44 1.44 0.67 0.66 
0.80 1.02 1.02 0.56 0.56 

pd 3 = 0.8 ζ = -0. 96 ξ = -0.478 
0.0 3.97 3.97 — (0.727) 
0.333 2.77 2.88 0.62 0.62 
0.50 2.58 2.46 0.58 0.57 
0.80 1.86 1.84 0.51 0.50 
1.25 1.178 1.195 0.40 0.40 
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11. KANCHANAKPAN ET AL. Nonspherical Molecules 237 

λ* = 1.375 
3ε y s w ( d + ) 
ο (MC) 

pd J = 0.8 

/Λ\ ζ$ε 
y H S ( d ) e 

ζ = -1.19 

ysw<x> 
(MC) 

ί\\ ζ3ε 

ξ = -0.58 
0.00 3.97 
0.667 1.72 
1.00 1.21 
1.25 0.82 

3.97 
1.795 
1.21 
0.897 

0.65 
0.52 
0.46 

(0.942) 
0.64 
0.527 
0.46 

λ* = 1.125 
pd 3 = 0.8 ζ = -0.90 ξ = -0.684 
0.0 3.97 
1.0 1.58 
1.5 1.02 
2.0 0.66 

3.97 
1.61 
1.029 
0.656 

1.14 
0.79 
0.58 

(2.26) 
1.138 
0.81 
0.575 

λ* = 2.00 
pd 3 = 0.8 ζ = -0.67 ξ = -0.495 
0.0 3.97 
0.1667 3.65 
0.333 3.17 
0.5 2.95 

3.97 
3.55 
3.175 
2.84 

1.11 
1.02 
0.92 

(1.2) 
1.105 
1.017 
0.937 

*Values in parentheses are estimated. 

Table II. The Pressure Prediction for One-Step 
Square-Well Potential 

λ* = 1.5 

pd 3 =0.8 

3ε Ζ Ζ Ll 
(MC) From Equation 25 (From second v i r i a l ) 

/attractive 
0.25 6.47 6.34 -1.61 
0.50 5.08 5.09 -3.67 
0.75 3.84 3.86 -6.32 
1.00 2.34 2.65 -9.71 
1.25 1.35 1.44 -14.08 
1.50 0.18 0.22 -19.69 
1.75 -0.65 -1.0 -26.88 

*We have used ζ = -1.18 and ξ = -0.6 for the calculations. 

#Ζ^ i s the part of second v i r i a l coefficient due to attractive 
contribution. 

i.e. Z 2 = -(4π/6)ρλ 3(ε 3 ε -1) 
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238 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

This results in temperature (and possibly density) dependent mean 
value parameters d=d(T), ε=ε(Τ) and λ=λ(Τ). We approximate the re­
pulsive pressure by an equivalent hard convex body pressure accord­
ing to the relations Equation 15 and Equation 19 and the attractive 
pressure according to Equation 25 

p/pkT = ι + ζ · Η ε Β β < 1 + ^ ε <28> 

- (Απ/6) Ρλ 3(β β ε-1) [e b'P* e e + b p* e h " ^ 
Ο 

Note the replacement of the hard sphere Z^s by the hard convex body 
Ζ β . Ζ is set to the Nezbeda form, Equation 5. The term in­
volving D q , b f and b" i s a representation of the temperature and 
density dependence of y^(A) . Generalization to the two-step SW 
potential mentioned above is less obvious. One should use simulation 
data (these being unavailable at the present time) to verify the 
correct parametrization. If we insist on the same functional form 
as Equation 28 but treat the parameters as empirical constants, we 
obtain 

Ζ = 1 + Ζ· Η ε Β β - ( 1 + ζ ) β ε 1 (29) 

+ρν ι (β β ε2 -β-βεΐ)[β-ν /Τ* +d oy e"V 2 / T*] 

-ρν 2(^ ε2-1)[β-ν / Τ* ν Λ ? 2 / Ρ ' 
where and are, respectively, the repulsive volume of the 
shoulder at λ]_ and attractive volume of the well at λ2· The con­
stants CJL and d^, i=0,l,2, are introduced to account for the state 
dependence of the correlation functions y s„ at the locations of 
discontinuities. This form of functional dependence i s arbitrary. 
The form is suggested by Equation 25. However, i t mimics the cluster 
form Equation 20. T* is a reduce temperature, to be specified later. 
We note the similarity of Equation 29 with those derived by Reijnhart 
(38,39) and Henderson and Chen (40) from different methods. Due to 
the temperature and density dependence of the mean value parameters 
ε^(Τ), λ^(Τ) and ygw^i^» w e n a v e combined the density and tempera­
ture terms in the exponentials. Equation 29 gives the pressure 
expression for the two-step Gaussian overlap square well potential. 
In the following we shall discuss i t s applications. 

The P-v-T Behavior of Real Fluids 

We have applied Equation 29 and i t s modifications to the calculation 
of the pressures and enthalpies of real fluids, such as hydrocarbons 
(e.g. methane, ethane, n-decane, and eicosane), nonhydrοcarbons 
(e.g. carbon dioxide, and hydrogen sulfide), alcohols (1-butanol and 
phenol), ketones (acetone and 2-butanone), amines (methylamine and 
diethylamine), ethers (dimethylether and diphenylether) and polar 
solvents (e.g. tetrahydrofuran). Some 69 substances have been i n ­
vestigated. 

The average conformation of a polyatomic molecule in the flu i d 
state i s characterized by a geometric ratio, a. We do not assign a 
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11. K A N C H A N A K P A N ET A L . Nonspherical Molecules 239 

specific "shape" to the molecules since conformational changes (e.g. 
bond rotation and solvent forces) constantly "deform" the molecule, 
α should reflect the averaged effects of such changes. Other molecu­
lar parameters for use in Equation 29 are b, the volume of a single 
molecule, ε-̂  and ε 2, t n e energies of interaction, and λ 2, the 
widths of potential walls, and the constants c^ and d^ (i=0,l,2) 
specifying the temperature and density dependence. However, in 
practice, i t soon becomes apparent that the repulsive second v i r i a l , 
(l+3a)b, given by Z H c B» is inaccurate, as pointed out by Kohler and 
Haar (41). To obtain an adequate description of the second v i r i a l 
coefficient of gases, we modify Equation 29 to give 

Ζ = 1 + Ζ· β " ( 1 + ζ ) β ε 1 -(1 +3α) Υβ- ( 1 + ζ ) ί ? ε1 + yB*e- e el (30) 
H L D r 

+yV*(eBe2 - e - ^ l M e - V ^ * ^ y e ^ ' 1 * ] 

-yV*(/ £2 - 1 ) [ β - ^ / Τ * + c o y e ^ ' 1 * ] 

i.e. we have taken out the HCB second v i r i a l , (l+3a)b exp[-(l+ζ)fte^], 
and substituted for i t the repulsive term 

ΒΓεχρ(-3ε1) (31) 

Β being an effective repulsive second v i r i a l coefficient. (Note, 
B£* = Br/b, V]_* = Vi/b, and V 2* = V2/b) Equation 30 automatically 
reduces to a second v i r i a l expression, i.e. P/kT = ρ + B2p with 

B 2 = ΒΓεχρ[-3ε1] + V± [εχρ($ε2) -expt-f^)] - ν 2 [ β χ ρ ( β ε 2 -1)] (32) 

At the moment, we have thirteen parameters to use in the equa­
tion of state. This number of parameters is considered excessive in 
practical calculations, especially when some of the parameters (e.g. 
the C j/s and d^'s) are empirical and have no physical meaning. They 
could have been evaluated i f simulation data for the 2-step SW f l u i d 
were available. In the absence of information we embark on a re­
duction of parameters by setting 

e i - ° 

d ± = c ±, i « 0,1,2 

(33) 

(34) 

T* - kT/e 2 (35) 

We have also found from f i t t i n g the data that e 2/k is related to the 
c r i t i c a l temperature by 

en/k « Τ 12.18601 (36) z c 
and 

V = 1.4 b (Kreglewski 1984) (37) 
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240 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

We define an attractive volume (between and λ2)» as 

V = V 9 - V- (38) or a 2 1 
V 0 = 1.4b + V (39) 2 T a 

The above prescription has reduced the number of parameters from 13 
to 7, i.e., B r, V a, Cj[ (i=0,l,2), α and b. Therefore the f i n a l 
working equation is given by 

Ζ = (l-y)" 3[l+(3a-2)y+(a 2+a-l)y 2-a(5a-4)y 3] (40) 

-(l+3a)y +pBr 2 

- PV a ( e 1 / T A - l ) [ e - C l y / T * + V e " 2 7 / T * ] 

where y=bp, V a is given by Equation 38 and T* by Equation 35 and 
Equation 36. 

There is no compelling reason for the choices made in Equation 
33 to Equation 39 except that we have achieved economy of parameters. 
Future research shall address such questions in more detail, prefer­
ably based on detailed simulation data. 

We f i r s t used the P-v-T data of paraffin hydrocarbons from C^ to 
C2Q (methane to eicosane) to determine the parameters. (N.B. We have 
excluded the c r i t i c a l region in the f i t . ) As the c r i t i c a l behavior 
is nonanalytical, we do not expect Equation 40 to apply. Normally, 
we are +2°C away from the c r i t i c a l temperature. The results are 
listed in Table III. These values are empirically determined. How­
ever, they are not entirely arbitrary. The molecular volumes, b, 
thus determined are directly proportional to the c r i t i c a l and/or 
van der Waals volumes (Bondi (42)) for hydrocarbons. (See Figure 5). 
The energy parameter, ε/k, i s proportional to the c r i t i c a l tempera­
ture as mentioned above. (ε = ε 2 ) . 

The agreement in density predictions for twenty hydrocarbons is 
around 1%, and in vapor pressures, for the most part, less than 1%. 
We are also able to predict the configurational enthalpy to within 
1 cal/g. (See Table V). This equation i s particularly effective in 
the liquid state, e.g., for liquid ethane and n-pentane up to 69 MPa. 
In a number of perturbation formulations, the contribution from the 
attractive second v i r i a l coefficient overwhelmed other contributions 
at low temperatures and liquid densities, thus requiring a high order 
density correction (up to the sixth v i r i a l in, e.g., Bienkowski and 
Chao 1975). As an example, Table II exhibits the values of the 
attractive second v i r i a l in SW f l u i d . It reaches -26.9 at 3ε = 1.75. 
Use of the exponential form Equation 25 has moderated such influences 
and obviated the necessity of retaining explicitly high order density 
terms. The same behavior i s obtained by Equation 40. 

We have made calculations with other equations of state, such as 
Peng-Robinson (43) (PR), Mohanty-Davis (44) (MD), De Santis, Gironi 
and Marrelli (45) (DGM) and the BACK (Simnick et a l . (1*46,47,48)) 
equation. The results based on the same data sets for density and 
vapor pressure are compared in Table IV from methane to n-decane. 
Equation 40 is uniformly better than a l l the equations compared. PR 
equation is reasonable for vapor pressure calculations (e.g., 1.5% 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



Ta
bi

c 
11

1.
 
Th

e 
Mo

le
cu

la
r 

Pa
ra

me
te

rs
* 
to

 B
e 

Us
ed
 
i
n 
th

e 
Eq

ua
ti

on
 o

f 
St

at
e,

 
Eq

ua
ti

on
 A
O 

a 
b,

cc
/g

mo
l 

B r
/b

 
V

jb
 

C
Q 

C
2 

D/
b2
, 
Κ 

^ 
Me

th
an

e 
I,
 .0
20
08
 

16
. .
32
5 

4.
 41
86
 

20
, .
03
6 

3.
 ,4
90
8 

11
 .6
52
 

4.
 ,0
62
3 

0 .
0 

Et
ha

ne
 

.1,
 .1
02
99
 

23
. .
62
9 

5.
 45
71
 

24
, .
21
3 

3.
 58
74
 

14
, .
84
0 

4.
 ,7
17
3 

0 .
0 

Pr
op

an
e 

1,
 .1
95
23
 

31
. .
79
5 

6.
 35
61
 

24
, .
27
7 

3.
 60
30
 

11
, .
71
5 

4.
 ,3
51
1 

0 .
0 

n-
Bu

ta
ne

 
1.
 .3
31
17
 

39
. ,
83
1 

6.
 48
04
 

25
, .
99
5 

3.
 66
69
 

12
, .
95
0 

4.
 ,3
73
6 

0 .
0 

n-
Pe

nt
an

e 
1,
 .3
79
24
 

49
. ,
33
0 

6.
 84
02
 

27
, .
43
8 

3.
 61
14
 

13
, .
37
7 

4.
 ,1
81
3 

0 .
0 

n-
ll

ex
an

e 
1.
 .4
69
68
 

56
. ,
79
7 

7.
 35
11
 

28
, .
84
2 

3.
 71
17
 

8,
 .2
30
1 

3.
 ,6
12
9 

0,
 .0
 

n-
ll

ep
ta

ne
 

1.
 .5
64
11
 

66
. ,
38
1 

7.
 36
63
 

29
, .
54
9 

3.
 67
66
 

13
. .
76
8 

3.
 98
29
 

0,
 .0
 

n-
Oc

ta
ne

 
1.
 .6
28
14
 

74
. ,
95
6 

8.
 36
39
 

32
, .
18
3 

3.
 71
50
 

14
. .
54
7 

4.
 31
76
 

0,
 .0
 

n-
No

na
ne

 
1,
 .7
33
61
 

84
. ,
34
1 

8.
 32
76
 

33
, .
40
5 

3.
 68
63
 

15
, .
30
3 

4.
 12
72
 

0,
 .0
 

n-
l)

ec
an

e 
1,
 .7
96
93
 

94
. .
13
3 

8.
 62
38
 

34
, .
59
2 

3.
 66
27
 

15
. .
47
1 

4.
 02
98
 

0,
 .0
 

n-
Ll

nd
ec

an
e 

1.
 .8
82
89
 

10
1.
 , 
72
 

8.
 78
32
 

35
. .
24
2 

3.
 71
54
 

15
, .
 5
39
 

3.
 97
81
 

0,
 .0
 

n-
do

de
ca

ne
 

1,
 .9
68
85
 

11
3.
 ,4
3 

9.
 24
83
 

37
, .
09
8 

3.
 51
95
 

15
. .
06
9 

3.
 67
88
 

0,
 .0
 

n-
Tr

id
ee

an
e 

2.
 .0
54
58
 

12
3.
 ,3
8 

9.
 33
91
 

37
. .
46
2 

3.
 62
06
 

15
. .
12
3 

3.
 73
17
 

0,
 .0
 

n-
Te

tr
ad

ec
an

e 
2,
 .1
40
76
 

13
2.
 ,0
2 

10
. 0
44
 

40
. .
29
1 

3.
 60
04
 

16
. .
18
9 

3.
 99
76
 

0.
 .0
 

n-
Pe

nt
ad

ec
an

e 
2.
 .2
12
26
 

14
1.
 ,1
1 

10
. 6
51
 

42
. ,
72
3 

3.
 57
17
 

16
. ,
73
3 

4.
 12
81
 

0,
 .0
 

n-
He

xa
de

ca
ne

 
2.
 .2
99
72
 

15
0.
 ,6
5 

11
. 2
70
 

45
. ,
20
7 

3.
 58
73
 

17
. .
47
7 

4.
 30
09
 

0.
 .0
 

n-
He

pt
ad

ec
an

e 
2.
 .3
86
26
 

16
0.
 ,9
4 

11
. 2
01
 

44
. ,
93
1 

3.
 55
85
 

16
. .
59
0 

4.
 05
36
 

0.
 .0
 

n-
Oc

ta
de

ca
ne

 
2.
 .4
69
85
 

16
9.
 ,8
3 

11
. 8
44
 

47
. .
51
2 

3.
 57
61
 

17
. .
52
8 

4.
 31
69
 

0.
 .0
 

n-
No

na
de

ca
ne

 
2.
 ,5
70
54
 

18
0.
 ,0
2 

11
. 9
83
 

48
. ,
06
7 

3.
 56
00
 

16
. .
96
1 

4.
 19
16
 

0.
 .0
 

Ei
co

sa
ne

 
2.
 ,6
56
51
 

19
3.
 ,7
4 

12
. 4
57
 

49
. .
96
7 

3.
 48
07
 

16
. ,
80
8 

4.
 13
85
 

0.
 .0
 

Et
hy

le
ne

 
1.
 ,0
51
20
 

21
. ,
17
0 

5.
 37
42
 

22
. ,
72
2 

3.
 35
43
 

11
. .
93
0 

4.
 05
91
 

0.
 .0
 

Pr
op

yl
en

e 
1.
 ,4
00
83
 

27
. ,
87
0 

5.
 99
88
 

26
. ,
16
0 

3.
 71
96
 

14
. ,
06
9 

4.
 87
69
 

0.
 .0
 

Ls
ob

ut
an

e 
1.
 ,3
39
86
 

40
. 2
37
 

6.
 14
62
 

27
. ,
18
6 

3.
 64
41
 

15
. ,
35
2 

4.
 67
42
 

0.
 ,0
 

is
op

en
ta

ne
 

1.
 .3
34
84
 

48
. ,
68
9 

6.
 95
62
 

27
. ,
18
2 

3.
 59
97
 

13
. ,
14
5 

4.
 30
44
 

0.
 .0
 

Be
nz

en
e 

2.
 .0
58
52
 

36
. ,
11
7 

6.
 36
96
 

26
. ,
72
9 

4.
 65
86
 

13
. ,
99
1 

5.
 71
04
 

0.
 .0
 

To
lu

en
e 

1.
 .9
54
68
 

44
. ,
49
4 

8.
 01
61
 

32
. .
30
0 

4.
 05
85
 

15
. ,
23
0 

5.
 78
09
 

0.
 .0
 

H 
S 

1.
 .3
64
13
 

14
. 7
22
 

5.
 93
35
 

25
. ,
05
0 

3.
 69
59
 

12
. ,
92
0 

4.
 91
14
 

0.
 ,0
 

Ni
tr

og
en

 
1.
 .1
08
70
 

14
. ,
76
2 

5.
 27
85
 

21
. ,
17
4 

3.
 49
55
 

13
. .
01
6 

3.
 76
81
 

0.
 ,0
 

o-
Xy

le
ne

 
1.
 .3
84
07
 

57
. ,
61
42
 

7.
 82
34
 

28
. ,
45
12
 

3.
 66
78
 

12
. ,
61
31
 

4.
 20
50
 

0.
 ,0
 

Bi
cy

cl
oh

ex
yl

 
1.
 ,8
92
54
 

97
. 3
92
0 

8.
 70
08
 

33
. ,
70
47
 

3.
 39
30
 

12
. ,
39
6 

3.
 88
34
 

0.
 .0
 

Fl
uo

ri
ne

 
1.
 .6
64
15
 

83
. ,
08
85
 

12
 .4
44
6 

39
. ,
23
37
 

4.
 09
83
 

16
, ,
97
2 

6.
 18
94
 

0.
 .0
 

Di
ph

en
yl

me
th

an
e 

1.
 ,8
25
90
 

83
. ,
75
28
 

8 .
62
56
 

33
. ,
53
30
 

3.
 61
82
 

13
. .
56
6 

4.
 02
55
 

0.
 .0
 

Di
ch

lo
ro

-
1.
 .6
98
01
 

30
. ,
95
99
 

7 .
08
24
 

28
. .
40
97
 

4.
 01
43
 

13
. .
83
0 

5.
 62
38
 

0.
 ,0
 

d i
 f1

uo
 ro

ra
e t

 ha
ne

 
Ca

rb
on

 
di

ox
id

e 
2,
 .2
02
15
 

11
. ,
00
23
 

4 .
85
90
 

20
. .
82
29
 

4.
 89
34
 

14
. .
15
3 

9.
 53
55
 

10
78
4.
0 

Am
mo

ni
a 

1,
 .4
90
24
 

10
. ,
71
83
 

6 1
.0
54
7 

28
. .
79
28
 

3.
 87
22
 

17
. .
29
9 

4.
 87
39
 

-8
5.
94
4 

Me
th

yl
 

fl
uo

ri
de

 
1,
 .9
30
17
 

17
. ,
98
24
 

7 .
88
60
 

31
. .
31
00
 

3.
 94
92
 

15
. .
11
4 

6.
 06
94
 

-4
8.
39
 

Bu
ta

no
l 

1,
 .1
36
85
 

47
. ,
95
97
 

6 .
.0
48
2 

15
. .
65
50
 

3.
 27
27
 

1.
 .0
91
4 

2.
 44
95
 

14
29
.4
 

Ph
en

ol
 

1,
 .5
13
68
 

41
. .
61
51
 

8 1
.0
26
4 

18
, .
47
26
 

3.
 14
71
 

4.
 .5
43
6 

3.
 11
05
 

49
96
.2
 

p-
Cr

es
ol

 
1 .
19
34
 

57
. .
24
52
 

6 .
.2
61
8 

32
, .
14
20
 

2.
 77
13
 

17
. .
99
8 

2.
 80
97
 

58
69
.6
 

Co
nt

in
ue

d 
on
 n

ex
t 

pa
ge
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



Ta
bl

e 
II

I.
 

Co
nt

in
ue

d 

α 
b,

cc
/g

mo
l 

B r
/b

 
V 

/b
 

a 
c ο 

C
l 

C
2 

D/
b2
, 

Κ 
o-

Cr
es

ol
 

1.
 .0
19
32
 

57
.2
77
1 

7.
59
29
 

30
, .
45
72
 

2,
 .8
19
9 

14
 .2

49
 

2,
 .7
69
7 

21
81
.6
 

m-
Cr

es
ol

 
1,
 .4
53
42
 

52
.8
77
8 

7.
58
16
 

30
, .
41
20
 

3,
 .3
79
2 

14
 .5

95
 

3,
 .7
23
8 

82
09

. 
2,

3-
Xy

le
no

l 
1,
 .5
15
23
 

50
.5
42
3 

7.
51
23
 

30
.1
33
9 

4,
 .0
65
6 

19
 .9

78
 

5,
 .9
30
0 

19
97
8.
2 

Ac
et

on
e 

2,
 .4
11
48
 

27
.3
95
3 

8.
65
34
 

35
, .
71
04
 

4,
 .3
69
2 

16
, .
11
0 

7.
 .2
34
0 

10
08
.9
 

2-
Bu

ta
no

ne
 

1.
 .3
04
04
 

32
.2
04
7 

5.
77
69
 

23
. .
17
23
 

4,
 .7
48
2 

16
, .
27
11
 

5.
 .3
46
5 

52
49
.2
 

2-
Pe

nt
an

on
e 

1,
 .3
44
78
 

49
.5
42
2 

8.
43
38
 

26
, .
34
32
 

3,
 .4
79
6 

9 .
83
53
 

3.
 .7
18
8 

10
7.
4 

Di
me

th
yl

 
et

he
r 

1.
 .8
76
62
 

24
.0
54
1 

7.
05
49
 

28
. .
29
93
 

4,
 .2
38
1 

13
, .
72
99
 

5.
 .7
14
1 

26
8.
2 

Me
th

yl
et

hy
l 

et
he

r 
1,
 .2
06
17
 

36
.8
06
9 

5.
43
09
 

23
, .
02
85
 

3,
 .4
38
7 

12
, .
70
78
 

3,
 .2
63
5 

30
45
.3
 

Di
et

hy
l 

et
he

r 
1.
 .8
67
61
 

40
.9
72
1 

6.
59
79
 

30
. .
75
33
 

3.
 .9
14
0 

16
, .
70
66
 

5.
 .2
00
8 

11
38
.7
 

Et
hy

lp
ro

py
l 

et
he

r 
1.
 .9
34
16
 

47
.4
49
0 

7.
76
16
 

32
. .
35
02
 

4.
 .1
24
0 

16
, .
69
54
 

6.
 .5
10
1 

26
80
.5
 

Di
ph

en
yl

 
et

he
r 

1.
 ,5
48
33
 

86
.2
73
0 

4.
90
72
 

30
. .
29
40
 

3.
 .4
14
1 

20
. .
46
75
 

3.
 ,1
34
3 

25
5.
94
 

Ac
et

ic
 
ac

id
 

2.
 ,7
71
83
 

22
.4
06
7 

10
.8
00
6 

44
. ,
84
23
 

4.
 ,3
70
7 

18
, .
46
07
 

8.
 ,1
12
2 

-7
98
.4
4 

Me
th

yl
am

in
e 

1.
 .0
80
11
 

23
.5
10
4 

5.
86
56
 

23
. .
52
86
 

3.
 .4
10
5 

13
. .
03
72
 

2.
 .8
89
8 

91
7.
3 

Di
me

th
yl

am
in

e 
1.
 ,6
42
28
 

29
.5
12
8 

6.
95
61
 

27
. .
79
42
 

3.
 ,6
28
9 

12
. .
45
23
 

3.
 ,5
06
0 

15
0.
6 

Et
hy

la
mi

ne
 

1.
 ,4
49
01
 

28
.1
50
0 

6.
96
04
 

27
. ,
88
41
 

3.
 ,6
21
5 

13
. .
43
46
 

3.
 ,8
86
5 

17
7.
4 

Di
et

hy
la

mi
ne

 
1.
 ,7
61
56
 

45
.4
03
9 

5.
11
96
 

29
. ,
15
12
 

3.
 ,7
96
9 

19
. .
17
98
 

4.
 ,1
42
3 

49
0.
4 

An
il

in
e 

1.
 ,0
07
85
 

49
.2
22
0 

8.
63
46
 

26
. ,
45
11
 

3.
 ,1
88
7 

9.
 .2
08
6 

2.
 ,8
02
5 

-2
27
4.
8 

Py
ri

di
ne

 
2.
 ,2
16
24
 

35
.3
38
0 

7.
13
43
 

31
. ,
82
51
 

4.
 ,1
16
5 

14
. .
83
89
 

4.
 ,7
77
5 

-5
06
8.
1 

4-
Me

th
yl

 
py

ri
di

ne
 

1.
 .3
56
05
 

57
.4
62
5 

9.
01
03
 

30
. ,
36
74
 

3.
 ,1
10
0 

10
. .
84
22
 

3.
 ,7
89
8 

63
3.
56
 

i-
Qu

in
ol

in
e 

1.
 .6
54
80
 

56
.8
10
7 

8.
26
91
 

27
. ,
93
98
 

4.
 ,0
63
0 

11
. .
43
32
 

4.
 ,7
67
0 

-3
14
5.
9 

Ca
rb

az
ol

 
2.
 ,0
30
42
 

99
.2
54
9 

8.
93
44
 

35
. ,
82
62
 

3.
 .6
02
3 

14
. .
66
98
 

4.
 ,1
67
8 

14
4.
4 

Ac
ri

di
ne

 
1.
 .8
59
80
 

77
.4
69
4 

12
.2
42
3 

35
. .
34
62
 

4.
 .0
13
3 

10
, .
11
69
 

4.
 ,6
39
4 

-1
53
94
.1
 

Fo
rm
am
id
e 

1.
 .0
81
91
 

20
.4
78
9 

0.
86
86
 

22
. .
28
51
 

4.
 ,2
05
8 

16
. .
02
39
 

3.
 .2
57
4 

-1
32
45
.1
 

Et
hy

l 
me

rc
ap

ta
n 

2.
 .1
60
17
 

26
.2
16
6 

8.
19
89
 

30
. .
75
96
 

4.
 .5
22
1 

13
, .
42
65
 

7.
 .6
14
2 

41
0.
9 

Di
me

th
yl

 
su

lf
id

e 
1.
 ,8
50
38
 

27
.5
07
0 

6.
57
36
 

29
. .
35
02
 

4.
 .1
84
9 

16
. .
09
13
 

6.
 ,8
87
6 

24
69
.5
 

Te
tr

ah
yd

ro
 

th
io

ph
an

e 
1.
 .2
85
71
 

43
.4
64
9 

5.
94
28
 

27
. .
36
92
 

3.
 .4
52
4 

15
. .
03
71
 

3.
 ,4
75
8 

-4
45
2.
9 

Th
ia

na
ph

th
en

e 
1.
 .3
80
88
 

54
.8
14
3 

7.
80
06
 

28
. .
31
44
 

4.
02
40
 

13
, .
96
49
 

4.
 .9
62
6 

14
30
.3
 

Di
be

nz
o-

th
io

ph
en

e 
1.
 .0
42
94
 

34
.3
90
3 

7.
34
13
 

26
. .
96
61
 

3.
 .7
30
4 

10
. .
81
15
 

4.
 .5
35
7 

-2
89
98
.1
 

Te
tr

ah
yd

ro
fu

ra
n 

1.
 .5
69
77
 

68
.9
89
8 

20
.0
42
3 

49
. .
72
94
 

4,
 .3
84
6 

19
, .
41
36
 

8.
 .6
36
2 

-8
.7
2:
 

Di
be

nz
of

ur
an

 
2.
 .4
00
06
 

66
.1
66
8 

9.
31
65
 

32
. .
36
96
 

4.
 .3
58
9 

9,
 .3
44
4 

5.
 .3
38
9 

-1
78
53
.6
 

*T
he

 p
ar

am
et

er
, 

ε,
 i
s 

re
la

te
d 

to
 t

he
 

cr
it

ic
al

 t
em

pe
ra

tu
re
 
by
 ε

/k
 =
 = 
Τ 

/2
. 

c 
.1
86
01
 

No
te

 t
ha

t 
th

e 
re

du
ce

d 
te

mp
er

at
ur

e 
i
s 
ca

lc
ul

at
ed
 
as

 T
* 

= 
kT

/ε
 

wh
er

e 
ε/
k 

= 
ε/
k 
+ 

- 
. 

bZ
T 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



11. K A N C H A N A K P A N E T A L . Nonspherical Molecules 243 

Q20 

0J5 

Β 

^ 010 

-û 
0.05 

I ! I I I I I I 1 I I I 
o~ 

1 I 1 1 1 1 I I I I 1 
0 Q2 04 0.6 Q8 |.o 

Figure 5. Variations of the hard core volume, b, with the c r i t i c a l 
volume V , for n-paraffins. 
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for methane and 3% for ethane). However, Equation 40 gives about 
half the deviations for a l l hydrocarbons studied (1% for methane and 
0.7% for ethane). The BACK equation performs well for lower hydro­
carbons (e.g. from methane to n-hexane), but deteriorates for higher 
hydrocarbons (e.g., to 14% in deviations for density and 6.7% for 
vapor pressure of n-decane). The vapor pressures predicted by BACK 
is of the order of 4% as compared to 1% by Equation 40. We note that 
the PR equation used is in i t s generalized form, which has some ad­
vantages in application. 

In contrast to previous equations, such as PHC and BACK, the 
present equation is based on distribution function theory. Thus 
further improvements can be made by resummation of cluster integrals 
and/or inclusion of integral equation relations. The contributions 
from individual terms can also be checked against simulation data. 

The same equation i s applied to other nonpolar substances in­
cluding branched chain hydrocarbons, unsaturated hydercarbons, and 
ring compounds. The parameters are presented in Table III and the 
results are summarized in Table V. The overall deviations for 607 
data points of density, 435 points of vapor pressure and 147 points 
of enthalpy are 0.7%, 0.6% and 3 J/g, respectively. We have shown 
some sample compounds here, the detailed comparison can be found in a 
thesis (49). 

In order to apply the equation to polar fluids, i t i s necessary 
to use a mean potential form of the energy parameter. It i s given by 

ε/k = ε/k + D/(Tb2) (41) 

where one additional parameter, D, i s introduced. This formulation 
is designed to introduce the temperature dependence in the mean value 
parameter ε(Τ). It accounts in part for the dipolar moment contri­
butions in polar fluids. The temperature is now reduced according 
to T* = kT/ε. For example, for ammonia D/b2 = -85.94 K. Some 
thirty-six amines, ketones, alcohols and ethers have been chosen for 
correlation. The results are given in Tables III and V. For over a 
thousand density data and a thousand vapor pressure data, the overall 
deviation is 1.2% and 0.4%, respectively. Further comparison i s made 
with the Peng-Robinson and BACK equation in Table VI. The results 
again show that Equation 40 is more accurate based on the same set 
of experimental data. 

We have shown here that, by empirically f i t t i n g the two-step 
square-well equation to experimental data, we are able to reproduce 
quantitatively the P-v-T information. The given formula can be 
generalized to highly polar molecules according to known s t a t i s t i c a l 
mechanics. To treat strong molecular anisotropy, i t w i l l be neces­
sary to let b and λ depend on temperature. We also anticipate 
further developments of the present formulation to mixtures in the 
future. 
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Table V. P-v-T and Thermal Propertie s Calculated by 
Equation 40 for Some Selected Compounds 

Type No. Data Temp. Range, Κ Press. Range, MPa Error, AAD* 
n-Hexadecane Ρ 9 463-543 0.007-0.07 0. .17% 

VP 10 463-5553 0.007-0.09 0. 17% 

Eicosane Ρ 25 373-573 5.0-50.0 0. 98% 
VP 15 473-623 0.002-0.11 0. ,42% 

Ethylene Ρ 40 116.5-400 0.1-13.8 0. ,91% 
VP 35 133-412 0.69-5.1 0. ,94% 
Η 34 188.7-400 0.7-1.4 4. 7 J/g 

Benzene Ρ 102 280-545 0.005-4.0 0. ,74% 
VP 67 280-562.6 0.005-4.9 0. ,35% 

Carbon Ρ 39 243-413.2 1.5-38 0. ,39% 
dioxide VP 33 216.5-302.6 0.5-7.1 0. ,81% 

Η 39 243-413.2 3-50.6 4. .1 J/g 

Ammonia Ρ 300 238-598 0.09-81.4 2. ,37% 
VP 172 221-403.6 0.04-11 0. ,08% 

Phenol Ρ 14 323-673 0.0003-5.1 0. ,78% 
VP 15 323-694 0.0003-6.1 1. ,33% 

Acetone Ρ 28 273.2-503 0.1-4.5 0. ,62% 
VP 20 329-508 0.1-4.8 0. ,24% 

A c e t i c acid Ρ 21 392-583 0.1-5 0. .52% 
VP 23 392-595 0.1-5.8 0. .36% 

D i e t h y l Ρ 17 329-483 0.1-3 0. .50% 
amine VP 18 329-493 0.1-3.5 0, .80% 

A n i l i n e Ρ 29 273.2-673 0-4 0. .44% 
VP 34 273.2-648.6 0-3 0. .76% 

P y r i d i n e Ρ 26 253-613 0.0001-5.3 0, .76% 
VP 25 253-613 0.0001-5.2 0, .88% 

Tetrahydro- Ρ 10 253-333 0.002-0.08 0, .27% 
f uran VP 25 253-540 0.002-5.2 0. .32% 

*AAD i s defined as 

η 

(1/n) V [V . .-V _ .]/V „ . 
c a l c . i e x p t , i e x p t , i 

i = l 
For density (p) and vapor pressure (VP) p r e d i c t i o n s , the percent (xl00%) AAD i s 
used. 
For enthalpy (H) p r e d i c t i o n s , the absolute value i n Joule/g i s used. 
The sources of experimental data used here are l i s t e d i n reference 49. 
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1. K A N C H A N A K P A N ET A L . Nonspherical Molecules 

Table VI. Comparison of Equation 40 with the BACK and 
Peng-Robinson Equations of State 

Component Property Number 
of Points AAD 

Component Property Number 
of Points 

Equation 40 BACK PR 
Ethylene RHO 40 0.91 3.19 

VP 35 0.94 5.22 
ENTH 34 2.00 2.77 

Propylene RHO 57 1.28 2.31 
VP 28 0.80 3.72 

i-Butane RHO 116 0.79 3.77 
VP 82 0.75 2.39 
ENTH 73 1.34 1.67 

i-Pentane RHO 38 0.84 3.01 
VP 22 0.29 0.90 

Benzene RHO 102 0.74 1.79 3.35 
VP 67 0.35 3.16 1.21 

Toluene RHO 13 0.31 1.82 0.54 
VP 33 0.89 5.24 2.31 

o-Xylene RHO 59 0.37 1.17 
VP 43 0.25 5.27 

Dichloro RHO 182 0.47 1.69 
difluoro VP 40 0.53 2.50 
methane ENTH 40 0.26 1.36 

Carbon RHO 39 0.39 1.89 
dioxide VP 33 0.81 0.61 

ENTH 39 1.76 3.09 

Nitrogen RHO 38 0.79 0.30 4.32 
VP 19 0.69 0.33 3.26 
ENTH 77 1.33 2.36 1.21 

Hydrogen RHO 40 0.53 0.74 3.69 
sulfide VP 24 0.39 2.12 4.23 

Methyl RHO 131 0.74 4.14 
fluoride VP 28 0.54 18.1 

Phenol RHO 14 0.78 10.5 
VP 15 1.33 6.11 

Acetone RHO 46 0.62 13.1 
VP 20 0.24 0.99 

Dimethyl RHO 34 2.90 3.77 
ether VP 19 0.26 3.46 

Methyl RHO 28 3.25 6.51 
ethyl VP 18 0.23 2.27 
ether 

Diethyl RHO 43 1.85 5.11 
ether VP 23 0.35 0.95 

Aniline RHO 29 0.44 2.98 
VP 34 0*76. 8.09 

Library 
1155 16th St., N.W. 

Washington, D.C. 20036 
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12 
Application of a New Local Composition Model 
in the Solution Thermodynamics of Polar and Nonpolar 
Fluids 

M. H. Li, F. T. H. Chung1, C.-K. So2, L. L. Lee, and Κ. E. Starling 

School of Chemical Engineering and Materials Science, University of Oklahoma, Norman, 
OK 73019 

A local composition model in solution 
thermodynamics is developed for the 
calculation of vapor-liquid equilibria of 
mixtures of molecules vastly different in 
size, polarity and strength of 
interaction. The concepts of nearest 
neighbor numbers, coordination shell, and 
pair interaction energies are interpreted 
in terms of modern liquid theory. For 
broad ranged applications, an accurate 
equation of state is introduced in the 
spirit of the mean density approximation 
by differentiation of the Helmholtz free 
energy. Calculations of the vapor-liquid 
equilibria of 83 binary and ternary 
systems, including nonpolar hydrocarbons, 
hydrogen-bonding alcohols, water, ammonia, 
and carbon dioxide show good agreement 
with experimental data. 

Since i t s i n t r o d u c t i o n , the l o c a l composition model 
(LCM) for the excess f r e e energy has been used i n 
s o l u t i o n thermodynamics f o r the c a l c u l a t i o n of vapor-
l i q u i d e q u i l i b r i a of h i g h l y nonideal mixtures. The 
systems i n c l u d e d p o l a r f l u i d s (such as a l c o h o l s , water 
and acetone) (1-3) . The f o r m u l a t i o n was i n a form 
s u i t a b l e f o r c a l c u l a t i o n of a c t i v i t y c o e f f i c i e n t s . 
However, the o r i g i n a l method was not us e f u l f o r the 
c a l c u l a t i o n of d e n s i t i e s . It a l s o d i d not apply to the 
near c r i t i c a l r e g i o n . On the other hand, mixture 

'Current address: NIPER, PO Box 2128, Bartlesville, OK 74005 
2Current address: Aspen Tech, 251 Vassar St., Cambridge, MA 02139 

0097-6156/86/0300-0250S08.75/0 
© 1986 American Chemical Society 
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12. LI E T A L . New Local Composition Model of Fluids 251 

p r o p e r t i e s have been p r e d i c t e d by using equations of 
state with mixing r u l e s f o r the equation parameters ( 4 ) . 
The p r e d i c t e d p r o p e r t i e s i n c l u d e d d e n s i t y , enthalpy and 
v a p o r - l i q u i d e q u i l i b r i u m (VLE). 

The o v e r l a p p i n g a p p l i c a t i o n s of these methods have 
c o e x i s t e d f o r many years while the two approaches 
remained separate. Only r e c e n t l y have there been 
e f f o r t s to a s s i m i l a t e the u s e f u l f eatures of the l o c a l 
composition a c t i v i t y c o e f f i c i e n t model i n t o equations of 
state(5.). The t h e o r e t i c a l groundwork connecting both 
approaches was l a i d by Lee, et a l . (6) where a molecular 
theory was e s t a b l i s h e d f o r the LCM. In t h i s work, we 
demonstrate the f e a s i b i l i t y of the approach by 
c a l c u l a t i n g f o r the v a p o r - l i q u i d e q u i l i b r i a as w e l l as 
the d e n s i t i e s of h i g h l y nonideal mixtures. We f i n d that 
l o c a l composition mixing r u l e s perform b e t t e r than 
conformai s o l u t i o n mixing r u l e s f o r most of the systems 
st u d i e d . 

Thfvry 
New Free Energy Model. The conventional p r a c t i c e i n 
s o l u t i o n thermodynamics i s to employ equations of state 
to describe the gaseous state of mixtures while using 
the s o - c a l l e d a c t i v i t y c o e f f i c i e n t models (e.g., van 
Laar, Margules, R e d l i c h - K i s t e r ) to describe the l i q u i d 
mixtures. We attempt a s y n t h e s i s here by combining the 
a c t i v i t y c o e f f i c i e n t model with the equation of s t a t e . 
The b a s i c approach i s o u t l i n e d below, and d i s c u s s i o n s 
that f o l l o w w i l l give the d e t a i l s . 

O u t l i n e of T h e o r e t i c a l Steps 

1. Local composition expression of energy, U 
(by i n t e g r a t i o n : A/NkT = / dp (U/N)) * 

2. Helmholtz free energy (H.F.E.) A 
(by the r e l a t i o n : Ρ = -3A/dVl T) * 

3. The pre ssure Ρ 

We f i r s t give a s t a t i s t i c a l mechanical d e f i n i t i o n 
of the l o c a l compositions. For s i m p l i c i t y , we consider 
a binary mixture of s p h e r i c a l molecules of types A and 
B. The number of neighboring Β molecules surrounding a 
c e n t r a l A molecule i s given i n terms of the r a d i a l 
d i s t r i b u t i o n f u n c t i o n , 8βΑ^ Γ^' 

L 
n B A ( L ) - PB V r 4 n r g B A ( r ) ( 1 ) 

where L i s the range ( r a d i u s ) of the c o o r d i n a t i o n . 
S i m i l a r l y , the number of neighbors A surrounding the 
center A i s 
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252 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

nAA<L> « PA V r 4 " 2 gAA<*> ( 2 ) 

We c a l l a n d Π β Α t n e nearest neighbor numbers. The 
c o o r d i n a t i o n number of the center A i s then the sum of 
i t s A neighbors and Β neighbors, 

ZA " nAA + nBA ( 3 ) 

As a consequence of d e f i n i t i o n s Equations 1-3, the 
' l o c a l compositions' of Β molecules and A molecules 
surrounding a center of type A are 

X B A = N B A / Z A - N B A / ( N A A + N B A > ( 4 ) 

and 

XAA " n A A / z A - nAA/< nAA + nBA> ( 5 ) 

S u b s t i t u t i n g the i n t e g r a l expressions i n t o Equations 4 
and 5, we have 

X B A = P B 'SBAdr 4 n r 2 *BA<«>/ 

[ P A J o A A d r
 4 " 2 * Α Α < * > 

+ P B /îBA*r
 4 N R 2 * B A < R > ] < 6 ) 

X A A - P A4 A A d r
 4 N R 2 * A A < R > / 

[ P A ^ 0 A A d r
 4 " 2 G A A < ' ) 

+ P B ^ 0 B A d r 4 " 2 « B A < « > ] ( 7 ) 

If we d i v i d e through by / dr 4 n r 2 g A A ( r ) 

XB A = χ Β Λ Β Α / ( χ Α + XB ABA> ( 8 ) 

and 

X A A = * A ' < * A + * B A B A > ( 9 ) 

wher e 

^ A - ft*** 4 " 2 8 B A < ' ) / ^ A A D R 4 N R 2 G A A ( R > ( 1 0 ) 

S i m i l a r d e f i n i t i o n s can be made f o r x^g a n £ X ^ J J . It i s 
i n t e r e s t i n g to note that Equations 8 and 9 are of the 
same form as given by Wilson (1). The analogy can be 
c a r r i e d f u r t h e r by noting the mean value theorem i n 
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12. LI ET A L . New Local Composition Model of Fluids 253 

i n t e g r a l c a l c u l u s , 

/ | j B A d r 4 7 r r 2 g B A ( r ) = / p B A d r 4ir r 2 e x p [ - P W B A ( r ) ] 

- ν Β Α * * ρ [ - β * Β Α ] 
where W = W B A ( r Q ) i s the p o t e n t i a l of mean fo r c e (7) 
evaluated at some mean value, tQ, a,nd V B A i s the 
s p h e r i c a l volume, 4 π ^ Β Α / 3 . S i m i l a r l y , 

/JAAdr 4 n r 2 g A A ( r ) = V A A e x p [ - P W A A ] (12) 

Thus 

ABA = ( W V A A ) " P [ - P < V B A - fAA>] ( 1 3 ) 

i n analogy to Wilson's A. i = ( Vj/ν±)exp[(g i±-
g ^ / k T ] . The energy equation i n s t a t i s t i c a l 
mechanics i s given by (6) 

ϋ· = [ N A ( N A - D/2V ] / dr g A A ( r ) u A A ( r ) 

+ (N AN B/2V) / dr g A B ( r ) u A B ( r ) 

+ (N AN B/2V) / dr g B A ( r ) n B A ( r ) 

+ [ N b ( N B - 1)/2V] / dr g B B ( r ) u B B ( r ) (14) 

By mean value theorem, 

ϋ ' = ( 5 A A / 2 ) P A V 1 d r *AA<*> 
+ ( i B A / 2 ) P B P A V / d r « B A < r ) 

+ ( 5 A B / 2 ) P A P B V * d r *AB<r> 
+ ( 5 B B / 2 ) PB V f d r * B B ( r ) ( 1 5 ) 

where U' i s the c o n f i g u r a t i o n a l f i r s t neighbor i n t e r n a l 
energy and u..(r) i s the p a i r p o t e n t i a l between species 
i and j . For Jangle-dependent and multi-body p o t e n t i a l s , 
an e f f e c t i v e p a i r p o t e n t i a l can be used. Using 
Equations 1-5, 

D'/N = (z A / 2 ) x A x A A Û A A + (z A / 2 ) x A x B A e B A 

+ (z B / 2 ) x B x B B u B B + ( z B / 2 ) x B x A B U A B (16) 

The key element of Wilson's o r i g i n a l f o r m u l a t i o n was h i s 
free energy expression. Here we di s c u s s the form due to 
Whiting and P r a u s n i t z ( 5 ) : 

" N k T = XA 1 η<*Αβ*Ι>[-β*ΑΑ] + *ΒΡΒΑ·Χ»[-*'ΒΑ]> 
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254 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

+ XB 1 η < χ Β β χ ρ [ - β * Β Β ] + χ Α Ρ Α Β β χ ρ [ - β ν Α β ] ) ( 1 7 ) 

At low d e n s i t i e s i t can be shown that α i s r e l a t e d to 
the c o o r d i n a t i o n number, z. 

<* = 2/z (18) 

Since i n a l i q u i d , the c o o r d i n a t i o n number, z^, of 
molecules A i s not n e c e s s a r i l y the same as the 
c o o r d i n a t i o n number, ζ β, 0 f molecules B, we can 
g e n e r a l i z e the W h i t i n g - P r a u s n i t z (WP) formula by 
i n t r o d u c i n g two α parameters, 

" ÏÏIT = ( χ Α / α Α > 1 η < χ Α β χ ρ [ - β * Α Α ] 
+ XB FBA e*P [ ^ W B A ] > 

+ ( χ Β / α Β ) 1 η < * Β β χ ρ [ - β * Β β ] 
+ X A F A B ^ P [-β^Αβ]> ( 1 9 ) 

Under weak c o n d i t i o n s (6), one can show that Equation 19 
i s c o n s i s t e n t with Equation 16 through the Gibbs-
Helmholtz r e l a t i o n . T h is equation s a t i s f i e s the pure 
f l u i d l i m i t s of 

A°/NkT = ( l / a A ) f ° A / k T ( 2 0 ) 

Equation 19 serves as a f r e e energy model for 
f u t u r e c a l c u l a t i o n s . Next we s h a l l look at the mixing 
r ul e s · 

N - F l n i d Theories and P r e u j a r e s . When an equation of 
state developed f o r a pure substance i s extended to 
mixtures, one of the questions i s the composition 
dependence of the new equation. This dependence i s 
u s u a l l y i n c o r p o r a t e d through mixing r u l e s a p p l i e d to the 
state v a r i a b l e s (dependent, independent or both) and/or 
the parameters of the equation. A fundamental 
understanding of composition dependence can be gained 
through studying some model mixtures i n s t a t i s t i c a l 
mechani cs. 

The v i r i a l pressure equation f o r a binary mixture 
of molecules of type A and Ng molecules of type Β i s 
given i n terms of the p a i r p o t e n t i a l s and p a i r 
c o r r e l a t i o n f u n c t i o n s (pcf) as 

P/(pkT) = 1 - βρ/6 χ 

2 $ » i x î i d ~ r ( a u i i / d r i i > 8 i i ( r ; Τ , ρ,χ) 
1 3 3 3 3 3 i , j = A,B (21) 

T h i s equation serves as our s t a r t i n g point of 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

2

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



12. LI ET A L . New Local Composition Model of Fluids 255 

examination of the mixing r u l e s . We note that the 
composition dependence has an ' e x p l i c i t ' part, under the 
double summation ( u n d e r l i n e d by ^ and an 
' i m p l i c i t ' part, contained i n the f u n c t i o n a l dependence 
of the p a i r c o r r e l a t i o n f u n c t i o n s , Sjj» Attempts have 
been made to approximate Equation 21 oy the s o - c a l l e d 
van der Waals η-fluid t h e o r i e s ( i . e . o n e - f l u i d , two-
f l u i d and t h r e e - f l u i d t h e o r i e s ) where the composition 
dependence i s s i m p l i f i e d and the p c f ' s are evaluated at 
reduced s t a t e s c h a r a c t e r i z e d by the corresponding energy 
and s i z e parameters. In the f o l l o w i n g we s h a l l examine 
f i r s t the e f f e c t s of molecular s i z e s on mixing r u l e s i n 
the absence of a t t r a c t i v e energies (e.g. i n hard sphere 
m i x t u r e s ) , and then of a t t r a c t i v e energies i n a d d i t i o n 
to the s i z e d i f f e r e n c e s (e.g. i n mixtures of Lennard-
Jones m o l e c u l e s ) . The f o r m u l a t i o n due to Henderson and 
Leonard (9) for m u l t i f l u i d t h e o r i e s i s summarized below. 

Hard Sphere Mixtures. For hard sphere mixtures, the 
d i f f e r e n c e i n species i s manifested i n s i z e . We s h a l l 
denote the b i g sph eres as those with diameter d ^ A and 
small spheres with diameter ά" Β Β. The cross i n t e r a c t i o n 
i s c h a r a c t e r i z e d by the diameter d^ B (=(<*ΑΑ + d B B ) / 2 ) . 
The v i r i a l equation reduces i n the hard sphere case to 

P/(pkT) = 1 + < 4 π / 6 ) Ή χ x p d 3 g ( d
+

 ; p , j ) 
J 1 J J J i , j = A,B (22) 

where S j ^ i d t . ) i s the contact value of the i j pcf. 
Equation J22 èan be c o n t r a s t e d with the pure hard sphere 
pressure equation 

P/(pkT) = 1 + ( 4 n / 6 ) p d 3 g o ( d
+ ; p ) (23) 

where g Q denotes the pure hard sphere pcf. The question 
posed i n the η-fluid t h e o r i e s i s the r e l a t i o n between 
the mixture pcf, g i j ( r ) , and the pure g 0 ( r ) . As f a r as 
the pressure i s concerned, i t i s t h e i r contact values 
that are important. For example i n the t h r e e - f l u i d 
theory (vdw3) for binary mixtures, one assumes 

8AA<dAA-P'X> Ξ *o<dAA-PdAA> ( 2 4 ) 

8 B B ( d B B ; P ' x ) Ξ 8o< dBBiP dBB> ( 2 5 ) 

and 

gAB<dAB'P'*> Z «o< dAB'P dAB> ( 2 6 ) 

In the two f l u i d theory, the f o l l o w i n g assumptions are 
made, 

*AA ( dAA-P' x> Ξ *o< dxA-P dxA> ( 2 7 ) 
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256 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

gBB ( dBB ;P'*> Z *o ( dxB ;P dxB> ( 2 8 ) 

and 

8 A B < D A B ' P ' » ) = [*AA + 8 B B ] / 2 ( 2 9 ) 

where 

*h = Σ xj djA (3°> 
and i 

dxB = Σ xj *jB < 3 1> 
F i n a l l ^ , the o n e - f l u i d theory i s simply given by 

g i j ( d i j ; P ' * ) S go< dx'P dx> ( 3 2 ) 

where 

d x - 2*i*J*3iJ < 3 3> 
We ca examine the v a l i d i t y of a l l three models by 
comparing the pressure values obtained above with known 
s i m u l a t i o n r e s u l t s f o r hard spheres. For example, the 
contact values are a c c u r a t e l y given by the Carnahan-
S t a r l i n g (C-S) formula, 

g <d+) = 4~ 2y,, (34) 
4 < i - y r 

where y=^pd 3 . The r e s u l t s are l i s t e d i n Table I. 
We choose three t y p i c a l mixtures f o r d i s c u s s i o n : 

( i) low density with diameter r a t i o ^ A A ^ B B ^ 1.9; ( i i ) 
high d e n s i t y with diameter r a t i o 1.1 and ( n i ) high 
d e n s i t y with a high diameter r a t i o of 3.3. At low 
d e n s i t i e s (pd^A = 0.3036 and x A = 0.5) the 
c o m p r e s s i b i l i t y from the C-S equation i s 1.406. A l l 
three t h e o r i e s give comparable r e s u l t s with the vdwl 
g i v i n g the best p r e d i c t i o n . At higher d e n s i t y , (pd^A 
= 1.0825) with diameter r a t i o dAA^ dBB = I · 1 1 1 * vdwl 
gives a value f o r Ζ of 11.993 as compared to the Monte 
Ca r l o value of 12.3. vdw2 gives 12.48 and vdw3 gives 
13.035. Since the diameters are very c l o s e , we can 
expect a l l three t h e o r i e s to be f a i r l y accurate. (In 
the l i m i t dAA = dBB' a 1 1 three t h e o r i e s are e x a c t ) . At a 
higher diameter r a t i o d A A / d B B = 3.333, corresponding to 
a molecular volume r a t i o of ~37., MC gives βΡ/ρ = 
8.814, while vdwl giv e s 6.027. Vdw2 and vdw3 t h e o r i e s 
are t o t a l l y inadequate at t h i s c o n d i t i o n , being 15.49 
and 5208, r e s p e c t i v e l y . The vdw3 theory f a i l s to give a 
reasonable value due to the magnitude of the contact 
value g A A(d^ A)=5453. This i s caused by the high value 
of the reduced d e n s i t y pd^ A=i.8225. Namely, the vdw3 
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12. LI E T A L . New Local Composition Model of Fluids 257 

Table I. The C o m p r e s s i b i l i t y F a c t o r , βΡ/ρ, Comparison 
of the 1 - F l u i d , 2 - F l u i d and 3 - F l u i d T h e o r i e s with Exact 

Re s u l t s f or Hard Sph er e Mixtures of Species A and Β 

Com pr e s s i b i 1 i ty Fa ct or : βΡ/ρ 
+ 

d AA / dBB 
3 

p d A A XA MC Vdwl Vdw2 Vdw3 

i 1.111 1 .0825 0 .01 7.5571 7 .5553 7 .5661 7 .5770 
0.25 9.437 8 9 .3 894 9 .6602 9.9620 
0 .50 12 .300* 11.993 12 .480 13 .035 
0 .75 15 .762 15.657 16 .160 16.709 
0 .99 20 .736 20.728 20.765 20 .801 

i i 1.111 1 .1266 0 .01 8.3720 8.3698 8 .3 837 8.3977 
0 .25 10.577* 10 .552 10 .905 11 .304 
0 .50 13 .835 13.715 14.363 15 .113 
0 .75 18.417 18 .280 18.964 19.718 
0 .99 24 .7 97 24 .786 24.837 24 .888 

i i i 1.905 0 .3036 0 .01 1.1018 1 .1017 1 .1020 1 .1023 
0 .25 1 .2265 1 .223 8 1 .2324 1 .2432 
0 .50 1 .4061 1 .3 988 1 .4170 1.4396 
0 .75 1 .6518 1 .642 0 1.6628 1 .6 865 
0 .99 1 .9687 1 .9678 1 .9694 1 .9710 

iv 3.333 1 .8225 0 .01 1 .1328 1 .1320 1 .1435 3 .2353 
0 .25 2 .3269 2 .1117 3 .2066 1303 .5 
0 .50 8 .8140* 6.0273 15 .494 5208 .6 

+d^. = diameter of la r g e spheres and dgg = diameter of small 
spheres. = ( d. A + d„ f i)/2 

•Monte C a r l o data of Lee ana Levesque ( 10); others c a l c u l a t e d 
from the f o r m u l a t i o n of Mansoori, et a l . (11) 

Vdwl, Vdw2 and Vdw3 are the van der Waals o n e - f l u i d , t w o - f l u i d 
and t h r e e - f l u i d t h e o r i e s .  P
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theory presupposes i n one of i t s terms a h y p o t h e t i c a l 
pure f l u i d composed e n t i r e l y of larg e spheres. This 
p i c t u r e i s p h y s i c a l l y unsound due to the f a c t that h a l f 
of the molecules i n the mixture are small spheres which, 
being i n t e r s p e r s e d amongst the larg e ones, leave a 
l a r g e r p o r t i o n of 'empty space' or 'free volume' 
a c c e s s i b l e to other molecules. Consequently, the t o t a l 
pressure of vdw3 i s co n s i d e r a b l y higher than that given 
by the r e a l f l u i d . The above comparison c l e a r l y 
demonstrates that the vdwl theory gives the best r e s u l t s 
for high d e n s i t i e s and larg e s i z e r a t i o s . The two other 
t h e o r i e s (vdw2 and vdw3) are inadequate by comparison. 

M i x t u r e of LJ Molecule^. Recently, Hoheisel and Lucas 
(12.) have made extensive s t u d i e s of binary mixtures of 
Lennard-Jones molecules with d i f f e r e n t s i z e r a t i o s (up 
to 2) and energy r a t i o s (up to 5 ) . They compared the 
pcf obtained from vdwl and the mean d e n s i t y 
approximation (NDA) with s i m u l a t i o n data. T h e i r r e s u l t s 
showed that both t h e o r i e s are reasonable; however, the 
MDA theory gives b e t t e r J - i n t e g r a l s . The mean de n s i t y 
approximation was proposed by Mansoori and Leland (13) 

4 - E * i * j * i j ( 3 5 ) 

and i j 

g i j ( r ) = go <Γ/°ν*Τ/βίί:},ρσ3) <3*> 
while the vdwl i n t h i s case i s given by Equation 35 plus 

σ χ ε χ - 2 * i * j * i j 8 i j < 3 7 ) 

and *J 

8 i j ( r ) = «ο <*/σ χ ; * Τ / ε χ , ρ σ 3 ) <3*> 
Thus the MDA d i f f e r s from the vdwl i n that i n d i v i d u a l 
energy parameters, * ± 2 , are used i n c h a r a c t e r i z i n g the 
temperature. The two t h e o r i e s c o i n c i d e when ε*^ = 
εΒΒ* ^ e v i r * a l pressure f o r Lennard-Jone s molecules 
can be w r i t t e n as 

βΡ/ρ-1-1««2,4,Λ ( P e i j ) (p .^ ) [j«5>-2J<«> ] (39) 

where the J - i n t e g r a l i s def i n e d as 

J ( n ) = J dr* r * 2 g ( r * ) / r * n (40) 
where r * i s the reduced d i s t a n c e . The r e s u l t s are 
presented i n Table I I . 
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Table I I . The C o m p r e s s i b i l i t y Factor, βΡ/ρ, for 
Equimolar Mixtures of Lennard-Jones Molecules of 

Species A and Β 
ρ*=ρσ 3=0.8 

COMPRESS IBIÎITY FACTOR: βΡ/ρ 

Τ, κ E B B / 8 A A σ Β Β / σ ÀA MC* MDA** Vdwl 

270 1 .50 1 .00 3 .1563 3 .1346 3 .1680 
270 3 .00 1 .00 3 .1483 3 .1431 3 .2772 
270 5 .00 1 .00 2.8555 2 .9402 3 .1211 
270 1.00 1.15 3 .1702 3 .0711 3 .0711 
270 1.50 1.15 3 .1414 3 .0697 3 .0474 
270 3 .00 1.15 3 .0417 3 .0196 3 .0760 
270 5 .00 1.15 2 .9185 2 .8014 2 .8909 
270 1.00 1.30 3 .1425 3 .1167 3 .1167 
200 1.50 1.30 4.0571 3 .9323 3 .9531 
200 3 .00 1.30 3 .9158 3 .9533 4.2409 
200 5 .00 1.30 3 .6924 3 .6644 3 .7173 
200 1 .00 1.65 4.1416 3 .9395 3 .93 95 
200 1.50 1.65 4 .3014 3 .9544 3 .9879 
200 3 .00 1.65 4 .3526 3 .9320 4 .0978 
200 5 .00 1.65 4.1050 3 .6296 3 .6015 
200 1.00 2 .00 4.3519 4 .1583 4 .1583 
200 1.50 2 .00 4.6298 3 .9738 4 .0277 
200 3 .00 2 .00 4 .8513 3 .9341 3 .9303 
200 5 .00 2.00 4.6499 3 .6627 3 .5321 
200 0.33 1.30 3 .5412 3 .5952 3 .6183 
200 0 .20 1.30 3 .3245 3 .4565 3 .4941 
34 1.50 1.30 1 .097 4 0 .9648 1 .1034 

Vdw2 Vdw3 

4.4724 4.9951 

* Monte Carlo data of Hoheisel and Lucas (12) 
** MDA=Mean Density Approximation 

Vdwl, Vdw2 and Vdw3 are the van der Waal s 
o n e - f l u i d , t w o - f l u i d and t h r e e - f l u i d t h e o r i e s 

It shows that f o r small s i z e r a t i o s , ^ σ Β β / σ Α Α * 
1.3), both MDA and vdwl give reasonable r e s u l t s ( + 
0.7%). As σ

Β Β / σ Α Α reaches 1.65, vdwl d e t e r i o r a t e s 
at l a r g e ε β Β / 8 Α Α (-12% at ε Β Β / ε Α Α = 5 ) . The 
s i z e d i s p a r i t y coupled with la r g e energy d i f f e r e n c e 
proves to be beyond the scope of both t h e o r i e s . For 
example at < * Β Β / σ Α Α - 2.00 and 8 β Β / ε Α Α = 3.00, 
vdwl gives an e r r o r of -19%, while MDA i s s i m i l a r l y -19% 
i n e r r o r . There i s l i t t l e to choose between MDA and 
vdwl i n t h i s case. 

Our c o n c l u s i o n s are i n agreement with recent 
s t u d i e s on the Lennard-Jones mixtures. In the f o l l o w i n g 
we s h a l l consider e.g. the MDA approximation f o r use i n 
our equation of s t a t e . 

i?_ix_t ure Ea.uatjlon of Sjtajte 

Given an equation of state f o r a pure f l u i d , the 
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260 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

f o l l o w i n g procedure can be used to b u i l d an equation f o r 
mixture s. 

We f i r s t d e r i v e the Helmholtz free energy, A, from 
the given P-V-T r e l a t i o n . By i d e n t i f y i n g the p o t e n t i a l 
of mean force as the Helmholtz free energy, we can 
immediately write down the f r e e energy f o r mixtures 
according to Equation 19, i . e . 

- A' / ( NkT) = ( x A / a A ) ln[x Aexp(-a AÂ' A A/kT) 

+ xB FBA e*P<-*A ÂBA/ k T>] 
+ (x

B/<*B) ln[x Bexp(-a BÂ' B B/kT) 

+ Χ Α Ρ Α Β * * Ρ < - * Β Α Α Β / * Τ > ] ( 4 1 ) 

In t h i s equation the approximation i s made that f o r 
mixtures the p o t e n t i a l s of mean f o r c e are set 
p r o p o r t i o n a l to the component Helmholtz free energies 
(see H i l l ( i 4 ) ) . To o b t a i n the pressure, we 
d i f f e r e n t i a t e A' with respect to volume, according to 

Ρ = - Θ Α / a V I T (42) 

thus o b t a i n i n g 

P = XA<*AA PAA + * Β Α Ρ Β Λ > + Χ Β < Χ Β Β Ρ Β Β + XAB PAB > < 4 3 ) 

where 

p i j = - « i i j / β ν I τ (44) 
Thus, the mixture equation of s t a t e . Equation 43, 

depends on the composition i n terms of the l o c a l 
compositions. We note that Equation 43 s a t i s f i e s the 
e x p l i c i t composition dependence of Equation 21 (N.B. 
the l o c a l compositions, x^., contains the mole f r a c t i o n , 
x ^ ) . So f a r the development has been g e n e r a l . To make 
p r a c t i c a l c a l c u l a t i o n s , we must adopt a f u n c t i o n form 
for the s p e c i f i c Helmholtz free energies. 

Mixture Parameters. Â' and P. i i n Equations 41-44, 
being p r o p e r t i e s of molécules with j - i i n t e r a c t i o n s , are 
c a l c u l a t e d from an equation of state f o r pure substances 
developed by Chung, et a l . (15.). The equation of state 
has been t e s t e d f o r normal p a r a f f i n s ^2"" n^20^ ' ring 
compounds, and p o l a r compounds (^S, acetone, e t c . ) , and 
a s s o c i a t i n g compounds (NH,, water, and a l c o h o l s , e t c . ) . 
The pure f l u i d equation of state i s accurate enough f o r 
engineering design c a l c u l a t i o n s . 

Ĵ dujç__e d T e i i e r a t n r e and Dens i ty. For the equation of 
state used here, A'.. and P.. are f u n c t i o n s of the 
reduced temperature, T*^ , reduced d e n s i t y , p| j , and 
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12. LI E T A L . New Local Composition Model of Fluids 261 

s t r u c t u r e p a r a m e t e r , λ., 
u s e d f o r T*^ and p * j a r V 

p i j - P V*x 
where 

(see ( 1 5 . ) ) . The r e l a t i o n s 

(45) 

(46) 

V* 
χ 

χ V* 2«-
mn 

The r e l a t i o n 
the r e l a t i o n 
Combi na t i on 
mean 

(47) 

fo r T* corresponds to the MDA model, while 
f o r p*. corresponds to a one f l u i d model, 

of Equations 45-47 with Equation 41 gives a 
p o t e n t i a l LCM model for f l u i d mixtures. 

The Comb_inj.JLg RuJ..e_j>. 
^ i j ' V * i j ' a n d E i j a r e 

combining r u l e s : 

1J 
-JJL + λ i l 

The c h a r a c t e r i z a t i o n parameters 
c a l c u l a t e d by the f o l l o w i n g 

(48) 

V*. - * ( v î i v î j > 1/2 (49) 

i j 
11, 

ii°jj 
o * l / 2 (50) 

(51) 

8ij / k - *Vk + -f <52> 
where the s u b s c r i p t s i i and j j r e f e r to the pure 
component parameters and ξ and ζ are binary 
i n t e r a c t i o n parameters, BIPs. 

B e s u l t s jind D i s c u s s i o n 

t o t h e 
*A = a R recommended 

is 
by 

the 

The values of a. i n Equation 41 are r e l a t e d 
c o o r d i n a t i o n numbers. We have chosen a' = a A 

= 0.5 i n t h i s work, i . e . , the value 
Whiting and P r a u s n i t z ( 5 ) . The q u a n t i t y F.,, 
r a t i o of V.. to V . j , where V y i s the f i r s t - n e i g h b o r 
volume. To account: f o r V.. ( i£j ) , a binary i n t e r a c t i o n 
parameter 6 i s introduced, where V^. = 
6 3 ( V i i v . . ) 1 · Furthermore, the f i r s t - n e i g h b o r 
volume, ^.., i s approximated as p r o p o r t i o n a l to the 
molar covolume V.}, thus 
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In the l o c a l composition model used here, three 
binary i n t e r a c t i o n parameters (ζ, Ç, and δ) are 
introduced. They are determined by f i t t i n g the mixture 
equation of state to mixture experimental data. 

For purpose of comparison, v a p o r - l i q u i d e q u i l i b r i a 
c a l c u l a t i o n s were also performed using conformai 
s o l u t i o n mixing r u l e s , which correspond to the vdwl 
model. The f o l l o w i n g conformai s o l u t i o n mixing r u l e s 
are adopted to o b t a i n mixture c h a r a c t e r i z a t i o n 
param eter s 

V x - g*i*jVîj <*4) 

8 x V x - S ^ j ' i j V i J (55) 
i j 

S * i * j * i J V i J (56) X x V x 
1 J 

The s u b s c r i p t χ represents the mixture c h a r a c t e r i z a t i o n 
parameters. The combining r u l e s used to c a l c u l a t e the 
cross i n t e r a c t i o n parameters are the same as Equations 
48-52. Hereafter, we r e f e r to the two mixing r u l e s as 
LCM ( l o c a l composition mixing r u l e s ) and CSM (conformai 
s o l u t i o n mixing r u l e s ) , r e s p e c t i v e l y . 

U n a r y . & 3 . W e have a p p l i e d the above equation of 
state to the c a l c u l a t i o n of mixture d e n s i t i e s and vapor-
l i q u i d e q u i l i b r i a of binary systems. In these 
c a l c u l a t i o n s , the same combining r u l e s . Equations 48-52, 
with two binary i n t e r a c t i o n parameters, ξ and ζ, were 
used i n both LCM and CSM. For the LCM, a t h i r d 
parameter, δ, was introduced to c a l c u l a t e the value of 
F i j , i . e . , from Equation 53. We have i n c r e a s e d the 
number of binary i n t e r a c t i o n parameters i n the CSM to 
three and then to four ( f o r D.. a n d X i . ) . When t e s t e d 
f o r the methanol-carbon di o x i i e syste'm, no a p p r e c i a b l e 
improvement was obtained. Thus we r e t a i n only two 
binary parameters f o r CSM. For systems with both vapor-
l i q u i d e q u i l i b r i u m and mixture d e n s i t y data, the optimal 
values of the b i nary i n t e r a c t i o n parameters f o r each 
system were determined by using both data simultaneously 
i n m u l t i p r o p e r t y r e g r e s s i o n analyses. The experimental 
v a p o r - l i q u i d e q u i l i b r i u m and d e n s i t y ranges s t u d i e d are 
given i n Tables I I I and IV. 

For mixture d e n s i t y c a l c u l a t i o n s , f i v e systems were 
s e l e c t e d f o r study. The r e s u l t s of mixture density 
c a l c u l a t i o n s using both LCM and CSM are given i n Table 
IV. The two mixing r u l e s y i e l d s i m i l a r r e s u l t s except 
fo r the system acetone-water. The LCM gives b e t t e r 
r e s u l t s (1.7%) than the CSM (7.9%) for forty-one d e n s i t y 
data p o i n t s i n the acetone-water system. The mixture 
acetone-water i s a s t r o n g l y nonideal system; i t s 
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12. LI E T A L . New Local Composition Model of Fluids 269 

components d i f f e r a p p r e c i a b l y i n both s i z e and strength 
of i n t e r a c t i o n s ( p o l a r and a s s o c i a t i n g e f f e c t s ) . 

Table IV. Density C a l c u l a t i o n s Using L o c a l 
Composition and Conformai S o l u t i o n Mixing Rules 

System Ref. No of Data Τ Ρ Mixing Density 
Poi n t s oK bar Rules A.A.D.% 

Me thane- m > 10 310- 137- LCM 1 .04 
n-de cane 

m > 
511 620 CSM 1 .07 

Ethane- (92) 49 273- 5 .1- LCM 1 .96 
n-buta ne 413 43 CSM 2 .15 
Me t h a n o l - (93.) 27 293- 1 .013 LCM 1 .69 
benz ene 313 
Ace tone- (94- 41 293- 1 .013 LCM 1 .70 
water 95) 353 CSM 7 .97 
Me t h a n o l - (96) 50 298- 1 .013 LCM 1 .71 
water 323 CSM 3 .22 

For v a p o r - l i q u i d e q u i l i b r i u m c a l c u l a t i o n s , s i x t e e n 
b i n a r y systems, ranging from nonpolar-nonpolar, 
nonpolar-polar, to polar and a s s o c i a t i n g f l u i d s , were 
chosen f o r comparison. A summary of the r e s u l t s i s 
given i n Table I I I . The o v e r a l l average absolute 
percentage d e v i a t i o n (A.A.D.%) of the e q u i l i b r i u m K-
value (Kl) for these f i f t e e n systems are 5% for the LCM 
and 10% for the CSM, r e s p e c t i v e l y . For nonpolar systems 
e thane-n-butane and methane-n-de cane, both the LCM and 
CSM f i t the v a p o r - l i q u i d e q u i l i b r i a data w e l l . The LCM 
f i t s the data b e t t e r than the CSM at the temperature of 
583 Κ f o r the system me thane-n-de cane (see Figu r e 1 ) . 
For nonpolar-polar systems, CO^-methane, C0 2-n-hexane, 
CO^-n-de cane , CC^-n-hexa de ca ne , CO*-benzene, acetone-
ethane, acetone-n-heptane, acetone-oenzene, ethanol-n-
hexane and 1-propanol-n-decane, the LCM y i e l d s b e t t e r 
r e s u l t s than the CSM (see Table I I I ) . For systems of 
C0 2-n-hexane and CO^-benzene, the CSM gives poor r e s u l t s 
i n l i q u i d composition while the LCM y i e l d s improved 
r e s u l t s (see Figure 2 ) . For the C0 2- n-hexadecane 
system, the r a t i o of the covolume parameters, V*, i s 1 : 
7.6. The A.A.D.% for the e q u i l i b r i u m K-values (Kl) 
c a l c u l a t e d from the LCM i s 10% and from the CSM i s 13% 
for temperatures ranging from 462 Κ to 663 Κ (see Table 
I I I ) . The a cetone-n-heptane system forms a maximum 
pressure azeotrope at 33 8.15 K. The CSM gives poor 
r e s u l t s near the azeotrope while the LCM gives 
reasonable r e s u l t s (see Figure 3 ) . For pol a r and 
a s s o c i a t i n g f l u i d s , acetone-water, methano1-C0 2, 
methanol-water and acetone-CO^, CSM gives poor r e s u l t s 
f o r the VLE c a l c u l a t i o n s . The improvement i n the f i t of 
the VLE data by the LCM i s dramatic (see Table I I I ) . 

O v e r a l l , for nonpolar mixtures such as ethane-n-
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v n i 1 1 1 1 ' 
0 .2 .4 .6 .8 I 

M o l e F r a c t i o n C a r b o n D i o x i d e 
F i g u r e 2. Experimental and c a l c u l a t e d v a p o r - l i q u i d 
e q u i l i b r i a f o r the system carbon dioxide-n-hexane at 
298.15 Κ. 
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Λ • : Maripuri and Ratclif f ( 1 9 7 2 ) 

: CSM 

1 1 1 1 1 

0 .2 .4 .β .8 I 

Mole F r a c t i o n Acetone 
Figure 3. Experimental and calculated vapor-liquid 
equilibrium for the system acetone-n-heptane. 
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butane and me thane-n-de cane, both LCM and CSM y i e l d 
s i m i l a r r e s u l t s . For s t r o n g l y nonideal systems such as 
methanol-C02, acetone-water, n-hexane-ethanol and C0 2-n-
heiane, the LCM i s c l e a r l y s u p e r i o r to the CSM. 

The a p p l i c a b i l i t y of the LCM has als o been 
e x t e n s i v e l y t e s t e d f o r 1.) n a t u r a l gas systems, 
i n c l u d i n g normal p a r a f f i n s up to n-decane, n i t r o g e n , 
carbon d i o x i d e , and hydrogen s u l f i d e , and 2.) p o l a r 
systems, i n c l u d i n g water, methanol, ethanol, 1-propanol, 
and acetone. The summary of the r e s u l t s f o r vapor-
l i q u i d equlibrium c a l c u l a t i o n s i s given i n Table I I I . 

We have covered many mixtures with methane ( a l l 
together 15 systems) i . e . from ethane to n-decane and 
from C0 2 to water. The accuracy of the c a l c u l a t i o n s f o r 
these systems are shown to be s a t i s f a c t o r y . 

The systems hydrocarbons-alcohols are h i g h l y 
nonideal and are t h e r e f o r e d i f f i c u l t to f i t . The 
ethanol-n-heptane system forms minimum b o i l i n g 
temperature azeotrope at 0.533 bar as shown i n Figure 4. 
The LCM d e s c r i b e s t h i s system reasonably well over the 
e n t i r e c o n c e n t r a t i o n range. The LCM also gives 
s a t i s f a c t o r y VLE r e s u l t s f o r other minimum b o i l i n g 
temperature azeotropes such as methanol-n-pentane, 
methanol-n-hexane, methanol-n-heptane, methanol-benzene 
and benzene-l-propanol (see Table I I I ) . It i s 
demonstrated that the composition dependence of the LCM 
i s very e f f e c t i v e f o r VLE c a l c u l a t i o n s f o r s t r o n g l y 
nonideal systems, even near the reg i o n of the azeotrope. 

The mixtures of methane-water, ethane-water and 
ethy 1ene-water are of p r a c t i c a l i n t e r e s t . The LCM gives 
adequate VLE r e s u l t s f o r methane-water system f o r 
pressures up to 700 bar (see Figure 5.) Even though 
methanol and 1-propanol are both polar and a s s o c i a t i n g 
substances, the methanol-l-propanol mixture i s not a 
s t r o n g l y nonideal system. As shown i n Figure 6, the LCM 
y i e l d s s a t i s f a c t o r y VLE r e s u l t s f o r t h i s system. 

J J B r n a r y Sy._sjt.em_s. Ternary and mul ticomponent vapor-
l i q u i d e q u i l i b r i a are o b v i o u s l y more important i n 
i n d u s t r y than binary systems. Though the amount of 
binary v a p o r - l i q u i d e q u i l i b r i a data a v a i l a b l e i n the 
l i t e r a t u r e i s l a r g e , h i g h l y accurate data f o r 
multicomponent systems are r a t h e r scarce. Thus, i t i s 
of great importance that mixing r u l e s can be a p p l i e d to 
multicomponent systems using only binary parameters. 
The ternary systems methane-ethane-propane, acetone-
methanol-ethanol and n-hexane-ethanol-benzene were 
s e l e c t e d f o r t e s t . The r e s u l t s f o r these three ternary 
systems are given i n Table V. The LCM p r e d i c t s the mole 
f r a c t i o n s i n both the l i q u i d and the vapor phases 
reasonably well for these three ternary systems. 
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Figure 5. Experimental and c a l c u l a t e d v a p o r - l i q u i d 
e q u i l i b r i a f o r the system methane-water. 
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ι 1 1 1 1 1 

0 .2 .4 .6 .8 I 
Mole F r a c t i o n Methanol 

F i g u r e 6. Experimental and c a l c u l a t e d v a p o r - l i q u i d 
e q u i l i b r i a f o r the system methanol-l-propanol at 
323 . 1 5 K . 

Sy st em 

Table V. V a p o r - l i q u i d e q u i l i b r i a p r e d i c t i o n s using l o c a l 
composition mixing r u l e s f o r three t e r n a r y systems 

Refer- No. of Τ Ρ Κ χ K 2
 κ 

ence data (Κ) (bar) 
ρο i nt s 

A.A.D % 
(97) 33 158-214 2.2-55 3.08 6.83 11.2 Me thane( 1) -

Ethane(2)-
Pr opane(3) 
Ace t o n e ( 1 ) -
Methanol(2)-
Ethanol(3) 
n-Hexane(1)-
E t h a n o l ( 2 ) -
Benz ene(3) 

(82) 

(29) 

81 329-348 1 .0130 8 .04 8 .45 10 .3 

43 328 .15 .54-.88 7 .75 9 .7 9 7 .72 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

2

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



12. LI ET AL. New Local Composition Model of Fluids 275 

Çonjç_lu_s_i on_s 
A l o c a l composition model has been developed to describe 
the composition dependence of mixture thermodynamic 
p r o p e r t i e s . The method employs a r e c e n t l y proposed 
equation of s t a t e . A m u l t i f l u i d model i s adopted f o r 
the reduced temperature and one f l u i d model adopted f o r 
the reduced d e n s i t y . 

For s t r o n g l y nonideal mixtures, such as methanol-
C(>2, acetone-water, n-hexane-ethanol, and Ci^-benzene, 
the LCM d e s c r i b e s v a p o r - l i q u i d e q u i l i b r i a behavior 
a c c u r a t e l y while the conformai s o l u t i o n model, which i s 
a one f l u i d model, does not work w e l l f or these 
mixt ur e s. 

It should be noted that the present l o c a l 
composition mixing r u l e s can be used to extend v i r t u a l l y 
any c o r r e s p o n d i n g - s t a t e s type equation of state to 
mixt ure s· 

In summary, the present f o r m u l a t i o n has the 
f o l l o w i n g u s e f u l f e a t u r e s : 

1) . The method works w e l l for n a t u r a l gas systems. 
2) . The method works f o r mixtures i n which components 

d i f f e r a p p r e c i a b l y i n s i z e . 
3) . The method works w e l l for a wide v a r i e t y of f l u i d 

mixtures, ranging from nonpolar to h i g h l y polar 
f l u i d s . 

4) . The method can be a p p l i e d to extend any 
corr e s p o n d i n g - s t a t e s type equation of state 
to mixtures. 
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LJÊ.&Ê.MÂ o_£ Symb oi_s 

A Helmholtz free energy 
Â'. 

i j c o n f i g u r a t i o n a l Helmholtz free energy of 
molecules with i - j i n t e r a c t i o n s 
hard sphere diameter 
c h a r a c t e r i z a t i o n parameter f o r polar and 
a s s o c i a t i n g e f f e c t s 
c o o r d i n a t i o n volume r a t i o 
r a d i a l d i s t r i b u t i o n f u n c t i o n between i j 
p a i r s 
Boltzmann's constant 
e q u i l i b r i u m constant 
range ( d i s t a n c e ) of f i r s t c o o r d i n a t i o n 
s h e l l for i molecules surrounding the 
center j molecule 
nearest neighbor number of i molecules i n 
the f i r s t c o o r d i n a t i o n s h e l l surrounding a 
c e n t r a l j molecule 
t o t a l number of molecules i n the system 
g l o b a l number of nearest neighbor p a i r s 
between i and j molecules 
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Ρ pressure 
r i n t e r m o l e c u l a r distance measured from 

center to center 
R gas constant 
Τ temperature 
U i n t e r n a l energy 
U j , average p a i r i n t e r m o l e c u l a r energy 
V volume 
V* molecular volume parameter 
V\j c o o r d i n a t i o n volume 
'±i p o t e n t i a l of mean force between species i 

and j molecules 
mole f r a c t i o n of component i 

z£j l o c a l composition of i molecules around a 
j molecule 

z i c o o r d i n a t i o n number of f i r s t neighbors 
Ζ c o m p r e s s i b i l i t y f a c t o r 

iLre_ek L_e._t_t.er_s 

α ' r e l a t e s to the c o o r d i n a t i o n number, equal 
to 0.5 i n t h i s work 

β 1/kT 
δ b i n a r y i n t e r a c t i o n parameter 
ε energy parameter 
β energy parameter f o r nonpolar c o n t r i b u t i o n 
Ç binary i n t e r a c t i o n parameter 
λ s t r u c t u r e parameter 
ρ d e n s i t y 

ξ b i n a r y i n t e r a c t i o n parameter 

Literature Cited 
1. Wilson, G. M. J. Am. Chem. Soc., 1964, 86, 127. 

2. Orye, R. V. and Prausnitz, J.M. Ind. Eng. Chem., 
1965, 57, 18. 

3. Abrams, D.S. and Prausnitz, J.M. AIChE J., 1975, 
21, 116. 

4. Benedict, Μ., Webb, G.B. and Rubin, L.C. J . Chem. 
Phys., 1940, 8, 334. 

5. Whiting, W.B. and Prausnitz, J.M. Fluid Phase 
Equilibria, 1982, 9, 119. 

6. Lee, L . L . , Chung, T.H. and Starling, K.E. Fluid 
Phase Equilibria, 1983, 12, 105. 

7. Kirkwood, J.G. J. Chem. Phys., 1935, 3, 300. 
8. Starling, K.E., Lee, L . L . , Chung, T.H. and Li, 

M.H., 'Equation of state study for polar fluids,' 
1983, third annual report to the Gas Research 
Institute, University of Oklahoma, Norman, OK. 

9. Henderson, D. and Leonard, P.J. , 'Liquid Mixtures' 
in Physical Chemistry: An Advanced Treatise, Volume 
VIIIB (Academic Press, New York 1971), pp. 413-510. 

10. Lee, L.L. and Levesque, D., Mol. Phys., 1973, 26, 
1351. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

2

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 

http://L_e._t_t.er_s


12. LI ET AL. New Local Composition Model of Fluids 277 

11. Mansoori, G.Α., Carnahan, Ν.F., Starling, Κ.Ε., and 
Leland, T.W., J. Chem. Phys., 1971, 54, 1523. 

12. Hoheisel, C. and Lucas, K. Mol. Phys., 1984, 
53(1), 51. 

13. Mansoori, G.A. and Leland, T.W. J. Chem. Soc. 
Faraday Trans. II, 1972, 68, 320. 

14. Hil l , T.L. , 1956, Statistical Mechanics. McGraw-
Hil l , New York. 

15. Chung, T.H., Khan, M.M., Lee, L.L. and Starling, 
K.E. Fluid Phase Equilibria, 1984, 17, 351. 

16. Guggenheim, E.A. 'Mixtures', 1952, Oxford 
University Press, London. 

17. Wichterle, I. and Kobayashi, R.K. J. Chem. Eng. 
Data, 1972, 17(1), 9. 

18. Wichterle, I. and Kobayashi, R.K. J. Chem. Eng. 
Data, 1972, 17(1), 4. 

19. Roberts, L.R., Wang, R.Η., Azarnoosh, Α., and 
McKetta, J .J . J. Chem. Eng. Data, 1962, 7(4), 484. 

20. Chu, T.-C., Chen, R.J.J., Chappelear, P.S., and 
Kobayashi, R.K. J. Chem. Eng. Data, 1976, 21(1), 
41. 

21. Poston, R.S. and McKetta, J .J . J. Chem. Eng. Data, 
1966, 11(3), 362. 

22. Chang, H.L., Hurt, L.J., and Kobayashi, R.K. AIChE 
J., 1966, 12(6), 1212. 

23. Kohn, J.P. and Bradish, W.F., J . Chem. Eng. Data, 
1964, 9, 15. 

24. Shipman, L.M. and Kohn, J.P. J. Chem. Eng. Data, 
1966, 11(2), 176. 

25. Lin, H.M., Sebastian, H.M., Simnick, J . J . , and 
Chao, K.C. J. Chem. Eng. Data, 1979, 24(2), 146. 

26. Haines, M.S. Master Thesis, University of 
Oklahoma, 1967. 

27. Mehra, V.S. and Thodos, G. J. Chem. Eng. Data, 
1965, 10(4), 307. 

28. Kay, W.B. J. Chem. Eng. Data, 1970, 15(1), 48. 
29. Ho, J.C.K. and Lu, B.C.Y. J. Chem. Eng. Data, 

1963, 8(4), 549. 
30. Nielsen, R.L. and Weber, J.H. J. Chem. Eng. Data, 

1959, 4(2), 145. 
31. Hong, J.H. and Kobayashi, R.K. J. Chem. Eng. Data, 

1981, 26(2), 127. 
32. Cohen, Α.Ε., Hopkins, H.G., and Koppany, C.R. 

Chem. Eng. Prog. Symp. Ser., 1967, 63-81, 10. 
33. Trust, D.B. and Kurata, F. AIChE J., 1971, 17(1), 

86. 
34. Stryjek, R., Chappelear, P.S., and Kobayashi, R. 

J. Chem. Eng. Data, 1974, 19(4), 334. 
35. Stryjek, R., Chappelear, P.S., and Kobayashi, R. 

J. Chem. Eng. Data, 1974, 19(4), 340. 
36. Schindler, D.L., Swift, G.W., and Kurata, F. 

Hydrocarbon Processing, 1966, 45(11), 205. 
37. Maimoni, A. AIChE J., 1961, 7, 371. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

2

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



278 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

38. Reamer, H. H., Sage, B.H., and Lacey, W.N. Ind. 
Eng. Chem., 1951, 43(4), 976. 

39. Robinson, D.B., Kabra, H., Krishnan, T., and 
Miranda, R.D. GPA Report RR-15, 1975. 

40. Brewer, J., Rodewald, N. and Kurata, F. AIChE J., 
1961, 7(1), 13. 

41. Ng, H.-J . , Kabra, Η., Robinson, D.B., and Kubota, 
H. J. Chem. Eng. Data, 1980, 25(1), 51. 

42. Eakin, B.E. and DeVaney, W.E. AIChE Symposium 
Series, 1974, No. 140, Vol. 70, 80. 

43. Christiansen, L . J . , Fredenslund, A. and Mollerup, 
J. Cryogenics, 1973, 13(7), 405. 

44. Trust, D.B. and Kurata, F. AIChE J., 1971, 17-2, 
415. 

45. Zenner, G.H. and Dana, L.I. Chem. Eng. Prog. Symp. 
Ser., 1963, 59, 36. 

46. Robinson, D.B. and Besserer, G.J. GPA Report RR-7, 
1972. 

47. Sprow, F.B. and Prausnitz, J.M. AIChE J., 1966, 
12(4), 780. 

48. Sobocinski, D.P. and Kurata, F. AIChE J., 1959, 
5(4), 545. 

49. Spano, J.O., Heck, C.K., and Barrick, P.L. J. 
Chem. Eng. Data, 1968, 13(2), 168. 

50. Christiansen, L . J . , Fredenslund, Α., and Gardner, 
N. Adv. Cryog. Eng., 1974, 19, 309. 

51. Fredenslund, A. and Mollerup, J. J . Chem. Thermo., 
1975, 7, 677. 

52. Tsang, C.Y. and Streett, W.B. Fluid Phase 
Equilibria, 1981, 6, 261. 

53. Mraw, S.C., Hwang, S.C. and Kobayashi, R. J. Chem. 
Eng. Data, 1978, 23(2), 135. 

54. Fredenslund, A. and Mollerup, J. J. Chem. Soc. 
Faraday Trans. I, 1974, 70( 9), 1653. 

55. Akers, W.W., Kelley, R.Ε., and Lipscomb, T.G. Ind. 
Eng. Chem., 1954, 46(12), 2535. 

56. Besserer, G.J. and Robinson, D.B. J. Chem. Eng. 
Data, 1973, 18(4), 416. 

57. Ohgaki, K. and Katayama, T. J. Chem. Eng. Data, 
1976, 21, 53. 

58. Kalra, Η., Kubota, Η., Robinson, D.B., and Ng, 
H.-J. J. Chem. Eng. Data, 1978, 23(4), 317. 

59. Sebastian, H.M., Simnick, J.J., Lin, Η.Μ., Chao, 
K.C. J. Chem. Eng. Data, 1980, 25(2), 138. 

60. Ohgaki, K., Sano, F. and Katayama, Τ J. Chem. 
Eng. Data, 1976, 21(1), 55. 

61. Gomez-Nieto, M. and Thodos, G. Chem. Eng. Sci., 
1978, 33, 1589. 

62. Lo, T.C., Bieber, Η. Η., and Karr, A.E. J . Chem. 
Eng. Data, 1962, 7(3), 327. 

63. Maripuri, V.O. and Ratcliff, G.A. J. Chem. Eng. 
Data, 1972, 17(3), 366. 

64. Tasic, Α., Djordjević, Β., Grozdanic, D., Afgan, 
Ν., and Malic, D. Chem. Eng. Sci., 1978, 33, 189. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

2

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



12. LI ET AL. New Local Composition Model of Fluids 279 

65. Tenn, F.G. and Missen, R.W. Can. J. Chem. Eng., 
1963, 41, 12. 

66. Raal, J.D., Code, R.K., and Best, D.A. J. Chem. 
Eng. Data, 1972, 17, 211. 

67. Benedict, M., Johnson, C.A., Solomon, Ε., and 
Rubin, L.C. Trans. AIChE, 1945, 41, 371. 

68. Nagata, I. J. Chem. Eng. Data, 1969, 14, 418. 
69. Gómez-Nieto, M. and Thodos, G. AIChE J., 1968, 

24(4), 672. 
70. Ho, J.C.K. and Lu, B.C.-Y. J. Chem. Eng. Data, 

1963, 8(4), 549. 
71. Katz, K. and Newman, M. Ind. Eng. Chem., 1955, 

48(1), 137. 
72. Ell is , S.R.M. and Spurr, M.J. Brit. Chem. Eng., 

1961, 6, 92. 
73. Smith, V.C. and Robinson, R.L. J. Chem. Eng. Data, 

1970, 15(3), 391. 
74. Prabhu, P.S. and Van Winkle, M. J. Chem. Eng. 

Data, 1963, 8, 210. 
75. Ell is , S.R.M., McDermott, C., Williams, J.C.L. 

Proc. of the Intern. Symp. on Dist . , 1960, Inst. 
Chem. Engrs., London. 

76. Ccon, J., Tojo, G., Bao, M., and Arce, A. An. 
Real. Soc. Espan. De Fis.Y Quim., 1973, 69, 1177. 

77. Culberson, O.L. and McKetta, J.J., Jr. Petro. 
Trans., AIME, 1951, 192, 223. 

78. Olds, R.H., Sage, B.H., and Lacey, W.N. Ind. Eng. 
Chem., 1942, 34(10), 1223. 

79. Culberson, O.L. and McKetta, J.J., Jr. Petro. 
Trans., AIME, 1950, 189, 319. 

80. Reamer, H.H., Olds, R.H., Sage, B.H., and Lacey, 
W.N. Ind. Eng. Chem., 1943, 35(7), 790. 

81. Anthony, R.G. and McKetta, J . J . J. Chem. Eng. 
Data, 1967, 12(1), 17. 

82. Amer, H.H., Paxton, R.R., and Van Winkle, M. Ind. 
Eng. Chem., 1956, 48(1), 142. 

83. Griswold, J. and Wong, S.Y. Chem. Eng. Prog. 
Sympos. Series, 1952, 48(3), 18. 

84. Katayama, T. Ohgaki, Κ., Maekawa, G., Goto, M., and 
Nagano, T. J. Chem. Eng. Japan, 1975, 8(2), 89. 

85. Schmidt, G.C. Ζ. Phys. Chem., 1926, 121, 221. 
86. Ochi, K. and Kojima, K. Kagaku Kogaku, 1969, 33, 

352. 
87. Paul, R.N. J. Chem. Eng. Data, 1976, 21(2), 165. 
88. Takenouchi, S. and Kennedy, G. C. Am. J. of Sci., 

1961, 262, 1055. 
89. Selleck, F.T. , Carmichael, L .T. , and Sage, B.H. 

Ind. Eng. Chem., 1952, 44, 2219. 
90. Clifford, I.L. and Hunter, E. J. Phys. Chem., 

1933, 37, 101. 
91. Reamer, H.H., Olds, R.H., Sage, B.H., and Lacey, 

W.N. Ind. Eng. Chem., 1942, 34(12), 1526. 
92. Kay, W.B. Ind. Eng. Chem., 1940, 32(3), 353. 
93. Sumer, K.M. and Thompson, A.R. J. Chem. Eng. Data, 

1967, 12(4), 489. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

2

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



280 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

94. Noda, Κ., Ohashi, Μ., and Ishida, K. J. Chem. Eng. 
Data, 1982, 27, 326. 

95. Thomas, K.T., McAllister, R. A. AIChE J., 1957, 
3(2), 161. 

96. Mikhail, S.Z. and Kimel, W.R. J . Chem. Eng. Data, 
1961, 6(4), 533. 

97. Wichterle, I. and Kobayashi, R. 'Low Temperature 
Vapor-Liquid Equilibria in the Methane-Ethane-
Propane Ternary and Associated Binary Methane 
Systems with Special Consideration of the 
Equilibria in the Vicinity of the Critical 
Temperature of Methane', 1970, Monogram (Rice 
University, Houston, Texas). 

RECEIVED November 5, 1985 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

2

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



13 
Equation of State of Ionic Fluids 

Douglas Henderson1, Lesser Blum2, and Alessandro Tani3 

1IBM Research Laboratory, San Jose, CA 95193 
2Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931 
3 Institute di Chimica Fisica, Université di Pisa, via Risorgimento 35, 56100 Pisa, Italy 

An ionic fluid is modelled as a mixture of dipolar hard spheres 
(the solvent) and charged hard spheres (the ions). The free 
energy is expanded in a power series in the inverse temperature. 
Some of the terms in this expansion are infinite. However, these 
terms can be resummed to give a finite result. This expansion 
reduces to previously known results for pure dipolar hard 
spheres and pure charged hard spheres. As is the case for the 
pure dipolar and charged hard sphere systems, the convergence 
of the expansion can be enhanced by means of a Padé 
approximant. Simple expressions for the integrals appearing in 
the expansion are given. 

Most theoretical studies of the equation of state of ionic fluids have been based upon 
the primitive model in which the solvent is modelled as a dielectric continuum and 
the ions are modelled as charged hard spheres. It is clearly desirable to model the 
solvent as a collection of molecules. A simple model of the solvent would be the 
dipolar hard sphere system. Although deficient as a model of water, the dipolar hard 
sphere system may be a fairly reasonable model for many organic solvents. Even for 
water, the dipolar hard sphere model is a first step and is clearly an improvement 
over a dielectric continuum. 

Using this model of the solvent, an ionic fluid can be modelled as a mixture of 
dipolar hard spheres and charged hard spheres. Such a model would include the pure 
solvent and the molten salt as limiting cases and could, in principle, be applied to a 
continuously miscible system. 

This model was first discussed by Blum and colleagues1 and Adelman and 
Deutch 2 who solved analytically the mean spherical approximation (MSA) for the 
restricted model in which all the spheres have the same diameter. Extensions and 
generalizations have also been given. 3 - 5 Patey and colleagues5-6 have considered 
simplified versions of the hypernetted chain (HNC) approximation for this fluid. 
There is also the modified Poisson-Boltzmann (MPB) approximation considered by 
Outhwaite7 and the study of Adelman and Chen. 8 

Unfortunately, there are few exact results or computer simulations which can 
be used to determine the accuracy of the theory. There is the simulation of Patey 
and Valleau 9 for very dilute solutions. Very recently, the one-dimensional mixture 
of charged and dipolar hard spheres was solved exactly by Vericat and B l u m . 1 0 In 
the high temperature limit, the one-dimensional MSA is recovered. 

0097-6156/ 86/ 0300-0281 $06.00/ 0 
© 1986 American Chemical Society 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

3

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



282 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

The solution of the M S A is analytic but implicit. Explicit results can be 
obtained only by some expansion. The MPB results are resonably simple but are 
restricted to small dielectric constants or low densities. The H N C results are 
numerical. Clearly, there is a need for a simple explicit theory. 

Perturbation theory 1 1 is a very promising candidate for such a simple explicit 
theory. In perturbation theory, the free energy is expanded in powers of the inverse 
temperature using a hard sphere fluid as a reference system. This theory, which we 
have reviewed in previous A C S symposia, 1 2 is a very satisfactory theory of simple 
fluids, such as the inert gases and the pure dipolar and pure charged hard sphere 
fluids. Prior to this work, it has not been applied to a mixture of dipolar and charged 
hard spheres. However, it should be a good approximation for this system also. 

In this publication, we apply perturbation theory to this mixture. For 
simplicity, we restrict ourselves to the case where the dipolar and charged hard 
spheres have an equal diameter, σ. The general case of differing diameters would be 
rather complex. However, we give some plausible expressions for the case where the 
dipolar diameter differs from the ion diameter σ{. 

Perturbation Expansion 

Using perturbation theory, 1 1 - 1 3 the Helmboltz free energy can be expanded in powers 
of 0= l /kT, where k is Boltzmann's constant and Τ is the temperature. To third 
order, the result is 

Ρ ( Λ ~ Λ θ ) = - \ Ρβ2Σ^{ 8 ° ; ( 1 2 ) < υ ^ . ( 1 2 ) > ( 1 Γ 2 

ij 

- } Wk/ g ° k ( 1 2 3 ) < u i j ( 1 2 ) u j k ( 2 3 ) u i k ( 1 3 ) > d r 2 d r 3 , (1) 
ijk 

where An is the free energy of the reference hard sphere system and includes the 
entropy of mixing term, Σ x^nxj, p = N / V , the number of hard spheres per unit volume, 
X . S I N J / N , the fraction bf hard spheres of species i, gjj( 12) and g i j k(123) are the 
reference pair and triplet correlation functions for a pair or triplet of species i and j 
or i, j, and k, respectively, and the terms in angular brackets are orientationally 
averaged pair interactions, i.e., 

<ufj(12)> = J u^{\2)aQvdn2/ J ά Ω ^ Ω 2 (2) 

<u i j(12)u j k(23)u i k(13)> = J u i j ( 1 2 ) u j k ( 2 3 ) u i k ( 1 3 ) d f i 1 d « 2 d f i 3 / J dti^^d^ . (3) 

In principle, other terms are present in Eq. (1). However, for the system 
considered here, they vanish either because for the dipolar hard spheres 

< υ υ (12)> = <u3

j(12)> = 0 (4) 

or because of the charge neutrality of the charged hard spheres, 
Σ x i 2 i = 0 <5> 
j 

where zj is the valence (including sign) of the ion of species i. 
For simplicity, we assume that the salt is binary and symmetric and that all the 

hard spheres have the same diameter, a. Thus, x 1 = x 2 =x/2 , x 3 = 1-x and υ ^ ( Γ ) = ο ο 
for r<a. For r>a, 
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13. H E N D E R S O N ET A L . Equation of State of Ionic Fluids 283 

2 2 
u n ( r ) = u 2 2 (r) = = - u 1 2 (r ) (6) 

u 1 3 ( r ) = - i ^ t f - ^ ) (7) 
r 

u 2 3 (r ) = ϊ ψ (? · £ 2 ) (8) 
r 

and 
2 

r 

where species 1 and 2 are the charged hard spheres and species 3 is a dipolar hard 
sphere. The quantities e and μ are the electronic charge and the magnitude of the 
dipole moment of the dipolar hard spheres, respectively, and z= | z\ \. The caret 
above a vector indicates that it is a unit vector. Finally, 

D(12) = 3(M! ' r 1 2 ) ( £ 2 ' f 1 2 ) - 0*1 * M2) ( 1 0> 

Thus, 

and 

<D2(12)> = 2/3 (11) 

< ( r - / t l ) 2 > = I (12) 

The triplet orientation averages have been worked out by Rasaiah and Stell 1 4 and are 

cos# 
>ccd = - T ^ <13> 

>cdd = I {cos(02 - 03) + cos02cos03} (14) 

and 

1 + 3cos0,cos0<,cos0, 
< >ddd = ^ — 2 " 0 5 ) 

where #3 is the interior angle at the vertex 3 in a triangle formed by spheres 1, 2, 3, 
etc., and ccd, cdd, and ddd mean that the three members of the triplet are a 
charge-charge-dipole, a charge-dipole-dipole, and a dipole-dipole-dipole, respectively. 
The subscript ccc will be used to denote three charges. Defining 

K*Q = 4 π β ζ 2 ε 2 ρ χ (16) 

and 

y = βμ2

Ρ(ΐ - χ) ( Π ) 

Eq. (1) becomes 
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fl(A-A0) _ _ ICQ çoo 3vpy -<» g 0(r)dr 

Ν Ιόττρ J0
 8 0 Γ 8up J 0 r2 

27y 2 /·« g 0 ( r ) d r 

8ττρ J 0 r 4 

g 0(123)dr 2dr 3 

6 ( 4 π ) ' ρ Γ12 Γ13 Γ23 

3,coy Γ go(123)cos03 

+ J d r 2 d r 3 

2(4τ7 ) 3 ρ r^o r 1 2 r 2

3 r 2

3 

9 * 0 γ 2 r g0(123)[cos(02 - 03) +cos02cos03] 
+ I dr^dr^ 

3 J ^ 2 3 ~ ~ 
(477) ρ r M ^ a r Î 2 r 1 3 r 2 3 

27y 3 r g0(123)[l + 3cos01cos03cos03] 

o„ ,3 J > 1 2 3 ( } 

2(4ττ) ρ Γ ^ σ Γ12 Γ13 Γ23 
where go(r) and gn(123) are the pair and triplet correlation functions of a pure fluid 
of hard spheres of diameter σ. 

The first of the pair integrals and the first and second of the triplet integrals 
diverge. The divergence of the pair integrals arises because of the asymptotic value 
of unity for gn(r) at large r. The divergence of the second triplet integral also arises 
because gn(123) tends to unity when all three hard spheres are far apart. The 
divergence of the first triplet integral arises because of the asymptotic form gn(123) 
where even two spheres are far apart. 

Let us consider first the divergence arising from the asymptotic character of the 
go's when all spheres are far apart. Thus, 

« A - A 0 ) 4 r κ6
0 r

 d £2 d£3 
- f d r + *° f 

Ν 16*p JQ 6 ( 4 w ) 3 p \*0 r 12 r 13 r 23 

2(4,7 ) ρ r , j iO r 1 2 r n r 2 3 

- é~P J>(r)dr 

+ _ ^ _ « . ( « 3 ) - l 

6(4.) 3p J r ^ 0 r12r13'23 ~ 2 ~ 3 

3KQY » cos0 

3 f j-V fe0O23) - l]dr2d£3 + ». (19) 
2(4ττ) ρ Γ,^Ο r 1 2 r 1 3 r 2 3 

where ho(r)=go(r)~l. The missing integrals in Eq. (19) indicated by " + ···" are the 
same as in Eq. (18). 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

3

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



13. H E N D E R S O N E T A L . Equation of State of Ionic Fluids 285 

The first three integrals can be summed. It is convenient to consider the energy 
rather than the free energy. Thus, considering only the first three terms of Eq. (19) 
and differentiating with respect to β, 

Ν 8ττρ J 0

 Γ +

 2(4 ,r) 3p Λ^Ο Γ12 Γ13 Γ23 

9Κ·ΛΥ r cosO-χ + ?L- Γ __L_ d r 2 d r 3 + - (20) 
2(4ττ) ρ Γ ,^Ο r 1 2 r 1 3 r 2 3 

8ττρ J . > 0 ( r l 2 4TT J r 13 r 23 

Γ13Γ23 J 

Now 

Therefore 

cosfl^ 
f ^ u l d r 3 = ^ (22) 

dr. 
Ν 8ττρ J r . .^o ( r 1 2 7 4,7 J r 1 3 r 2 3 J 12 12 

4U 
4 

= - ^ _ 0 - 9 y ) f U - (23) 

J r13 4TT J r 13 r 23 
r 1 2 d r 1 2 + 

The first and second forms of Eq. (23) are equivalent to order 03. 
Defining the ring or chain sum 

^(R>2) - ÏÏÏ J + 

and taking the Fourier transform we have 

* ( k ) = is-
k 2 

(24) 

= 4* ! - (25) 

Hence, 
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286 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

Thus, 

P ( U - U p ) 
Ν 

*0 
8ττρ 

and 

e x p j - k / l - l yVJ 
(r) = \ J (26) 

l ( 1 _ 9 y ) / o " « p { - . 0 ( l - | y ) r } d r 

/?(A - Λ 0 ) κ 3 

— f ι - - y") 
12ττρ V 2 / 

(27) 

(28) 
Ν 

The expansion of the dielectric constant is just 

ε = 1 + 3y + ··· (29) 

Therefore, 

(30) 

and Eq. (28) can be rewritten as 

+ - (31) 
Ν 12ττρ 

so that the Debye-Hiickel result is obtained. Resummation has transformed the series 
from an expansion in powers of β to an expansion in power of β 1 / 2 . 

Returning to Eqs. (18) and (19) 
3 4 ] 3 ( A - A 0 ) 

Ν 12πρ ( 2 0̂ 16ττρ ° 

ι •6

0 r g 0 ( 1 2 3 ) - l 
1 d r 2 d r 3 

3 D J r ; i ^ 0 Γ12 Γ13 Γ23 6 ( 4 π ) ρ 

3*iy /» cos0, 
+ 5 L _ Γ _ 2 _ [ g 0 ( l 2 3 ) - l]dr 2dr 3 + ·· (32) 

2(4ττ) ρ r5j^0 r 1 2 r 1 3 r 2 3 

The three body integrals in Eq. (32) can be simplified by introducing 
h0(123) = g0(123) - 1 - h0(12) - h0(13) - hQ(23) (33) 

since 

f - ^ ^ - d r 2 d r 3 = 8 7 r 2 J 2 T r h ^ O d r f°°ds - f"r 2 h 0 (r)dr| (34) 
Jri}Z0 Γ12 Γ13 Γ23 ~ ~ C J0

 JQ J0 3 

ho(12)cos0 
f ° ' 3 d r 2 d r 3 = 167Γ 2 f h 0(r)dr (35) 

Γ ϋ * ° r 12 r 13 r 23 

and 
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13. HENDERSON ETAL. Equation of State of Ionic Fluids 287 

Γ _°: 3 dr,dr3 = 8ττ Γ h0(r)dr (36) 

The first integral on the RHS of Eq. (34) contains a divergent term. However, 
it is resummable. In analogy to Eqs. (24)-(27), the divergent integral is of order 
K g " 1 . Unfortunately, it is difficult to perform the resummations with only two terms 
(of order β2 and j33) in the expansion. As a result, we adopt an ad hoc procedure. 
We assume that a truncated perturbation expansion correctly identifies the terms 
which appear but does not give the correct values for some of the coefficients because 
of resummed contributions from higher order terms. 

For example, comparison with the Stell-Lebowitz15 expansion for pure charged 
hard spheres, 
β ( Α - Α 0 ) KQ K-Q 

Ν 12πρ 16πρ f"h0(r)dr + p- f"rh0(r)dr 
JQ 8ip JQ 

- ~P~ \ pM^dr - I f d r 1 2 f d r 1 3 f' 1 2" 1 3 h 0(123)dr 2 3] + ··· (37) 
8πρ LJ0 ο -Ό J0 l r 1 2 - r n l - J 

shows that third order perturbation theory correctly identifies all the terms appearing 
in the expansion but does not give the coefficients correctly for the term of order KQ 

or the pair integral in the *Q term. Note that the pair term of order κ0(β ) and the 
triplet term of order *g(j33) are given correctly. 

The procedure we adopt here is to choose the coefficients of the pair integrals 
of order KQ and KQ from the Stell-Lebowitz series and the pair terms of order K*0y 
and KQY from the expansion of the MSA free energy for the charged hard 
sphere/dipolar hard sphere mixture in powers of KQ. When the gQ's are set equal to 
their low density limit of unity for nonoverlapping spheres, the perturbation 
expansion must give the corresponding MSA result. 

We emphasize that perturbation theory, if taken to high enough order, would 
give the correct coefficients for all the various integrals. Our ad hoc procedure is 
adopted only to simplify the derivation of the final expression for the free energy. 

Numerical Results for Perturbation Theory Integrals 

To evaluate the various integrals appearing in perturbation, we assume that the hard 
sphere g0(r) is given adequately by the Percus-Yevick (PY) theory.16 Two integrals 
can be obtained immediately and are 

τ' 1 r°°u ( \A 10-2η + η 2 . 
I c c = - rh0(r)dr = (38) 

c c „ 2 J n ϋ 2 0 Π + 2 Τ Ο 

and 
τ " 1 f°°2u ( \A (η-4)(η2 + 2) 
C C a 3 Jo ° 24(1+ 2V) 

where η=πρσ /6. The other pair integrals can be obtained numerically from G(s), 
the Laplace transform of go(r). Thus, 

J°°h 0(r)dr= J"[G(S)- i ] d s (40) 

JO J0 L

 s

z J 
and 
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Γ Mil dr = -1 r s

n G ( s ) d s , 2 (41) 

where 

G ( s ) = ^ (42) 

127,[L(s) + esS(s)] 

L(s )= 12η[1 + 2 η + 5(1 + η / 2 ) ] (43) 

S(s) = - 12ΤΪ(1 + 2η) + 18T,2S + 6η(1 - T?)S2 + (1 - i | ) V (44) 

We have calculated these three integrals and have found them to be well 
represented by 

1 f°°i_ , χ ι 1 +0.97743ρσ- + 0.05257p σ 
!cc = 7 J h 0 ^ d r = Ϊ 

J0 1 + 1.43613ρσ3 +0.41580p σ 
g 0 (O . 1 +0.79576ρσ3 + 0.104556ρ2σ6 

(45) 

led 
r^&OVf , 1 + 0 . 7 9 5 7 6 ρ σ ~ + ϋ . 1 0 4 5 5 6 ρ σ 

= a J ar = (4oJ 
J0 r 2 1 + 0.486704ρσ3 - 0.0222903ρ2σ6 

and 

3 Γ ° ° 8 θ ( Γ ) , 1 + 0 . 1 8 1 5 8 ρ σ 3 - 0 . 1 1 4 6 7 ρ 2 σ 6 

rdd = σ Ι — r - d r = Î ΤΊΓ ( 4 7 ) 

J « r 3 ( 1 - 0 . 4 9 3 0 3 ρ σ 3 + 0 .06293ρ V ) 
We have also calculated the three body integrals both by M C simulation and by 

numerical integration using the superposition approximation 

g0(123) = g0(12)g0(13)g0(23) (48) 

or equivalently, 

h0(123) = h 0(12)h 0(13)h 0(23) + h 0(12)h 0(13) + h0(13)h0(23) 

+ h 0(13)h 0(23) (49) 

with go(r) or hn(r) given by the PY approximation, and have found that the relèvent 
three body integrals are well represented by 

! - c = Τ Γ ά Γ 12 f d r 1 3 Γ 1 2 1 3 h 0 (123)dr 2 3 

σ3 J J0 J | r 1 0 - r i , | 

3(1 - 1 .05560ρσ 3 4- 0 . 2 6 5 9 1 ρ 2 σ 6 ) 

2(1 + 0 . 5 3 8 9 2 ρ σ 3 - 0 . 9 4 2 3 6 ρ 2 σ 2 ) 

'dr, , /.r 1 2+r n cos0, 
Γ23 

« « ο ο / ·* a r n / · Γ ΐ 2 + Γ η cost/. 
Iced = j f d r 1 2 f - p l i f h0(123) - p - 3 dr 2 

σ -Ό ·>0 Γ13 J | r 1 2 - r 1 3 | Γ23 

11(1 + 2 . 2 5 6 4 2 ρ σ 3 + 0 . 0 5 6 7 9 ρ 2 σ 6 ) 

6( 1 + 2 . 6 4 1 7 8 ρ σ 3 + 0 . 7 9 7 8 3 ρ 2 σ 6 ) 
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13. H E N D E R S O N E T A L . Equation of State of Ionic Fluids 289 

/.« d r 1 2 Λ« d r 1 3 ΛΓΙ2+γΙ3 cos(02 — #3) + cos02cos03 

*cdd = ° L ΊνΓ J Τ7Γ J go< 1 2 3) 2

 d r 23 
J 0 1 2 J 0 1 3 J l r 1 2 - r 1 3 | r 2 3 

= 0.94685 ^ ^ 7 3 2 3 p a 3 + 3.11931pV ( 5 2 ) 

(1 + 2 . 7 0 1 8 6 ρ σ 3 + 1 . 2 2 9 8 9 ρ 2 σ 6 ) 

and 

3 r « > d r 1 2 r o c d r 1 3 ΛΓ1 2+Γ1 3 
I d d d ~ a 1 — 1 — J, , g 0 ( 1 2 3 ) 

0 r12 0 r13 , r i 2 - r n l 

1 + 3cos0!cos02cos03 

*23 

d r 23 

- 5 Π + 1 .12754ρσ 3 + 0 . 5 6 1 9 2 ρ 2 σ 6 ) ^ 5 3 ) 

24(1 - 0 . 0 5 4 9 5 ρ σ 3 + 0 . 1 3 3 3 2 ρ 2 σ 6 ) 

Previous e x p é r i e n c e 1 7 » 1 8 with the evaluation of similar triplet integrals indicates that 
the use of the P Y go's and the superposition approximation does not introduce 
appreciable error. 

The leading term in Eqs. (50) and (53) of 3/2 and 5/24, respectively, were 
obtained previously by Larsen et α / . 1 9 and Rushbrooke et α / . 2 0 and have been 
reobtained by ourselves. The leading term of 11/6 in Eq. (51) is new. 
Unfortunately, we have not yet obtained an analytic result for the leading term in 
Eq. (52). 

Although none of these integrals is independent of p, the variation of the 
integrals I c c , 1^, I£ c > I c d , I d d , I c c c , I c c d , I c d d , and I d d d is small compared to that of the 
prefactor ρ for the pair integrals or p 2 for the triplet integrals. Because of this, it may 
not be too bad an approximation to assume these integrals to be a constant, provided 
the density does not vary overly much. Thus, at low densities, 

I c c - 1 (54a) 

4 - 1/ 2 (54b> 
C - 1 / 3 (54c) 

led 1 < 5 4 d ) 

Idd 1/3 (54e) 

and 

I c c c 3/2 (55a) 

I c c d 11/6 (55b) 

I c d d 0.94685 (55c) 

and 

W 5/24 <55d) 

while at high densities 
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I c c - 0.75 (56a) 

I c c - 0.25 (56b) 

I c c -0.10 (56c) 

I c d 1.24 (56d) 

I d d 0.55 (56e) 
and 

and 

Expansion of MSA Results 

I c c c 0.59 (57a) 

(57b) 

(57c) 

I d d d 0.45 (57d) 

According to Blum et al.,1 in the MSA for the charged hard sphere/dipolar hard 
sphere model for equal size spheres, 

W J - U Q ) = Kgb 0-2(3 K oy) 1 / 2b 1-6yb 2 

Ν 4πρ 

where bn.bi. and 02 are parameters whose expansions in powers of y and KQ are 

b Q = £ (1 - κ + i γκσ) + - (59) 

bl = | 4 3 y ) 1 / V l 2 ( l - ^ ^ ) + (60) 

b 2 = ^ - 4 1 y 2 _ J 3 _ y ^ + ... (61) 
2 2 64 384 0 

and 

j33 = 1 + b2/3 (62) 

j36 = 1 - b2/6 (63) 

0 1 2 = 1 + b2/12 (64) 
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13. H E N D E R S O N E T A L . Equation of State of Ionic Fluids 291 

In Eqs. (59)-(61), κ = κ 0 / / ε . At KQ=0, the parameter D2 is related to the dielectric 
constant by 

βΐ 

If κ is expanded as 

« = « 0 ( 1 - f y + - ) 

Equations (58)-(65) may be combined to give the expansion 

Ν 4 π ρ ( 2 \ 2 V 2 \ 4 / 

- 3 * 0 y 

(65) 

(66) 

which may be integrated to give 

Ν 12wp \ 2 / 16ττρ V 6 / 

3 · ° ' ( - γ ' ) - ^ ( - ^ ) 8 π ρ σ 
(68) 

Equation (68) bears a close resemblance to perturbation theory. It lacks the 
terms in KQ and KQ This is not surprising since Eq. (68) was constructed from a low 
concentration (KQ small) expansion and is not a complete β expansion. 

If desired, Eq. (68) can be rewritten using ε - l = 3y(l + y) + ··· to obtain 

KA-A-) 3 4 r „ π ..2/ 
L 18 J 8 π ρ σ L 8 J Ν 1 2 π ρ 1 6 π ρ L 18 J 8 π ρ ο 

9 

8 π ρ σ 3 

y 2 [ i - J L y ] + . . . (69) 

If we recognize that 1 + 3y/8 is just the expansion of 2 / (1 + λ * 1 ) , where 
λ = β 3 / β 6 , then Eq. (69) becomes 

fl(A-A0)=_^+ Λ Γ 1 + 2 3 ( e _ t ) 1 _ 
Ν 1 2 ™ \6πρ L 18 J 

κ 2 ( ε - 1 ) 

\2πρ \6πρ 18 J 4 τ τ ρ σ ( 1 + λ · 1 ) 

- - ^ y 2 b - j i Λ (70) 

8 τ τ ρ σ 3 L 1 6 J 

When written in the above form, the third term gives exactly the free energy of 
solvation as calculated by Garisto et α / . 6 from the M S A . We refrain from expressing 
y in the last term of Eq. (70) in terms of ε because the free energy of the pure 
dipolar fluid is conventionally written in terms of a series in y rather than in ε. 
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292 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

Free Energy of an Ionic Fluid 

Our procedure is to combine Eqs. (18), (32), (34), (35), and (36) with the 
coefficients of the integrals in Eqs. (34)-(36) chosen so as to reproduce Eq. (37) 
when y=0 and Eq. (68) when the integrals I c c , I c c , Ic'c, I c d I d d , I c c c I c c d , I c d d , and 
I d d d have the values given in Eqs. (54) and (55). While ad hoc, this procedure is 
suggested by the form of perturbation theory and reduces to all previously known 
expansions in the appropriate limits. 

An extension to the case where a { j ia d is desirable. To do this without further 
approximation would require calculating the integral I c c , etc., for every concentration. 
This would be acceptable for the pair integrals but would be far too time consuming 
for the triplet integrals. Instead, we assume that Eqs. (38)-(39), (45)-(47), (50)-(53) 
can be used with ρ σ 3 replaced by ρ < σ 3 > , where 

< σ 3 > = χ σ 3 + (1 - χ ) σ 3 (71) 

This type of averaging has proven useful in theories of nonelectrolyte solutions2 1 and 
should be useful for this sytem provided σ{ and a d are not too different. Thus, for 

P ( A - A 0 ) _ 

Ν 

(52 ο 3 ^ 

£ [ ( ' - » ' » [ £ ] ) < - • » - ( £ ) ] 

+ Iddd} + - ('2) 
16πρσά ) 

where £ = 1 is a parameter whose power denotes the order in β of the term which 
follows that power of ξ and 

",d = -v1 (73) 

Equation (72) reduces to the Stell-Lebowitz series for charged hard spheres in a 
vacuum when y=0 (or ε = 1 ) and reduces to the perturbation series of Rushbrooke et 
α / . 2 0 for dipolar hard spheres when KQ=0. When σ[=σ^, Eq. (72) reduces to the M S A 
expansion, Eq. (68), plus the terms in *Q and KQ, if Eqs. (54) and (55) are used for 
the integrals. 

When o^a^, the M S A expansion corresponding to Eq. (68) has a complex 
dependence on and ax. However, the form of Eq. (72) is suggested by that result. 
The combination ya<j ensures that the free energy, in excess of the free energy of the 
solvent and the free energy of solvation, reduces to the Stell-Lebowitz expansion with 

+ 

+ 
ο 2 2 

8πρ 
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13. H E N D E R S O N E T A L . Equation of State of ionic Fluids 293 

ε expanded in powers of y for charged hard spheres in a dielectric continuum when 
a d tends to zero. The free energy of solvation becomes the Born result for the free 
energy of solvation of a charged hard sphere in a dielectric continuum. 

It might be preferable to eliminate y from part of Eq. (72) by using 

ε = 1 + 3y + ··· (74) 

l ^ i B 5 3 y ( l - 2 y ) + ... (75) 

and 

The factors of y are retained in the coefficients of Idd a n d Iddd s o t n a t t n e series 
reduces to that of Rushbrooke et α / . 2 0 when κ = 0 . 

For Eq. (77) to be useful, the dielectric constant, ε, must be calculated as a 
function of concentration. The fact that this information is not necessary for 
Eq. (72) may be an advantage for this equation. To the order in which we are 
working, perturbation theory yields the result 

ε = 1 + 3y + · · (29) 

For the pure dipolar hard sphere fluid 

e = l + 3 y + 3y 2

 + 3 y Y ^ - A (78) 

where I d d A is an integral calculated by Tani et α / . , 1 8 seems to be a good 
approximation. Comparison of Eqs. (29) and (78) suggests that the same series 
might be used for the dielectric constant of the mixture. In this approximation, ε 
would decrease with increasing concentration as y decreased because 1-x is 
decreasing. Such a decrease does not seem large enough compared with 
experiment. 2 2* 2 3 Empirically, 
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294 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

2 / 9 I d d A , \ 

i+y + y ί — γ - i l 
ε = 1 + 3y i i | i L L (79) 

1 + CK aj 
where c is an empirically adjusted parameter and I d d A is assumed to be the function 
of Tani et al. with ρσ3 replaced by ρ<σ 3> if σ{^σά, seems reasonable. For an aqueous 
solution of NaCl , c~0.1 gives fairly good agreement with experiment. 

For pure charged spheres and pure dipolar hard spheres, the studies of Larsen et 
α / . 1 9 and Rushbrooke et al.,2Q respectively, suggest that Eqs. (72) or (77) will 
converge slowly for large κ or y but that good results can be obtained from a Padé 
approximant. Thus, we write the series 

« ^ o ) = enAy2 + ^ + { » / 2 A j / a + ^ + ... ( 8 0 ) 

in the form 

P(A-A 0) = 3 / 2 n 1 + | 1 / 2 n 2 

N l + M ^ + drf 
where the coefficients η, n 2 , dj, and d 2 are chosen to reproduce 
Α3/2» A 2 , A 5 ^ 2 t and A 3 . Hence, 

nj = A 3 / 2 , (82) 

A 3 / 2 A 3 ~ 2 A 3 / 2 A 2 A 5 / 2 + A 2 

A 2 - A 3 / 2 A 5 / 2 

(83) 

and 

d, = A 3 / * A 3 ~ A 2 A S / 2 ( 8 4 ) 

A 2 A 3 / 2 A 5 / 2 

d 2 = - A z A 3 " A ' / 2 (85) 
A 2 ~ A 3 / 2 A 5 / 2 

For y=0, all the A n are, in general, nonvanishing and Eq. (81) is the Padé 
approximant of Larsen et al. For κ η = 0 , A 3 / / 2 = A 5 / : 2 = 0 so that 

n 1 = 0 (86) 

n 2 = A 2 (87) 

άχ = 0 (88) 

A , 
d 2 = (89) 

and Eq. (81) is the Padé approximant of Rushbrooke et al. Thus, Eq. (80) has the 
appropriate limiting forms. 
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T£ere is a little ambiguity as to whether the terms κ ( ε - 1 ) , κ ε - l ) , and 
κ ( ε - l ) should be considered to be of order £ 2 , £ 3 , and | 3 , respectively, as in 
Eq. (77), or of order £, £ 2 , and £, respectively. The question is purely academic in 
Eq. (79) since £ = 1 . However, it is a question of importance when a Padé is formed. 
For the moment, we leave Eq. (77) in the above form. However, experience may 
cause us to rethink this issue. 

Summary 

We have given two promising forms for the free energy of an ionic fluid. These 
two expressions are derived from perturbation theory with plausibility arguments 
used to determine the coefficients of some of third order terms. These expressions 
reduce to the previously known perturbation expression for a pure fluid of charged 
hard spheres when dipole moment or the diameter of the dipolar hard spheres 
vanishes and when the concentration of dipoles is zero. They also reduce to the 
previously known perturbation expression for a pure fluid of dipolar hard spheres 
when the charge or concentration of the ions is zero. 

The expressions developed in this paper should be of value in electrochemical 
studies, including corrosion, and in studies of biological systems. The perturbation 
expansion is straightforward but slowly convergent for most practical applications. 
Unfortunately, there is a great deal of flexibility in the summation procedures used to 
obtain practical expressions. Equations (80)-(85) give just one possibility. Many 
more are possible and equally plausible. Before a final choice is made, application to 
experimental data will be required. Unfortunately, simulated data are not available. 
Simulation studies of ion-dipole mixtures are clearly required. We hope that the 
chemical engineering community will join us in generating such data and in making 
calculations based on the expressions presented here and in comparing the results 
with experimental and simulated data. 
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14 
Thermodynamics of Multipolar Molecules 
The Perturbed-Anisotropic-Chain Theory 

P. Vimalchand, Marc D. Donohue, and Ilga Celmins 

Department of Chemical Engineering, The Johns Hopkins University, Baltimore, 
MD 21218 

The Perturbed-Hard-Chain theory (PHCT) is modified to 
treat rigorously dipolar and quadrupolar fluids and their 
mixtures. The multi-polar interactions, which are treated 
explicitly, are calculated by extending the perturbation 
expansion of Gubbins and Twu to chain-like molecules. 
Moreover, the square-well potential used to characterize 
the spherically symmetric interactions in the PHCT has 
been replaced by a soft-core (Lennard-Jones) potential. 
Theoretical calculations and data reduction on a number 
of pure fluids and mixtures indicate that the above changes 
result in physically more meaningful pure component para­
meters, and the properties of even highly non-ideal 
mixtures can be predicted accurately without the use of a 
binary interaction parameter. 

Although considerable phase equilibrium data are available for hydrocar­
bon systems of low molecular weight, data for high molecular weight 
hydrocarbons, especially aromatic hydrocarbons, are scarce. Unfor­
tunately, none of the theories that have been developed for the proper­
ties of lower molecular weight aliphatic compounds encountered in 
natural gas and oil are accurate for heavy hydrocarbons such as coal 
derivatives. They require large values of an adjustable binary interaction 
parameter, and therefore, the predictive ability of these theories becomes 
poor for multicomponent mixtures and for systems for which there are 
no experimental data. 

There are two main reasons why these theories fail for high molecu­
lar weight multipolar compounds. First, these theories are valid only for 
compounds with molecular weight below 150 because they ignore the 
effect of rotational and vibrational motions on thermodynamic proper­
ties. While this deficiency was overcome, in part, by the polymer 
theories of Flory (1) and Prigogine (2L), their theories are valid only at 
high density. The second deficiency in all the theories that were 
developed for oil and gas-refining operations concerns the nature of 
intermolecular forces. All these theories tacitly assume that molecules 
interact with London dispersion forces (also referred to as van der Waals 
forces). Since coal and its derivatives are generally high molecular 

0097-6156/ 86/ 0300-0297S06.00/ 0 
© 1986 American Chemical Society 
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298 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

weight (150 to 1000) compounds that have numerous benzene rings and 
functional groups which have strong anisotropic (dipolar and quadrupo-
lar) potential functions, any theory for coal compounds must reflect this 
difference. These two deficiencies are taken into account in developing 
the Perturbed-Anisotropic-Chain theory (PACT) which enables calcula­
tion of thermodynamic properties for a wide variety of pure fluids and 
mixtures. 

The PACT equation is based on the Perturbed-So ft-Chain theory 
(PSCT) and on improvements to Pople's perturbation expansion (2.) by 
Gubbins and Twu (!). The PSCT equation is essentially the Perturbed-
Hard-Chain theory (PHCT) of Donohue and Prausnitz (5_), but the 
potential energy function used to characterize the interaction between 
the molecules is different. The original PHCT equation uses a square-
well intermolecular potential, while in the PSCT equation, interactions 
are calculated with the Lennard-Jones potential. Multipolar interactions 
in the PACT are treated by combining the perturbation expansion of 
Gubbins and Twu for anisotropic molecules with lattice theory for 
chain-like molecules. 

The PHCT and PSCT equations have been shown to predict accu­
rately the properties of pure fluids and mixtures of non-polar molecules 
of varying size and shape jBeret and Prausnitz (£); Donohue and 
Prausnitz (u); Kaul et al. (Ζ) and Morris (S.)], including polymeric sys­
tems [Beret and Prausnitz (&) and Liu and Prausnitz (£.)]. For mixtures 
containing quadrupolar molecules (such as carbon dioxide - ethylene sys­
tem; carbon dioxide - ethane system; benzene - 1-methyl naphthalene 
system), the PACT equation predicts properties better than either the 
PHCT or PSCT equations [Vimalchand and Donohue (ID)]. In this 
paper, we extend the PACT to include dipolar interactions. The theorem 
ical results show that the PACT equation also can be used for predicting 
accurately the properties of highly non-ideal mixtures (without the use of 
a binary interaction parameter) containing strongly dipolar molecules 
such as acetone. 

The Perturbed-Anisotropic- Chain Theory 

The canonical ensemble partition function used in the Perturbed-
Anisotropic-Chain theory is of form: 

««™ -MM m h w ) h w ) « 
where Ν is the number of molecules at temperature Τ and volume V; A 
is the thermal deBroglie wavelength, and k is Boltzmann's constant. 
The partition function is based on the generalized van der Waals theory 
where molecular translational motions are governed by intermolecular 
attractions and repulsions. The molecular repulsions are written in terms 
of free volume, V}, which is the volume available to the center of mass 
of a single molecule as it moves about the system holding the positions 
of all other molecules fixed. The molecular attractions are generalized in 
terms of a potential field, φ/2, which is the intermolecular potential 
energy of one molecule due to the presence of all other molecules. For 
non-central force molecules (with dipolar or quadrupolar forces), the 
intermolecular potential energy function can be written as a sum of iso­
tropic and anisotropic interactions. The isotropic pair potential, which 
depends only on the distance between the molecules, is taken as an 
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14. VIMALCHAND ET AL. The Perturbed-Anisotropic-Chain Theory 299 

unweighted average over all orientations. Summing the intermolecular 
interactions, φ/2 is given by the sum of isotropic and anisotropic interac­
tions of one molecule with all other molecules in the system, φ180/2 and 
φαηι/2, respectively. 

The rotational and vibrational motions, which are strongly density-
dependent, are affected by intermolecular interactions. To account for 
deviations in equation of state due to rotational and vibrational motions, 
a parameter c is defined such that 3c is the total number of density-
dependent degrees of freedom. This includes the three density-
dependent translational degrees of freedom. Further, the non-idealities 
in the equation of state (i.e., due to attractive and repulsive forces) 
caused by each of the 3c- 3 density-de pendent rotational and vibrational 
degrees is approximated as equivalent to the non-idealities caused by 
each of translational degree of freedom. The inclusion of the rotational 
and vibrational motions in an approximate way through the parameter c 
improves the simultaneous prediction of various thermodynamic proper­
ties. 

The partition function in equation 1 approaches the correct ideal-gas 
limit as density approaches zero and a Prigogine- and Flory-type partition 
function at liquid densities. Moreover, this partition function is valid for 
both non-polar and anisotropic molecules. For non-polar molecules, 
with φαη% = 0, the partition function in equation 1 reduces to a form 
analogous to that used in the PHCT. 

The isotropic interactions, φ100, are calculated using a Lennard-Jones 
potential energy function, and following Gubbins and Twu (4), the iso­
tropic dipole-induced dipole interactions are calculated assuming an aver­
age polari ζ ability for the molecule. In this work, for anisotropic interac­
tions, φαηι, we are considering only systems in which the dipolar forces 
are predominant, and all other anisotropic interactions are assumed to be 
negligible. 

The PACT equation of state, obtained by differentiating the parti­
tion function in equation 1, is given by 

Ρ = ( 1 + c z** + c + c zani} (2) 
In the PACT repulsions due to hard-chains are calculated using the 
parameter c and the equation of Carn ah an-Starling (11) for hard-sphere 
molecules. The attractive Lennard-Jones isotropic interactions are calcu­
lated using the perturbation expansion of Barker and Henderson (12). 
Higher-order terms in the perturbation expansion are accounted for by 
using a Pade' approximation for Helmholtz free energy. The perturba­
tion expansion results for spherical molecules are extended to chain-like 
molecules with the following reduced quantities: 

f = ^ - = — (3) 
T* eq 

and 
~ _ _ J i _ _ V (A) 
Vi ~ vl ~ NArd*/V2 1 ' 

where NA is Avagadro's number. The equation of state for pure non-
polar molecules contains three characteristic parameters. Besides c, the 
parameters are molecular soft-core size, ν (or the related hard-core 
size, v£), and characteristic temperature, T*. Values for these three 
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300 EQUATIONS O F STATE: T H E O R I E S A N D APPLICATIONS 

parameters are obtained from data reduction, using experimental vapor 
pressure and liquid-density data. The other parameters e/k, q, r, and d 
are only necessary for mixture calculations. The Parameter q is propor­
tional to the molecular surface area, e is the energy per unit external sur­
face area of a molecule and r is the number of segments of diameter d 
(or σ) in a chain-like molecule. For pure fluids, the parameters e and q 
and parameters r and σ 3 always appear as a product. For mixtures, σ 
and e are determined by correlating v* and cT for a large number of 
similar fluids. 

In PACT, both the anisotropic multipolar interactions and isotropic 
dipole-induced dipole interactions are calculated using the perturbation 
expansion of Gubbins and Twu (4.) assuming the molecules to be 
effectively linear. The anisotropic interactions are calculated by treating 
these forces as a perturbation over isotropic molecules. Higher-order 
terms in the perturbation expansion are accounted for by using a Pade' 
approximation for Helmholtz free energy. Gubbins and Twu obtained 
the isotropic dipole-induced dipole interactions by treating these forces as 
a perturbation over Lennard-Jones molecules and truncating the series 
after the first perturbation term. Their results for small molecules are 
extended to chain-like molecules by use of reduced quantities in equa­
tions 3 and 4 and by defining the following characteristic reduced tem­
peratures. For dipolar interactions, 

and for isotropic dipole-induced dipole interactions 
™ Τ ν* ckT ,αλ 

x αμ 

where εμ characterizes the segment-segment dipolar interactions and a is 
the average polari ζ ability. For pure fluids, parameters εμ and q always 
appear as a product which can be evaluated from known values of dipole 
moment, μ, and using the relation 

For mixtures, the segmental anisotropic dipolar interaction energy can be 
obtained from q [ = cT /(e/&)] and equation 7. Complete equations for 
the configurational Helmholtz energy and the equation of state involving 
dipolar and isotropic dipole-induced dipole interactions are given by 
Vimalchand (12.). 

Mixtures. The pure-component partition function is extended to mix­
tures using a one-fluid approximation, however, without the usual 
random-mixing assumption. Following Donohue and Prausnitz, the 
mixing rules for both the isotropic and anisotropic terms are derived 
using a Lattice theory model. The pure component partition function 
given by equation 1 is extended to mixtures of chain molecules satisfying 
the following conditions: (i) For mixtures of both small and large 
(polymeric) molecules, mixture properties should be based on surface 
and volume fractions rather than on mole fractions, (ii) Both the isotro­
pic and anisotropic part of the second virial coefficient should have a 
quadratic dependence on mole fraction, (iii) The pressure and other 
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excess thermodynamic properties must remain finite when the chain 
length becomes infinitely large, (iv) The athermal entropy of mixing 
must reduce to the well-known Flory-Huggins entropy of mixing when 
the reduced volume of the pure components and solution are identical, 
(v) For correct prediction of Henry's constant, the residual chemical 
potential should be proportional to the product q^j rather than gt-rt-. (vi) 
For molecules with significantly different intermolecular potential ener­
gies, nonrandom-mixing due to molecular clustering becomes important. 
For mixtures of spherical molecules, the mixing rules should agree with 
the nonrandom-mixing theory of Henderson (14.). 

Details of the derivation of mixing rules satisfying the above condi­
tions are given by Vimalchand (12.). Complete expression for the 
configurational Helmholtz free energy is given in the Appendix. 

Results and Discussion 

Pure Fluids. The Perturbed-Anisotropic-Chain theory has been tested 
with a wide variety of fluids in which molecules interact with substantial 
quadrupolar [Vimalchand and Donohue (lu)] and dipolar forces. The 
properties of pure fluids were predicted with parameters which are 
independent of temperature and pressure. The pure-component partition 
function was fitted to available experimental data and then pure-
component parameters were correlated to ensure reliability of data and 
data reduction. 

Pure-component parameters have been obtained for eleven fluids 
with appreciable dipofe moments and these are tabulated in Table I. 

Table I. , Pure-Component Parameters 

T*K lOOv c 6 Τ* Κ T*K 
mol Τ 

D ipolar Fluids 
Carbon monoxide 101.9 2.0274 1.0275 105 2.5 
Diethyl ether 297.2 5.9382 1.8054 115 42.8 
Chloroform 351.9 4.6651 1.6158 140 49.5 
Methyl acetate 324.0 4.5508 1.8314 145 105.7 
Dimethyl ether 278.6 3.6650 1.3214 115 106.0 
Hydrogen sulfide 271.9 2.1695 1.1181 150 127.2 
Sulfur dioxide 279.1 2.4765 1.5037 105 214.7 
Methyl iodide 417.3 3.8332 1.0002 160 216.4 
Methyl chloride 280.5 3.2858 1.1194 178 315.7 
Acetone 325.3 4.4500 1.3768 145 411.9 
Acetonitrile 272.1 3.4482 1.0013 180 1094.3 

Nonpolar fluids 
Ethane 225.1 3.1947 1.1636 105 
Pen tan e 311.4 6.2948 1.6501 105 
Isopentane 305.8 6.4009 1.6078 105 
Hexane 326.4 7.3984 1.8224 105 
Cyclohexane 371.3 6.3798 1.5507 118 
Carbon disulfide 439.9 3.7143 1.0045 142 
Carbon tetrachloride 377.8 5.7982 1.4883 118 
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Parameters for eight non-polar fluids are also given in Table I. For dipo­
lar fluids, the product εμς was determined using the dipole moments 
reported by McCellan (UI). The remaining three pure-component 
parameters ( T*, v*, and c) for each compound were found by fitting the 
partition function to experimental liquid-density and vapor pressure data. 
For mixture calculations, either parameter e or q need to be determined 
independently. The segmental energy parameter, e, was determined by 
examining the predicted binary mixture data where one of the com­
ponents is a C 5 or higher alkane. Following Kaul et al. (Ζ.), e for normal 
and branched alkanes was assigned a value of 105 Κ. 

With the parameters given in Table I, errors in calculated vapor 
pressure and liquid-density are typically within 2% over a wide range of 
temperature and pressure. Figure 1 shows the experimental and calcu­
lated vapor pressures for hydrogen sulfide, sulfur dioxide and acetone 
from triple point to critical point. The average error is less than 2%. 
Liquid densities were also calculated over a wide range of temperature 
and présure with similar accuracy. Also, the saturated liquid and vapor 
volumes usually were predicted within 2% error (up to 0.95 of the critical 
temperature) as shown in Figure 2 for hexane and for the dipolar fluids, 
sulfur dioxide, acetone and methyl acetate. 

Since both acetone and acetonitrile have large dipole moments, we 
included the isotropic dipole-induced dipole interactions assuming an 
average polari ζ ability [LandoltrBornstein (lu.)] for these molecules. The 
parameters obtained by fitting the experimental vapor pressure and 
liquid-density data are given in Table II. The average errors in vapor 
pressure and liquid-density are similar to those reported above. The 
inclusion of isotropic induction forces yields a characteristic energy 
parameter T* of 303.4 Κ compared to T* = 325.3 Κ obtained without 
induction forces while the other parameters (v and c) are nearly identi­
cal in both cases. Similarly for acetonitrile Τ decreases to 226.4 Κ from 
a high value of 272.1 obtained without induction forces. The values of 
characteristic dispersive energy ( = cT*) of acetone and acetonitrile, 
when induction forces are included may be the more realistic and as a 
result parameters for these fluids can be expected to correlate well with 
other fluids. 

Mixtures. Fluid-mixture properties are calculated with pure-component 
parameters and a single binary interaction parameter defined by 

tu = v ^ 7 ^ ( i - %) (8) 
Experimental K-factor (ratio of vapor phase mole fraction to liquid phase 
mole fraction) data are used to determine the binary interaction parame­
ter, kjj, which is independent of temperature, density, and composition. 

Table II. Parameters including average polarizability 
for compounds with large dipole moments 

Dipolar fluids Τ* Κ lOOv 
mo I 

c e 
Τ τ*μ κ à 

Acetone 
Acetonitrile 

303.4 
226.4 

4.5515 
3.7124 

1.3628 
1.0000 

145 
180 

406.8 
1017.9 

0.0592 
0.0514 
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Figure 1. Comparison of experimental and predicted vapor pressures of 
dipolar fluids from their triple point to critical point. 
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points are expt. 

P A C T 

0.021 I . I . 1 1 1 
200 300 400 500 

TEMPERATURE , 'K 

Figure 2. Comparison of calculated and experimental saturated liquid 
molar volumes (up to 0.95 of the critical temperature). 
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The binary interaction parameter corrects for inadequacies in theory 
and in mixing rules. To predict properties of multicomponent mixtures 
with ease and reasonable accuracy, it is desirable to develop an equation 
to predict mixture properties without the use of k{j- or at least, with small 
values of &ι;·. The PHCT, compared to many other equations of state, 
predicts accurately the properties of non-polar mixtures with small values 
of kjj (less than 0.05). The PHCT, however, still requires large values 
of for fluid mixtures containing a dipolar and a quadrupolar sub­
stance. Consideration of dipolar and quadrupolar forces in the PACT 
allows fairly accurate prediction of mixture properties from pure-
component parameters alone. Usually, the PACT requires small values 
of to predict mixture properties with accuracy. 

Binary interaction parameters for 9 dipolar fluid mixtures and 13 
nonpolar - dipolar fluid mixtures are given in Table III. The inclusion of 
isotropic dipole-induced dipole interaction does not change k^ 
significantly and therefore it is neglected except for the system acetone -
pentane and acetone - cyclohexane. For these two systems, the acetone 
parameters given in Table II were used. 

Like many widely used equations of state [such as the Peng - Robin­
son equation (11.)], both the PHCT and PACT have (three) adjustable 
parameters for pure-components which are fitted to experimental data. 
As a result, each fits the pure-component properties rather well. How­
ever, a much more stringent test of the theory is the prediction of mix­
ture properties from pure-component parameters alone. Such a predic­
tion is made in Figures 3 to 6. The K-factors calculated from the PACT 
with hij = 0 are compared with experimental values for mixtures con­
taining dipolar fluids. Also for comparison, K-factors calculated with k^ 
= 0 using the PHCT and the Peng - Robinson equation of state (PR) 
are shown. 

The inclusion of dipolar interactions improves the prediction of K-
factors significantly for the systems sulfur dioxide - acetone (Figure 3), 
hydrogen sulfide - pentane (Figure 4), and methyl iodide - acetone (Fig­
ure 5). Sulfur dioxide, acetone, hydrogen sulfide, and methyl iodide are 
all dipolar fluids. Acetone forms a weak complex with sulfur dioxide and 
yet the PACT gives a good prediction of K-factors. In the hydrogen 
sulfide - pentane system, where molecular sizes differ considerably, both 
the PACT and the PHCT predict better K-factors than the Peng - Robin­
son equation. In all these figures, it can be seen that the PACT predicts 
the experimental data much more closely than either the PHCT or the 
Peng - Robinson equation. 

The y-x phase diagram for the systems and acetone - cyclohexane 
(Figure 6) show the effect of including, explicitly, the dipole interactions 
of acetone, rather than the use of the equivalent attractive dispersion 
interaction as was done in the PHCT. The PACT predicts the azeotrope 
and closely follows the experimental data, however, the PHCT fails to 
predict the azeotrope and in addition, poorly follows the experimental 
values. This may be explained as follows: In the alkane-rich liquid 
phase each acetone molecule is surrounded by alkane molecules and 
therefore there are no ace to ne-ace to ne (dipole-dipole) interactions. 
However, when the dipole interaction between pure acetone molecules is 
empirically replaced by an equivalent dispersion interaction (as was done 
in the PHCT), the equation predicts an erroneously large attractive 
energy between acetone and the surrounding alkane molecules. This 
additional attractive energy incorrectly lowers the predicted mole fraction 
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of acetone in the vapor phase as shown in the Figure 6. Similar argu­
ments indicate that the PHCT when compared to the PACT would 
predict an increase in mole fraction of acetone in the vapor phase in 
equilibrium with an acetone-rich liquid phase where alkane molecules are 
surrounded by acetone molecules. 

Mixture predictions by the PACT with pure-component parameters 
alone are quantitatively correct but usually not within experimental error. 
Hov/ever, mixture properties usually can be fit with small errors using 
small values of a binary interaction parameter given in Table III. Phase 
equilibria of even complex hydrogen-bonding systems like chloroform -
acetone and chloroform - diethyl ether are predicted well with small 
values of interaction parameters. 

Conclusion. A new theoretical equation of state, the Perturbed-
Anisotropic-Chain theory has been developed. This equation takes into 
account the effects of differences in molecular size, shape, and inter­
molecular forces including anisotropic dipolar and quadrupolar forces. 
While prediction of properties of pure fluids is no better for the PACT 
than many other equations of state, the prediction of mixture properties, 
especially highly non-ideal mixtures is improved significantly. The 
PACT accurately predicts mixture properties from pure-component 
parameters alone or with small values of a binary interaction parameter. 

Table III. Binary Interaction Parameters 

Binary mixtures 100% 

Dipolar fluid mixtures 
Sulfur dioxide - Acetone -0.75 
Sulfur dioxide - Methyl acetate -1.50 
Sulfur dioxide - Chloroform 1.74 
Acetone - Methyl acetate -1.24 
Acetone - Diethyl ether -1.00 
Acetone - Chloroform -5.00 
Acetone - Methyl iodide 0.96 
Methyl acetate - Chloroform -2.55 
Diethyl ether - Chloroform -4.18 

Non- polar and Dipolar fluid mixtures 
Carbon monoxide - Ethane 
Ethane - Hydrogen sulfide 
Ethane - Methyl acetate 
Ethane - Diethyl ether 
Hydrogen sulfide - Pentane 
Acetone - Pentane 
Acetone - Carbon disulfide 
Acetone - Cyclohexane 
Acetone - Carbon tetrachloride 
Isopentane - Diethyl ether 
Hexane - Chloroform 
Chloroform - Carbon tetrachloride 
Methyl iodide - Carbon tetrachloride 

0.20 
3.40 
3.78 
0.82 
2.90 
0.62 
1.60 
0.11 
0.55 
0.60 
0.50 
0.21 
0.96 
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Figure 4. Comparison of experimental K-factors for hydrogen sulfide -
pentane system and calculated values (with k^ = 0). 
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X acetone 

Figure 6. Comparison of experimental y - χ phase equilibrium data of 
acetone in acetone - cyclohexane system and calculated values (with 
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Because of this success, the PACT may prove very valuable in predict­
ing, to a fair degree of accuracy, mixture properties of systems contain­
ing intermediate molecular weight compounds for which no experimental 
data exist. We are currently extending the PACT for systems involving 
a dipolar and a quadrupolar molecule as well as for complex systems 
involving polymeric and hydrogen-bonding molecules. 
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Appendix 

A summary of various terms in the Helmholtz free energy expression 
used for calculating the mixture properties with the Perturbed-
Anisotropic-Chain theory is given below. 

A - AIG(T, V) = Α Γ Ϊ Η ^ + Α Λ + Α μ μ 

Repulsions: 
2 

Are*> 
NkT = <c> 

r<vd> {r<v*d> 

1 
r<vd> 

where < · · · > represents a mixture property, r =0.7405 and 

< c > = Σ ; <v> = Σχί -^J-
The ratio of segmental diameters, d (hard-core) and σ (soft-core), is 
evaluated as a function of temperature and fitted to a polynomial in 
reduced temperature [Vimalchand and Donohue (lu)]. 

Lennard-Jones Attractions: 

A u 

wher 

NkT 
A\J jNkT 

- 1 

NkT 

NkT A[J/NkT 

, 4 l m < c T V > < « / > m _ 1 

NkT 
! C l m < c r ' V > < t ; ; > ' " - 1 

C2m<cTtv*i><Tt>L<v,
i>m C3m<cTtvi

,XT,>W<v^"'+i 
„ m + l 2 V m+2 
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The results obtained for pure-component are generalized to multicom-
ponent mixtures by extending the van der Waals one-fluid theory to seg­
mental interactions. For example, 

< C T # % ; > 
1 

N/2 Σ xixj ci 
*j 

C:k 
rjajt 

The one-fluid theory is applied differently to each term of the perturba­
tion expansion. This eliminates the approximation that the mixture is 
completely random. Details of the derivation, expressions for <T >r 

and <T*>(2\ and the constants Alm and Cnm are given by Donohue 
and Prausnitz (5.) and Vimalchand and Donohue (1H). 

Dipole-Induced Dipole Interactions 
^μιηάμ 

NkT 
, ~, <cT*v*> 

= -8.886 Τμμ{ν, Τ) μ 

where 

<οΤ*αμν*> Σ xixj ci ησ% c{k 

ν Τ 

+ γ.a 3. c: k V
7ji 

Dipolar interactions: 

Αμμ 

NkT 

where 

NkT 

NkT 
A^ I NkT 
Α£μ /NkT 

-1 

= -.2.962 f) 
<cT"v*> 
7Ί* 

with 
NkT 43.596 ΚμβΛν, f) 

<cT™vm> 
υ2 T3 

and 

Exi 
3 

ι ^ it 
V2 

σ ϋ +
 σ jj 

Τ = 
< Γ * > „ e ijli 

5 '*-ΖΓ 
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Expressions for <εΤμν*> and <εΤμ

&)ν 2 > can be obtained from the 
mixing rules given by Vimalchand and Donohue (10) for quadrupolar 
interactions by replacing TQ and 6Q with Τ*μ and €μ respectively. The 
cross-term, βμ..9 is given by 

The terms Jfifi and Κμμμ involve integrals over the radial distribution 
function for Lennard-Jones molecules. Gubbins and Twu (£) evaluated 
the integrals as a function of reduced volume and reduced temperature. 
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15 
Mixing Rules for Cubic Equations of State 

G. Ali Mansoori 

Department of Chemical Engineering, University of Illinois, Chicago, IL 60680 

Through the application of conformal solution 
theory of statistical mechanics a coherent theory 
for the development of mixing rules is produced. 
This theory allows us to use different 
approximations for the mixture radial distribution 
functions for derivation of a variety of sets of 
conformal solution mixing rules some of which are 
density and temperature dependent. The resulting 
mixing rules are applied to the van der Waals, 
Redlich-Kwong, and Peng-Robinson equations of 
state as the three representative cubic equations 
of state. 

T h e r e e x i s t s a w e a l t h of i n f o r m a t i o n in the l i t e r a t u r e about 
c u b i c e q u a t i o n s of s t a t e a p p l i c a b l e t o v a r i e t i e s of f l u i d s of 
c h e m i c a l and e n g i n e e r i n g i n t e r e s t - A l t h o u g h c u b i c 
e q u a t i o n s of s t a t e a r e g e n e r a l l y e m p i r i c a l m o d i f i c a t i o n s of 
the v a n d e r W a a l s e q u a t i o n of s t a t e , t h e y have found 
w i d e s p r e a d a p p l i c a t i o n s in p r o c e s s d e s i g n c a l c u l a t i o n s 
b e c a u s e of t h e i r s i m p l i c i t y - E x t e n s i o n of t h e i r a p p l i c a b i l i t y 
to m i x t u r e s i s g e n e r a l l y a c i e v e d by i n t r o d u c t i o n of m i x i n g 
r u l e s f o r t h e i r p a r a m e t e r s . M i x i n g r u l e s a r e e x p r e s s i o n s 
r e l a t i n g p a r a m e t e r s of a m i x t u r e e q u a t i o n of s t a t e to p u r e 
f l u i d p a r a m e t e r s t h r o u g h , u s u a l l y , s o m e c o m p o s i t i o n 
d e p e n d e n t e x p r e s s i o n s . E x c e p t f o r the van d e r W a a l s 
e q u a t i o n of s t a t e the m i x i n g r u l e s f o r c u b i c e q u a t i o n s of 
s t a t e a r e e m p i r i c a l e x p r e s s i o n s . In the p r e s e n t r e p o r t we 
i n t r o d u c e a s t a t i s t i c a l m e c h a n i c a l c o n f o r m a l s o l u t i o n 
t e c h n i q u e t h r o u g h wh ich we can d e r i v e v a r i e t i e s of s e t s of 
m i x i n g r u l e s a p p l i c a b l e to c u b i c e q u a t i o n s of s t a t e . T h i s 
p r e s s u r e , e n e r g y , and c o m p r e s s i b i l i t y e q u a t i o n s of 
s t a t i s t i c a l m e c h a n i c s . In P a r t II of the p r e s e n t r e p o r t we 
i n t r o d u c e the c o n f o r m a l s o l u t i o n t h e o r y of p o l a r f l u i d 
m i x t u r e s ( 1 ) and i t s r e l a t i o n s h i p to the i d e a of m i x i n g r u l e s . 
In P a r t III we i n t r o d u c e the c o n c e p t of the c o n f o r m a l 

0097-6156/ 86/ 0300-0314506.00/ 0 
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15. MANSOORI Mixing Rules for Cubic Equations of State 315 

s o l u t i o n m i x i n g r u l e s and we p r o d u c e d i f f e r e n t s e t s of 
m i x i n g r u l e s b a s e d on d i f f e r e n t a p p r o x i m a t i o n s f o r the 
m i x t u r e r a d i a l d i s t r i b u t i o n f u n c t i o n s . In P a r t IV we r e v i e w 
the e x i s t i n g f o r m s of the c u b i c e q u a t i o n s of s t a t e f o r 
m i x t u r e s and the d e f i c i e n c i e s of t h e i r m i x i n g r u l e s and 
c o m b i n i n g r u l e s . F i n a l l y , in P a r t IV we i n t r o d u c e g u i d e l i n e s 
f o r t h e use of c o n f o r m a l s o l u t i o n m i x i n g r u l e s and 
c o m b i n i n g r u l e s in e q u a t i o n s of s t a t e and we d e m o n s t r a t e 
a p p l i c a t i o n of such m i x i n g r u l e s and c o m b i n i n g r u l e s f o r 
t h r e e r e p r e s e n t a t i v e c u b i c e q u a t i o n s of s t a t e . 

II. C o n f o r m a l S o l u t i o n T h e o r y of M i x t u r e s 
C o n f o r m a l s o l u t i o n s r e f e r to s u b s t a n c e s w h o s e 
i n t e r m o l e c u l a r p o t e n t i a l e n e r g y f u n c t i o n , a r e r e l a t e d t o 
each o t h e r and to t h o s e of a r e f e r e n c e f l u i d , u s u a l l y 
d e s i g n a t e d by s u b - s c r i p t ( o o ) , a c c o r d i n g to (1 ,2 ) 

*i j = ' i j ' o o f r / h i j " 3 ) (1) 

F o r s u b s t a n c e s whose i n t e r m o l e c u l a r p o t e n t i a l e n e r g y 
f u n c t i o n can be r e p r e s e n t e d by an e q u a t i o n of the f o r m 

*i j = E i j [ ( L i j / r > n " ( l - i j / r ) m ] (2) 

and f o r w h i c h e x p o n e n t s m and n a r e the s a m e as f o r the 
r e f e r e n c e s u b s t a n c e , c o n f o r m a l p a r a m e t e r s f^- and h|j w i l l 
be d e f i n e d by the f o l l o w i n g r e l a t i o n s w i t h r e s p e c t to the 
i n t e r m o l e c u l a r p o t e n t i a l e n e r g y p a r a m e t e r s Ejj and L^y 

f.. = F - - / F h-- = (I --/i }3 (3 ) h j I 1 i j / l l o o » n i j ^ L i j / L o o ^ 

Thus the c o n f i g u r a t i o n a l t h e r m o d y n a m i c p r o p e r t i e s of a 
p u r e s u b s t a n c e of t y p e (a) a r e r e l a t e d to t h o s e of the 
r e f e r e n c e s u b s t a n c e a c c o r d i n g to the f o l l o w i n g r e l a t i o n s : 

F
a ( V , T) = f a a F 0 ( V / h a a , T / f a a ) - NkT£nh a a (4 ) 

P a ( V , T) = ( f a a / h a a ) P 0 ( V / h a a , T / f a a ) (5) 

S a ( V , T) = S c ( V / h a a , T / f a a ) + Nkenh a a (6 ) 

G a ( P , T) = f a a G 0 ( P h a a / f a a , T / f a a ) - NkTfcnh a a (7 ) 

and 

H a ( P , S) = f a a H 0 ( P h a a / f a a , S 0 ) (8 ) 

w h e r e F, P, S , G, and H a r e the H e l m h o l t z f r e e e n e r g y , 
p r e s s u r e , e n t r o p y , Gibbs f r e e e n e r g y , and e n t h a l p y , 
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316 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

r e s p e c t i v e l y . A c c o r d i n g to the above e q u a t i o n s , a l l the 
t h e r m o d y n a m i c p r o p e r t i e s of s u b s t a n c e (a) can be 
e x p r e s s e d in t e r m s of the p r o p e r t i e s of a r e f e r e n c e p u r e 
s u b s t a n c e (o ) t h r o u g h the c o n f o r m a l p a r a m e t e r s f a a and 
h a a . The c o n f o r m a l s o l u t i o n t r e a t m e n t of f l u i d s c o m p o s e d of 
p o l a r m o l e c u l e s i s m o r e c o m p l i c a t e d than f o r n o n - p o l a r 
f l u i d s . Th i s i s m a i n l y due to e l e c t r o s t a t i c i n t e r a c t i o n s 
w h i c h c a u s e a d e p a r t u r e of the i n t e r m o l e c u l a r p o t e n t i a l 
f r o m s p h e r i c a l s y m m e t r y . The e l e c t r o s t a t i c p o t e n t i a l 
b e t w e e n t w o o t h e r w i s e n e u t r a l m o l e c u l e s a r i s e s f r o m 
p e r m a n e n t a s y m m e t r y in the c h a r g e d i s t r i b u t i o n w i t h i n the 
m o l e c u l e s . F o r any p a i r of l o c a l i z e d c h a r g e d i s t r i b u t i o n , 
the m u t u a l e l e c t r o s t a t i c i n t e r a c t i o n e n e r g y can be w r i t t e n 
in t e r m s of an i n f i n i t e s e r i e s of i n v e r s e p o w e r s of 
s e p a r a t i o n of any t w o p o i n t s . F o r no o v e r l a p b e t w e e n the 
c h a r g e d i s t r i b u t i o n s the s e r i e s c o n v e r g e s ( l ) . Thus the t r u e 
p a i l — p o t e n t i a l of p o l a r m o l e c u l e s i s o r i e n t a t i o n - d e p e n d e n t 
and i s the sum of d i s p e r s i o n f o r c e as w e l l as e l e c t r o s t a t i c 
i n t e r a c t i o n s . In o r d e r to e x t e n t u t i l i t y of t h e a b o v e 
f o r m u l a t i o n of the c o n f o r m a l s o l u t i o n t h e o r y to p o l a r f l u i d s 
we have p r o p o s e d the f o l l o w i n g a n g l e - a v e r a g e d p o t e n t i a l 
f u n c t i o n f o r p o l a r m o l e c u l a r i n t e r a c t i o n s w h i c h r e p r e s e n t s 
the f i r s t o r d e r c o n t r i b u t i o n to the a n i s o t r o p i c f o r c e s ( 1 ) 

* t j ( r , T ) = K € i j [ ( o 1 J / r ) n - (o^/r)™] - n t
2 H j 2 / ( 3 k T r 6 ) 

+ 7 | i i
4 M j 4 / [ 4 5 0 ( k T ) 3 r 1 2 ] - ( M i

2 Q j 2 + v i j 2 Q 1
2 ) / ( 2 k T r 8 ) 

- Q | 2 Q j 2 / ( 1 . 4 k T r 1 0 ) - ( o c 1 | i j 2 + o c j | i 1
2 ) / r 6 (9) 

w h e r e K = [ n / ( n - m and w h e r e | ip Q j , and 
O C J a r e the d i p o l e m o m e n t , q u a d r u p o l e m o m e n t , and 
p o l a r i z a b i l i t y of m o l e c u l e i , r e s p e c t i v e l y . F o r a p o l a r f l u i d , 
w h o s e i n t e r m o l e c u l a r p o t e n t i a l e n e r g y f u n c t i o n can be 
r e p r e s e n t e d by e q . 9 the c o n f o r m a l p a r a m e t e r s f a a and h a a 

w i l l have the f o l l o w i n g f o r m s : 

f a a = E a a < T > r > / E o o < T > r > h a a = a a a < T > r > / L o o ( T > r > J < 1 0> 

w h e r e E , j ( T , r ) = K e i j A 1 j ( T , r ) [ H i j ( T , r ) ] n / m 

L i j C T . r ) = 0 i j [ H i j < T > r > ] ~ , / m 

HtjCT.r ) = [ C i j ( T , r ) / A i j ( T , r ) ] m / ^ n - m ) 

A j j ( T , r ) = 1 + 7 M i
4 i i j

4 / [ 1 8 0 0 ( k T ) 3 r , 2 - m o i j
n K e j j ] 
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15. MANSOORI Mixing Rules for Cubic Equations of State 317 

and C| j (T f r ) = 1 + i i 1
2 M j 2 / [ 1 2 l c T r 6 " " m o 1 j

m K € 1 j ] 

+ ( 7 / 2 0 ) Q i
2 Q j

2 / [ k T r ^ " ' " o y ^ C y 

+ ( n 1
2 Q j

2 + y j
2 Q i

2 ) / [ 8 k T r 8 - m o 1 J
m K 6 | j ] 

+ ( o c 1 i i j
2 + o c j | i 1

2 ) / [ 4 r 6 - m a 1 j
m K e i j ] 

The b a s i c c o n c e p t of the CST of m i x t u r e s i s the s a m e as f o r 
p u r e f l u i d s , e x c e p t tha t f a a and h a a in e q s . 4 - 8 s h o u l d be 
r e p l a c e d w i t h f x x and h x x , the m i x t u r e c o n f o r m a l 
p a r a m e t e r s , as g i v e n b e l o w 

f x x = f xx< f i j> h i j ' x i ) h x x = h x x ( Uy h i j » x i > < 1 1 > 

E q s . l l a r e c a l l e d the c o n f o r m a l s o l u t i o n m i x i n g r u l e s . 
F u n c t i o n a l f o r m s of t h e s e m i x i n g r u l e s w i l l be d i f f e r e n t f o r 
d i f f e r e n t t h e o r i e s of m i x t u r e s as i t w i l l be 
d e m o n s t r a t e d l a t e r in t h i s r e p o r t . In the f o r m u l a t i o n of 
a m i x t u r e t h e o r y we a l s o need to know the c o m b i n i n g r u l e s 
f o r u n l i k e - i n t e r a c t i o n p o t e n t i a l p a r a m e t e r s w h i c h a r e 
u s u a l l y e x p r e s s e d by the f o l l o w i n g e x p r e s s i o n s 

ff j = ( 1 - k i j ) ( f i t f j j > 1 / Z ; h i j = C l - *tj)[( h t i
1 / 3 + h j j 1 / 3 ) / 2 ] 3 (12) 

w h e r e kj j and fcjj a r e a d j u s t a b l e p a r a m e t e r s . 

III. S t a t i s t i c a l M e c h a n i c a l T h e o r y of l i i x i n a R u l e s 
The m o s t i m p o r t a n t r e q u i r e m e n t in the d e v e l o p m e n t of the 
CST of m i x t u r e s a r e m i x i n g r u l e s . In the d i s c u s s i o n 
p r e s e n t e d h e r e we have i n t r o d u c e d a new t e c h n i q u e to 
r e - d e r i v e the e x i s t i n g m i x i n g r u l e s and d e r i v e a n u m b e r of 
new m i x i n g r u l e s s o m e of wh ich a r e d e n s i t y - and 
t e m p e r a t u r e - d e p e n d e n t . A c c o r d i n g to s t a t i s t i c a l m e c h a n i c s 
the m a c r o s c o p i c t h e r m o d y n a m i c p r o p e r t i e s of a p u r e f l u i d 
a r e r e l a t e d to i t s m i c r o s c o p i c m o l e c u l a r c h a r a c t e r i s t i c s by 
the f o l l o w i n g t h r e e e q u a t i o n s (5 ,4 ) 

oo 

u = U j g + 2 n p j 0 ( r ) g ( r ) r 2 d r 
0 

oo 
P = pRT + ( 2 / 3 ) n p J r * r ( r ) g ( r ) r 2 d r 

0 
oo 

k t = 1/pRT - ( 4 T T / R T ) J [ g ( r ) - l ] r 2 d r 
0 

w h e r e u i s the i n t e r n a l e n e r g y , P i s the p r e s s u r e and KJ i s 
the i s o t h e r m a l c o m p r e s s i b i l i t y , 0 ( r ) i s the p a i r 
i n t e r m o l e c u l a r p o t e n t i a l e n e r g y f u n c t i o n , and g ( r ) i s the 

(13) 

(14) 

(15) 
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318 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

r a d i a l ( o r p a i r ) d i s t r i b u t i o n f u n c t i o n . E q s . 1 3 - 1 5 a r e 
c o m m o n l y c a l l e d the e n e r g y e q u a t i o n , the v i r i a l ( o r 
p r e s s u r e ) e q u a t i o n , and the c o m p r e s s i b i l i t y e q u a t i o n , 
r e s p e c t i v e l y - F o r a m u l t i c o m p o n e n t m i x t u r e t h e s e 
e q u a t i o n s a s s u m e the f o l l o w i n g f o r m s ( 5 - 5 ) 

oo 

u = u 1 g + 2 n p 2 i S j X i X j j 0 i j ( r ) g 1 j ( r ) r 2 d r (16) 
0 

oo 

P = pRT + ( 2 / 3 ) n p 2 i 2 j X i x j J r ^ 1 j ( r ) g | J ( r ) r 2 d r (17) 
0 

ic T = ( l / p R D l B l / S i S j X i X j l B ^ j (18) 

In the a b o v e e q u a t i o n s s u m m a t i o n s a r e o v e r a l l the ( c ) 
c o m p o n e n t s of the m i x t u r e , Xj and xj a r e the m o l e f r a c t i o n s , 
and |B| i s a c x c d e t e r m i n a n t w i t h i t s r e p r e s e n t a t i v e t e r m s in 
the f o l l o w i n g f o r m 

oo 

B i j = x i 6 i j + x i x j P G i j G i j = 4nJ [g 1 j ( r ) -1 ] r 2 d r 
0 

w h e r e 6,-j i s the K r o n e e k e r d e l t a , and IBIJJ i s the c o f a c t o r of 
t e r m B y in d e t e r m i n a n t |B|. Eqs . 1 3 - 1 8 can be u s e d in the 
m a n n e r p r e s e n t e d b e l o w in o r d e r to d e r i v e m i x i n g r u l e s 
b a s e d on d i f f e r e n t m i x t u r e t h e o r y a p p r o x i m a t i o n s : 

III.1. O n e - F l u i d T h e o r y of M i x i n g R u l e s : F o r the d e v e l o p m e n t 
of o n e - f l u i d m i x i n g r u l e s we i n t r o d u c e a p s e u d o - p u r e f l u i d 
w h i c h can r e p r e s e n t the c o n f i g u r a t i o n a l p r o p e r t i e s of a 
m i x t u r e p r o v i d e d that the p s e u d o - p u r e f l u i d and the m i x t u r e 
m o l e c u l a r i n t e r a c t i o n s obey e q . 1. By r e p l a c i n g eq .1 in 
e q s . 1 3 , 14, 17, and 18 and then e q u a t i n g c o n f i g u r a t i o n a l 
i n t e r n a l e n e r g y , p r e s s u r e , and i s o t h e r m a l c o m p r e s s i b i l i t y 
of the p s e u d o - p u r e f l u i d and the m i x t u r e we w i l l o b t a i n the 
f o l l o w i n g e q u a t i o n s 

f x x h x x ^ o o ( y ) % o ( y ) y 2 d y = 2 i 2 j X 1 x j f i j h 1 j j 0 o o ( y ) g i j ( y ) y 2 d y (19) 

f x x h x x / y ^ , o o ( y ) g o o ( y > Y 2 d y = 2 i 2 j X 1 x j f i j h j j J y 0 ' o o ( y ) g i j ( y ) y 2 d y 
(20) 

{ 1 - 4 n p h x x J [ g 0 0 ( y ) - 1 ] y 2 d y } - 1 = 2 i 2 j x i x j | B | 1 J / | B | (21) 

It s h o u l d be p o i n t e d out that f o r the c a s e of the h a r d - s p h e r e 
f l u i d e q . 1 9 v a n i s h e s , eq.21 r e m a i n s the s a m e , w h i l e e q . 2 0 
r e d u c e s to the f o l l o w i n g f o r m 

h x x 9 o o < 1 ) = 2 i 2 j X i x j h i j g i j ( 1) (22) 
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S o l u t i o n of e q s . 1 9 - 2 1 s h o u l d p r o d u c e the t w o n e c e s s a r y 
e x p r e s s i o n s ( m i x i n g r u l e s ) r e l a t i n g f x x and h x x of t h e 
p s e u d o - p u r e f l u i d to f j j and h|j of c o m p o n e n t s of t h e 
m i x t u r e . Fo r t h i s p u r p o s e we s h o u l d use an a p p r o x i m a t i o n 
t e c h n i q u e r e l a t i n g the r a d i a l d i s t r i b u t i o n f u n c t i o n s (RDF) in 
the m i x t u r e to the p u r e r e f e r e n c e f l u i d RDF. H o w e v e r , a t a 
f i r s t g l a n c e i t s e e m s t h a t we have in our hand t h r e e 
e q u a t i o n s and two unknowns. A s i t w i l l be d e m o n s t r a t e d 
b e l o w f o r m o s t of the a p p r o x i m a t i o n s of the m i x t u r e RDFs 
w h i c h a r e used h e r e t h e s e t h r e e e q u a t i o n s p r o d u c e t w o 
m i x i n g r u l e s . In the p r e v i o u s i n v e s t i g a t i o n s f o r the 
d e v e l o p m e n t of m i x i n g r u l e s ( 5 - 1 1 ) a l l the i n v e s t i g a t o r s 
have u s e d o n l y eq .19 and/or e q . 2 0 . Our s t u d i e s i n d i c a t e 
t h a t w h i l e e q s . 1 9 and 20 a r e e s s e n t i a l in the d e v e l o p m e n t of 
m i x i n g r u l e s , eq.21 can add a new d i m e n s i o n w h i c h c o u l d be 
s i g n i f i c a n t in the c a l c u l a t i o n of p r o p e r t i e s of m i x t u r e s . In 
what f o l l o w s d i f f e r e n t a p p r o x i m a t i o n s w i l l be u s e d f o r 
r e l a t i n g g y to g O Q in o r d e r to d e r i v e d i f f e r e n t s e t s of 
m i x i n g r u l e s . 

III. 1 . i . Random M i x i n g A p p r o x i m a t i o n (RMA) f o r M i x t u r e 
RDFs : In t h i s a p p r o x i m a t i o n i t i s a s s u m e d t h a t the 
n o n - s c a l e d RDF of a l l the c o m p o n e n t s of the m i x t u r e and the 
i n t e r a c t i o n RDFs a r e i d e n t i c a l (5_), i . e . 

Q\](r) = g 2 2 ( r ) = . . . = g ^ ( r ) = . . . (23 ) 

When t h i s a p p r o x i m a t i o n i s r e p l a c e d in e q s . 1 9 - 2 1 , eq .21 w i l l 
v a n i s h and e q . 1 9 and 20 w i l l p r o d u c e the f o l l o w i n g m i x i n g 
r u l e s 

*xx< r> = 2 i S j X i x j ^ i j ( r ) (24) 

*'xx< r> = SiSjXiXjf'ijCr) (25) 

F o r e x a m p l e , in the c a s e of the L e n n a r d - J o n e s ( 1 2 - 6 ) 
i n t e r m o l e c u l a r p o t e n t i a l f u n c t i o n we w i l l d e r i v e the 
f o l l o w i n g m i x i n g r u l e s (12) f r o m e q s . 1 3 and 14. 

' x x ^ x x 2 = S i S j X i X j f i j h i j 2 ( 2 6 ) 

f x x h x x 4 = S i S j X i X j f j j h j j 4 (27) 

F o r a h a r d - s p h e r e p o t e n t i a l we w i l l d e r i v e o n l y one m i x i n g 
r u l e t h r o u g h the RMA and t h a t i s d e r i v e d by r e p l a c i n g e q . 2 3 
in 2 2 . The r e s u l t i n g m i x i n g r u l e w i l l be 

h x x
, / 3 = ZiZjXiXjh^'S ( 2 8 ) 
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l l l . l . i i . C o n f o r m a l S o l u t i o n A p p r o x i m a t i o n ( C S A ) f o r M i x t u r e 
R P F s : Th is a p p r o x i m a t i o n t e c h n i q u e s e e m s m o r e l o g i c a l f o r 
use in the d e v e l o p m e n t of m i x i n g r u l e s than R M A . A c c o r d i n g 
to t h i s a p p r o x i m a t i o n the s c a l e d RDFs in a m i x t u r e a r e a l l 
i d e n t i c a l (5 J , i - e -

g i i ( y ) = 9zz(y) = - - - = g j j ( y ) = . . . ( 2 9 ) 

When we use t h i s a p p r o x i m a t i o n in e q s . 1 9 and 20 t h e y both 
p r o d u c e the s a m e m i x i n g r u l e wh ich i s 

f X X h X X = SlSjXiXjf^hy ( 3 0 ) 

Now, by r e p l a c i n g e q . 2 9 in 21 an a d d i t i o n a l m i x i n g r u l e w i l l 
be p r o d u c e d w h i c h i s the f o l l o w i n g 

|B*|/pRT ic T x x = SiSjX|Xj|B*||j (31) 

w h e r e |B*|tj = x i [ 6 1 j + X j ( h 1 j / h x x ) ( p R T i c T x x - 1 ) ] . E q . 3 0 i s 
a c t u a l l y the s e c o n d van d e r W a a l s m i x i n g r u l e w h i c h i s w e l l 
known, but e q . 3 1 i s a new m i x i n g r u l e f o r h x x w h i c h i s 
r e p l a c i n g the f i r s t van d e r W a a l s m i x i n g r u l e . T h i s new 
m i x i n g r u l e , in p r i n c i p l e , i s a c o m p o s i t i o n - , t e m p e r a t u r e - , 
and d e n s i t y - d e p e n d e n t m i x i n g r u l e . Th i s i s b e c a u s e K y x x 

w h i c h a p p e a r s in the r i g h t and l e f t hand s i d e s of t h i s 
e q u a t i o n i s g e n e r a l l y t e m p e r a t u r e - and d e n s i t y - d e p e n d e n t . 
F o r e x a m p l e , f o r a b i n a r y m i x t u r e eq .31 can be w r i t t e n in 
the f o l l o w i n g f o r m (5.) 

h x x = { l i S j X j X j h j j + x 1 x 2 ( h 1 1 h 2 2 - h 1 2
2 ) ( p R T i c T x x - 1 ) }/ 

{ 1 + x l X 2 ( h n + h 2 2 - 2 h 1 2 ) ( p R T K T x x - 1 ) } ( 3 1 - 1 ) 

By u s i n g the h a r d - s p h e r e p o t e n t i a l (by r e p l a c i n g e q . 2 9 in 
22) we w i l l d e r i v e the f o l l o w i n g m i x i n g r u l e 

h x x = S i S j X t X j h j j (32) 

Th is m i x i n g r u l e i s the f i r s t van d e r W a a l s m i x i n g r u l e 
w h i c h , in c o n j u n c t i o n w i t h e q . 3 0 i s u s u a l l y u s e d f o r 
c a l c u l a t i o n of m i x t u r e t h e r m o d y n a m i c p r o p e r t i e s 
( 7 , 8 . 1 0 , 1 1 ). It s h o u l d be p o i n t e d out that e q . 3 2 c o n s t i t u t e s 
a n o t h e r m i x i n g r u l e f o r h a r d - s p h e r e m i x t u r e s . A s a r e s u l t , 
w h i l e the CSA a p p r o x i m a t i o n p r o d u c e s t w o m i x i n g r u l e s f o r 
p o t e n t i a l f u n c t i o n s w i t h t w o p a r a m e t e r s , i t a l s o p r o d u c e s 
t w o m i x i n g r u l e s f o r a h a r d - s p h e r e p o t e n t i a l w h i c h i s a 
o n e - p a r a m e t e r p o t e n t i a l f u n c t i o n . 
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M L I . i i i , H a r d - S p h e r e E x p a n s i o n (HSE) A p p r o x i m a t i o n f o r 
M i x t u r e RDFs : It i s d e m o n s t r a t e d t h a t the RDF of a p u r e 
f l u i d ( x ) can be e x p a n d e d a round the h a r d - s p h e r e (hs ) RDF 
in the f o r m (3) 

g x x ( y ) = g h s ( y ) + ( f X x / T o * ^ l < y > + < f xx / T o*> 2 92<y> + — < 3 3 > 

Let us a l s o a s s u m e that we c o u l d make a s i m i l a r e x p a n s i o n 
f o r RDFs in a m i x t u r e a round the h a r d - s p h e r e m i x t u r e RDFs 
as the f o l l o w i n g 

gij<v>= 9 i j h s ( y ) + ( f i j / T 0 * ) g ! ( y ) + ( f i j / T o * ) 2 g 2 ( y ) + — ( 3 4 > 

The j u s t i f i c a t i o n behind t h i s e x p a n s i o n i s g i v e n e l s e w h e r e 
( 6 T 9 ) . Now by r e p l a c i n g e q s . 3 3 and 34 in e i t h e r of e q s . 1 9 o r 
20 we w i l l be a b l e to d e r i v e the f o l l o w i n g t w o m i x i n g r u l e s 
by e q u a t i n g the c o e f f i c i e n t s of 
the s e c o n d and t h i r d o r d e r i n v e r s e t e m p e r a t u r e t e r m s of 
the r e s u l t i n g e x p r e s s i o n . 

f X X h X X = SiSjX^jfyhy ( 3 5 ) 

' x x ^ x x = 2 i 2 j X l x J f 1 J 2 h 1 J ( 3 6 ) 

These m i x i n g r u l e s a r e used f o r c a l c u l a t i o n of e x c e s s 
p r o p e r t i e s of a m i x t u r e o v e r the h a r d - s p h e r e m i x t u r e (13) 
at the s a m e t h e r m o d y n a m i c c o n d i t i o n s (9 ) . A p p l i c a t i o n of 
the HSE a p p r o x i m a t i o n in eq.21 w i l l not p r o d u c e any 
a d d i t i o n a l m i x i n g r u l e . 

I l l . l . i v . D e n s i t y E x p a n s i o n (DEX) A p p r o x i m a t i o n f o r M i x t u r e 
RDFs : i t has been d e m o n s t r a t e d that the RDF of a p u r e f l u i d 
can be e x p a n d e d a round the d i l u t e gas RDF, e x p [ - 0 ( r ) / k T ] , in 
the f o r m (14) 

g x x ( y ) = [1 + F x x ( y ) ] e x p [ - 0 x x ( r ) / k T ] ( 3 7 ) 

Let us a l s o a s s u m e that we c o u l d make a s i m i l a r e x p a n s i o n 
f o r RDFs in a m i x t u r e a round the d i l u t e gas m i x t u r e RDFs as 
the f o l l o w i n g 

g i j ( y ) = [1 + F x x ( y ) ] e x p [ - 0 1 j ( r ) / k T ] ( 3 8 ) 

Now by r e p l a c i n g e q s . 3 7 and 38 in e q . 1 9 and a f t e r a n u m b e r 
of a l g e b r a i c m a n i p u l a t i o n s we w i l l d e r i v e the f o l l o w i n g 
m i x i n g r u l e 

f x x h x x = 2 1 2 j x 1 x j f 1 j h i j { 1 - ( f i j / f x x - 1 ) [ u - u 1 g ) / k T 

+ T ( C v - C v i g ) / ( u - u 1 g ) ] } (39 ) 
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The l a t t e r m i x i n g r u l e can be u s e d , j o i n e d w i t h a n o t h e r 
m i x i n g r u l e , f o r c a l c u l a t i o n of m i x t u r e p r o p e r t i e s . S i m i l a r 
a p p r o x i m a t i o n s can be u s e d in o r d e r to d e r i v e o t h e r m i x i n g 
r u l e s f r o m the v i r i a l and c o m p r e s s i b i l i t y e q u a t i o n s . 

III.2. M u l t i - F l u i d T h e o r y of M i x i n g R u l e s : 
The b a s i c a s s u m p t i o n in d e v e l o p i n g the m u l t i - f l u i d m i x i n g 
r u l e s i s the s a m e as the o n e - f l u i d a p p r o a c h e x c e p t t h a t in 
t h i s c a s e we w i l l s e a r c h f o r a h y p o t h e t i c a l m u l t i c o m p o n e n t 
i d e a l m i x t u r e which c o u l d r e p r e s e n t the c o n f i g u r a t i o n a l 
p r o p e r t i e s of a m u l t i c o m p o n e n t r e a l m i x t u r e , bo th w i t h the 
s a m e n u m b e r of c o m p o n e n t s and at the s a m e t h e r m o d y n a m i c 
c o n d i t i o n s . In t h i s c a s e e q s . 1 9 - 2 1 w i l l be r e p l a c e d by the 
f o l l o w i n g s e t of e q u a t i o n s 

f x i h x i ^ o o ( y ) 9 o o ( y ^ V 2 d y = 2 j X j f i j h 1 j j 0 o o ( y ) g i j ( y ) y 2 d y (40 ) 

f x 1 h x 1 J y 0 - o o ( y ) g o o ( y ) y 2 d y = 2 j X j f i j h 1 j J y ^ ' o o ( y ) g i j ( y ) y 2 d y (41) 

{ l -4nph x i J [g 0 0 ( y ) -1 ] y2dy } -1=2 j X3|B| i j /|B| (42) 

E x p r e s s i o n s f o r Bjj and G|j w i l l be the s a m e as in e q . 1 8 . In 
the c a s e of the h a r d - s p h e r e f l u i d e q . 4 0 w i l l r e d u c e to the 
f o l l o w i n g f o r m 

h x i g o o h s ( 1 ) = 2 j X j h i j g j j
h s ( 1 ) , ( 4 0 - 1 ) 

e q . 4 1 w i l l v a n i s h and e q . 4 3 w i l l r e m a i n the s a m e . 

M l . 2 . i . A v e r a g e P o t e n t i a l Mode l ( A P M ) f o r M i x t u r e RDFs : In 
t h i s a p p r o x i m a t i o n i t i s a s s u m e d that (5_), 

g l j ( r ) = [ g ^ r ) + g j j ( r ) ] /2 Q t 1 ( r ) * g j j ( r ) ( 4 3 ) 

When t h i s a p p r o x i m a t i o n i s r e p l a c e d in e q s . 4 0 - 4 2 , e q . 4 2 w i l l 
v a n i s h and e q . 4 0 and 41 w i l l p r o d u c e the f o l l o w i n g m i x i n g 
r u l e s 

*xi< r > = 2 j X j 0 i j ( r ) ( 4 4 ) 

* ' x i ( r ) = S j X j ^ ' i ^ r ) (45) 

F o r e x a m p l e , in the c a s e of the L e n n a r d - J o n e s ( 1 2 - 6 ) 
i n t e r m o l e c u l a r p o t e n t i a l f u n c t i o n we w i l l d e r i v e the 
f o l l o w i n g m i x i n g rules(JL2) . 

f h 2 = 7 - x - f - h - 2 ( 4 6 ) 
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15. MANSOORI Mixing Rules for Cubic Equations of State 323 

'xihxi 4 = SjXjfjjh^ ( 4 7 ) 

F o r a h a r d - s p h e r e p o t e n t i a l we w i l l d e r i v e o n l y one m i x i n g 
r u l e 

h x i 1 / 3 = 2 j X j h i j 1 / 3 ( * » > 

M l . 2 . i i . M u l t i - f l u i d C S A A p p r o x i m a t i o n f o r M i x t u r e RDFs : 
A c c o r d i n g to t h i s a p p r o x i m a t i o n the s c a l e d RDFs in a 
m i x t u r e a r e r e l a t e d as the f o l l o w i n g 

g i j ( y ) = t g i j ( y ) + g j j ( y ) ] /2 g t 1 ( r ) * g j j ( y ) ( 4 9 ) 

When we use t h i s a p p r o x i m a t i o n in e q s . 4 0 and 41 t h e y b o t h 
p r o d u c e the same m i x i n g r u l e wh ich i s 

f -h = Y x f - h - ( 5 ° ) 

Now, by r e p l a c i n g e q . 4 9 in 42 an a d d i t i o n a l m i x i n g r u l e w i l l 
be p r o d u c e d wh ich i s the f o l l o w i n g 

| B * | / P R T K T x 1 = S j X j l B * ^ (51) 

w h e r e 

|B*| t j = x i { 6 i j + ( x j h 1 j / 2 ) [ ( p R T K T x i - 1 ) / h x 1 + ( p R T i c T x j - 1 ) / h X j ] } 

E q . 5 0 i s a c t u a l l y the s e c o n d van d e r W a a l s m u l t i - f l u i d 
m i x i n g r u l e , but eq .51 i s a new m i x i n g r u l e f o r h X j . By u s i n g 
the h a r d - s p h e r e p o t e n t i a l (by r e p l a c i n g e q . 4 9 in 4 0 - 1 ) we 
w i l l d e r i v e the f o l l o w i n g m i x i n g r u l e 

h x j = ZjXjhfj (52) 

Th is m i x i n g r u l e i s the f i r s t m u l t i - f l u i d van d e r W a a l s 
m i x i n g r u l e w h i c h , in c o n j u n c t i o n w i t h e q . 5 0 i s u s u a l l y u s e d 
f o r c a l c u l a t i o n of m i x t u r e t h e r m o d y n a m i c p r o p e r t i e s . It 
s h o u l d be p o i n t e d out t h a t e q . 5 2 c o n s t i t u t e s a n o t h e r m i x i n g 
r u l e f o r h a r d - s p h e r e m i x t u r e s . 

I l l . 2 . i i i . M u l t i - F l u i d HSE M i x i n g R u l e s : In a s i m i l a r m a n n e r 
as the o n e - f l u i d c a s e we can d e r i v e the f o l l o w i n g m i x i n g 
r u l e s 

f h • = Y x f - h - (53) 

f - 2 h • = Y x f 2 h - ( 5 4 ) 

' x i " x i J i j i j 

These m i x i n g r u l e s a r e used f o r c a l c u l a t i o n of e x c e s s 
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p r o p e r t i e s of a m i x t u r e o v e r the h a r d - s p h e r e m i x t u r e . 

III. 2 . i v , M u l t i - F l u i d DEX M i x i n g R u l e s : In a s i m i l a r m a n n e r as 
the o n e - f l u i d c a s e we can d e r i v e the f o l l o w i n g m i x i n g r u l e 

f x i h x i = SjXjfijh^d -Cf^/fxi-DEupUig)/^ 

+ T ( C v 1 - C v 1 g ) / ( u r u 1 g ) ] } (55) 

Th is m i x i n g r u l e can be u s e d , j o i n e d w i t h a n o t h e r m i x i n g 
r u l e , f o r c a l c u l a t i o n of m i x t u r e p r o p e r t i e s . 

IV. A p p l i c a t i o n of M i x i n g Ru les f o r Cubic E o u a t i o n s of S t a t e 
In o r d e r to a p p l y the v a r i e t i e s of the c o n f o r m a l s o l u t i o n 
m i x i n g r u l e s w h i c h a r e i n t r o d u c e d h e r e f o r c u b i c and o t h e r 
e q u a t i o n s of s t a t e the f o l l o w i n g c o n s i d e r a t i o n s s h o u l d be 
taken i n t o a c c o u n t : 

( i ) C o n f o r m a l s o l u t i o n m i x i n g r u l e s a r e f o r the m o l e c u l a r 
c o n f o r m a l v o l u m e p a r a m e t e r , h, and the m o l e c u l a r 
c o n f o r m a l e n e r g y p a r a m e t e r , f. 

( i i ) C o n f o r m a l s o l u t i o n m i x i n g r u l e s a r e a p p l i c a b l e f o r 
c o n s t a n t s of an e q u a t i o n of s t a t e o n l y . B e f o r e u s i n g a s e t of 
m i x i n g r u l e s f o r an e q u a t i o n of s t a t e one has to e x p r e s s the 
p a r a m e t e r s of the e q u a t i o n of s t a t e w i t h r e s p e c t to the 
m o l e c u l a r c o n f o r m a l p a r a m e t e r s h and f. Th is w i l l then 
make i t p o s s i b l e to w r i t e the c o m b i n i n g r u l e s and m i x i n g 
r u l e s f o r the e q u a t i o n of s t a t e . In what f o l l o w s m i x i n g r u l e s 
and c o m b i n i n g r u l e s f o r t h r e e r e p r e s e n t a t i v e c u b i c 
e q u a t i o n s of s t a t e a r e d e r i v e d and t a b u l a t e d . 

IV.1. M i x i n g R u l e s f o r the van d e r W a a l s E q u a t i o n of S t a t e : 
The van d e r W a a l s e q u a t i o n of s t a t e (15) can be w r i t t e n in 
the f o l l o w i n g f o r m 

Z = Pv/RT = v / ( v - b ) - a/vRT (56) 

P a r a m e t e r b of t h i s e q u a t i o n of s t a t e i s p r o p o r t i o n a l to 
m o l e c u l a r v o l u m e ( b « h ) and p a r a m e t e r a i s p r o p o r t i o n a l to 
( m o l e c u l a r v o l u m e ) ( m o l e c u l a r e n e r g y (aocfh). Then , in 
o r d e r to a p p l y the m i x i n g r u l e s i n t r o d u c e d in t h i s r e p o r t f o r 
the van d e r W a a l s e q u a t i o n of s t a t e we m u s t r e p l a c e h w i t h b 
and f w i t h a/b in a l l the m i x i n g r u l e s . In Tab le I m i x i n g 
r u l e s f o r the van d e r W a a l s e q u a t i o n of s t a t e b a s e d on 
d i f f e r e n t t h e o r i e s of m i x t u r e s a r e r e p o r t e d . The c o m b i n i n g 
r u l e s f o r a ^ and b y ( i* j ) of t h i s e q u a t i o n of s t a t e , 
c o n s i s t e n t w i t h e q s . 1 2 w i l l be 
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Tab le I: M i x i n g R u l e s f o r the van d e r W a a l s E q u a t i o n of S t a t e 

O n e - F l u i d M i x i n g R u l e s 

a - [ 2 i 2 j X i X j a i j b i j ] ^ / 2 / [ 2 i 2 j X i x j a i j b i j 3 ] 1 / 2 

R M A T h e o r y { 

^ ^ i ^ i ^ ^ j ^ i j l i i . ^ i ^ j ^ i i îJ_] 

, a = S i S i X i X i Q i i 
v d W T h e o r y { 

b = S i S j X i X j b i j 

a = S i S j X i X j a ^ j 

A P M T h e o r y { 
b 

HSE T h e o r y { 

b = [ 2 i 2 j X i X j a 1 j ] 2 / 2 i 2 j X i X j a i j 2 / b i j 

a = [ a v d W + ( b / v R T ) 2 i 2 j X i X j a i j 2 / b i j ]/[ 1+a v d W / v R T ] 
DEX T h e o r y { 

b = S i S j X i X j b i j 

a = S j S j X j X j a i j 
C S A T h e o r y { 

1 + A X X - | B * | / Z i S j X i X j l B * ^ ; B * i j = x i ( 6 i j + x J A x x b i j / b ) 

M u l t i - F l u i d M i x i n g R u l e s 

= S j X j a i j 

= S j X j b i j 

= S j X j a y 

= [ S j X j a i j ] 2 / 2 j x j a i j 2 / b i j 

a i = l a j V C j V Y " K b i / v R T ) S jX ja j j^/b^ j ]/ [ 1 + a i V d W / v R T ^ 

DEX T h e o r y { 

b i = S j X j b i j 

a i = S j X j a i j 
C S A T h e o r y { 

1 + A x i « | B * | / 2 jX j|B* l i j ; B * i j = x i [ 6 i j + x j b i j ( A X i / b i + A X j / b j ) / 2 ] 

A X X = P R T K T x x - 1 = [ 2 a ( v - b ) ^ - R T b ( 2 v - b ) ] / [ R T v ^ - 2 a ( v - b ) ^ l 

A X I = p R T K T x i - l = [ 2 a i ( v - b i ) 2 - R T b i ( 2 v - b i ) ] / [ R T v 2 - 2 a i ( v - b i ) 2 l 

v d W T h e o r y { 

b 

HSE T h e o r y { 
b 
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a i j = < 1 - k i j ) b i j ( a i i a j j / t > 1 i b j j ) 1 / 2 ; 

b t j = ( 1 - £ 1 j ) [ ( b 1 1
1 / 3 + b j j

1 / 3 ) / 2 ] 3 

(57) 

IV.2. M i x i n g R u l e s f o r the R e d l i c h - K w o n g E q u a t i o n of S t a t e : 
The R e d l i c h - K w o n g e q u a t i o n of s t a t e (16) w h i c h i s an 
e m p i r i c a l m o d i f i c a t i o n of the van d e r W a a l s e q u a t i o n can be 
w r i t t e n in the f o l l o w i n g f o r m 

P a r a m e t e r b of t h i s e q u a t i o n of s t a t e i s p r o p o r t i o n a l to 
m o l e c u l a r v o l u m e (boch) and p a r a m e t e r a i s p r o p o r t i o n a l to 
( m o l e c u l a r v o l u m e ) ( m o l e c u l a r e n e r g y ) 3 / 2 o r ( a < x f . h 3 / 2 ) . 
Then , in o r d e r to a p p l y the m i x i n g r u l e s i n t r o d u c e d in t h i s 
r e p o r t f o r the R e d l i c h - K w o n g e q u a t i o n of s t a t e we m u s t 
r e p l a c e h w i t h b and f w i t h ( a / b ) 2 / 3 in a l l the m i x i n g r u l e s . 
In T a b l e II m i x i n g r u l e s f o r the R e d l i c h - K w o n g e q u a t i o n of 
s t a t e b a s e d on d i f f e r e n t t h e o r i e s of m i x t u r e s a r e r e p o r t e d . 
The c o m b i n i n g r u l e s f o r a^j and bj j ( i* j ) of t h i s e q u a t i o n of 
s t a t e , c o n s i s t e n t w i t h e q s . 1 2 w i l l be the s a m e as e q s . 5 7 . 

IV .5 . M i x i n g Ru les f o r the P e n g - R o b i n s o n E q u a t i o n of S t a t e : 
The P e n g - R o b i n s o n e q u a t i o n of s t a t e (17) w h i c h i s a n o t h e r 
e m p i r i c a l m o d i f i c a t i o n of the van d e r W a a l s e q u a t i o n can be 
w r i t t e n in the f o l l o w i n g f o r m 

Z = Pv/RT = v / ( v - b ) - a (T )v/ {RT[v (v+b)+b(v -b ) ] } (59) 

P a r a m e t e r b of t h i s e q u a t i o n of s t a t e i s a c o n s t a n t w h i c h i s 
p r o p o r t i o n a l to the m o l e c u l a r v o l u m e (boch ) . H o w e v e r , 
p a r a m e t e r a of the P e n g - R o b i n s o n e q u a t i o n of s t a t e i s not a 
c o n s t a n t and i t i s a f u n c t i o n of t e m p e r a t u r e as the 
f o l l o w i n g . 

Z = Pv/RT = v / ( v - b ) - a / [ R T 3 / 2 ( v + b ) ] (58) 

a (T ) = a c { l + 8 [ l - T / T c ) 1 / 2 ] } 2 (60 ) 

w h e r e 

a c = 0 . 4 5 7 2 4 R 2 T C
2 / P C 9 = 0.37464+1 . 5 4 2 2 6 C J - 0 . 2 6 9 9 2 ( A ) 2 
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15. MANSOORI Mixing Rules for Cubic Equations of State 327 

Tab le II: M i x i n g Ru les f o r the R e d l i c h - K w o n a E q u a t i o n of S t a t e 

O n e - F l u i d M i x i n g R u l e s 

___________ 
R M A T h e o r v l 

V b = [ 2 1 2 j X 1 x j a j j 2 / 3 b l j l 0 / 3 / 2 i 2 j X j X j a i j 2 / 3 b . j 4 / 3 ] 1 / 2 

b = S j S j X i X j b j j 

HSE T h e o r y ! 

b - [ S i Z j x 1 x j a i j 2 / 3 b i j 1 / 3 ] 2 / 2 i 2 j X . X j a i j 4 / 3 b i r l / 3 

a = _ > i 2 j X i x j a i j ( a / b ) ^ 3 ( 1 _ [ ( a i j / b i p 2 / 3 ( b / a ) 2 7 3 _ | ] ^ 

DEX T h e o r y { 
b = S i S j X j X j b i j 
_ _ _ _ _ _ _ ^ 

C S A T h e o r y { 
1 + A X X = | B * | / S i S j X i X j l B * ^ ; B*i j= X i C e i j + x j A x x b i j / b ) 

M u l t i - F l u i d M i x i n g R u l e s 

a i - [ 2 j X j a 1 j 2 / 3 b 1 j 4 / 3 ] 5 / 2 / 2 j X j a i j 2 / 3 b l j 1 0 / 3 

A P M T h e o r v l 

, a i = [ 2 j X j a i j 2 / 3 b i j 1 / 3 ] 3 / 2 / [ 2 j X j b | j ] l / 2 
v d W T h e o r y { J J J 1 J 

b i = S j X j b i j 
_______ 

HSE T h e o r y { ^ = ^ ^ ^ . z / S b y ^ S j Z ^ x j ^ ^ / S b y - l / S 

a i = _ > j X j a i j ( a / b ) ^ 3 { 1 - [ ( a i j / b i j ) 2 " / 3 ( b i / a i ) 2 / 3 _ 1 ] C i } 

DEX T h e o r y { 
b i = S j X j b i j 

C S A T h e o r y { 
1 + _ _ x i = |B*|/ _>jXj|B*lij ; B*i j= x i ( 6 i j + x j b i j [ A x i / b I + A x j / b j ] ) 

C = ( 3 / 2 ) ( a / b R ) T "V/Untv/Cv+b)] - l/2; 
Ci = C 3 / 2 ) ( a i / b i R ) T - 3 / 2 £ n [ v / ( v + b i ) ] - l / 2 
A X X = P R T K T x x - 1 = - l + R T 3 / 2 ( v 2 _ b 2 ) 2 / [ R T { v ( v + b ) ) 2 _ a ( 2 v + b ) ( v - b ) 2 1 

A X I = P R T K T x 1 - 1 = - l + R T 3 / 2 ( v 2 - b l 2 ) 2 / [ R T { v ( v + b i ) } 2 - a i ( 2 v + b i ) ( v - b i ) 2 ] 
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328 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

and T c and P c a r e the c r i t i c a l p o i n t t e m p e r a t u r e and 
p r e s s u r e , r e s p e c t i v e l y ; and u> i s the a c e n t r i c f a c t o r . In 
o r d e r to u t i l i z e the s t a t i s t i c a l m e c h a n i c a l m i x i n g r u l e s f o r 
the P e n g - R o b i n s o n e q u a t i o n of s t a t e we m u s t f i r s t s e p a r a t e 
t h e r m o d y n a m i c v a r i a b l e s f r o m c o n s t a n t s of t h i s e q u a t i o n of 
s t a t e . F o r t h i s p u r p o s e we may w r i t e t h i s e q u a t i o n of s t a t e 
in the f o l l o w i n g f o r m 

w h e r e A = a c ( l + 8 ) 2 and C = a c 6 2 / R T c . Th is new f o r m of the 
P e n g - R o b i n s o n e q u a t i o n of s t a t e i n d i c a t e s tha t t h e r e e x i s t 
t h r e e i n d e p e n d e n t c o n s t a n t p a r a m e t e r s in t h i s e q u a t i o n 
w h i c h a r e A , b, and C. P a r a m e t e r s b and C a r e p r o p o r t i o n a l 
to the m o l e c u l a r v o l u m e (boch and C « h ) w h i l e p a r a m e t e r A i s 
p r o p o r t i o n a l to ( m o l e c u l a r v o l u m e ) ( m o l e c u l a r e n e r g y ) o r 
( A o c f h ) . B a s e d on d i f f e r e n t t h e o r i e s of m i x t u r e s m i x i n g 
r u l e s f o r t h i s new f o r m of the P e n g - R o b i n s o n e q u a t i o n of 
s t a t e a r e r e p o r t e d in T a b l e III. The c o m b i n i n g r u l e s f o r the 
un l ike i n t e r a c t i o n p a r a m e t e r s of t h i s e q u a t i o n of s t a t e a r e 
as the f o l l o w i n g 

Z = Pv/RT = v / ( v - b ) - [ ( A / R T + C - 2 ( A C / R T ) 1 / 2 ] / 

[ ( v + b ) + ( b / v ) ( v - b ) ] (61) 

A i j = ^ - k i j ) b i j ( A i i A j j / b i i b j j > (62) 

b i j = ( 1 - ^ i j ) [ ( b i i 1 / 3 + b j j 1 / 3 ) / 2 ] 3 ( 6 3 ) 

c i j = ^ - ^ n i c ^ ^ c ^ ^ / z ] ^ ( 6 4 ) 

S i m i l a r p r o c e d u r e s t o t h o s e d e m o n s t r a t e d a b o v e can be 
u s e d f o r d e r i v a t i o n of c o n f o r m a l s o l u t i o n m i x i n g r u l e s f o r 
o t h e r c u b i c e q u a t i o n s of s t a t e . 
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15. MANSOORI Mixing Rules for Cubic Equations of State 329 

T a b l e HI: M i x i n g Ru les f o r the P e n a - R o b i n s o n Eg . of S t a t e 

One-Fluid Mixing Rules 

A 
RMA Theory{ b 

C 

= [ S i S j X i X j A i j b ^ / ^ ^ j X i X j A ^ b y S ] ! / ? 
= tZiSjXiXjAi jb i j f/SiSjXiXjAi jb i j l J^ 
= [_> iSjXiXjAijCij^/SiSjXiXjAijCij] ' 7^ 

A 
vdW Theory! b 

C 

= 2i2jXiXjAjj 
= _Ei_EjXiXjbij 
= 2i_£jXjXjCij 

A 
HSE Theory! b 

C = 

= 2i_!iXiXj Ajj 
- CSiSjXiXjAi j^/SiSjXiXjA^/bi j 
= [S i_>j x i Xj Aj j ] ̂  /2 i2j x i Xj Ai j - /C i j 

A 
DEX Theory! b 

C 

- S iS jX iX jA i jd - lCA i j /b i jXb/A) - ! ! ^ 
= Si-SjX-jXjb-jj 
= SiSjXjXjCij 

A = SiSiXjXjAjj 
CSA Theory! 1 + Axx=lB*I/ 2i_>jX lX j|B*hj; B* i j =x i (6 i j+x j A x x b i j /b) ; 

C = 2i_!jXiXjCij 

Multi-Fluid Mixing Rules 

- [SjXjAijbijJ/^jXjAijbij]Ml 
= C__ j x j A i jC i j 3/2: j x j A i j C i j ]1/2 

A 
APM Theory! b 

C 

A 
vdW Theory! b 

C 

SjXjAtj 
SjXjbij 
ZjXjCij 

Ai = SjXjAij 
HSE Theory! b i = [ 2j x j A i j ] 2 /_>jXjAij 2 /bij 

Ci - [ZjXjAylZ/SjXjAijZ/Cy 

Ai = 2jXjAij{1-[CAij/bij)(b/A)-1]^ i) 
DEX Theory! b i = 2 j x j b i j 

Ci - SjXjCij 

Ai = SjXjAij 
CSA Theory { 1+A x i = |B*[V __jXj|B*|ij; B* i j =Xi[6i j+(x j b i j /2)(A x i /bi+A x j/bj)] 

Ci = SjXjCij 

A x x = P R T K T x x - 1 = -HRT/{RTv v-b)^-2Av^/( v^+b^} 
A x i = p R T < T x i - l = -HRT/{RTv 2/( v - b i ) 2 - 2 A i V 3 / ( v 2 +bi 2 )2} 
I = {[A-Y(ACRT)]/(2bRTvr2)}en[CY+b-b^2)/(v+b+bvr2)] 

+ ̂ (ACRT)/!2[^(ACRT)-A]) 
Ci= {[Ai-v^(AiCiRT)]/(2biRTV2)}£n[(v+b rbjV2)/(v+b i+bjV-)] 

+V(AiCiRT)/{2[V(A iCiRT)-Ail} 
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16 
Improved Mixing Rules for One-Fluid Conformal 

Solution Calculations 

James F. Ely 

Chemical Engineering Science Division, Center for Chemical Engineering, National Bureau 
of Standards, Boulder, CO 80303 

During the past few years there has been great inter­
est in improving equation of state mixing rules for 
fluid modeling. In this report new one-fluid mixing 
rules are proposed which explicitly take size 
difference effects into account. The resulting rules 
give the hard sphere mixture compressibility factor 
exactly. Comparisons of predicted excess properties 
for Lennard-Jones mixtures of varying size and energy 
ratios are presented. The results of the new mixing 
rules are superior to the van der Waals one-fluid 
model, especially for the excess volume. 

During the past few years there has been increased i n t e r e s t the 
deveopment of improved mixing r u l e s f o r use with engineering 
equation of s t a t e models of f l u i d s . This a c t i v i t y has been focused 
i n two a r e a s — m i x i n g r u l e s developed f o r the parameters of simple 
(cubic) equations of s t a t e (1-5) and t h e o r e t i c a l l y d erived mixing 
r u l e s which are used i n high accuracy pure f l u i d equations of s t a t e 
v i a conformal s o l u t i o n arguments (6-10). Examples of the l a t t e r 
approach are the extended corresponding s t a t e s and hard sphere 
expansion models proposed by Leland and coworkers (10-12) whil e the 
former includes a p p l i c a t i o n s of modified Redlich-Kwong type 
equations of s t a t e (1_3JJ*) to complex mixtures. 

A somewhat s u r p r i s i n g r e s u l t obtained by comparing these two 
approaches i s that the modified cubic equations of s t a t e using van 
der Waals mixing r u l e s t y p i c a l l y give as good i f not b e t t e r phase 
e q u i l i b r i u m r e s u l t s than the conformal s o l u t i o n model using the same 
mixing r u l e s (1_5). This r e s u l t becomes much more pronounced as the 
s i z e d i f f e r e n c e s i n the mixture become l a r g e , much more so than f o r 
systems which d i s p l a y l a r g e energy d i f f e r e n c e s . In a d d i t i o n to 
these observations based on data f o r r e a l f l u i d mixtures, recent 
computer s i m u l a t i o n s t u d i e s (16-18) on model Lennard-Jones mixtures 
have d r a m a t i c a l l y pointed out the f a i l u r e s of the v a r i o u s conformal 
s o l u t i o n models as a f u n c t i o n of s i z e d i f f e r e n c e . 

In t h i s r e p o r t , a new set of mixing r u l e s i s proposed f o r use 
i n conformal s o l u t i o n mixture c a l c u l a t i o n s . These new mixing r u l e s 

This chapter not subject to U.S. copyright. 
Published 1986, American Chemical Society 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

6

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 
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are derived by making a new "mean d e n s i t y " approximation and then 
expanding the r a d i a l d i s t r i b u t i o n f u n c t i o n of a binary p a i r about 
that of a hard sphere. The new r u l e s reduce to the van der Waals 
o n e - f l u i d model i n the l i m i t of low de n s i t y and are exact f o r the 
c o m p r e s s i b i l i t y f a c t o r of hard sphere mixtures. Some p r e l i m i n a r y 
r e s u l t s obtained wi t h the mixing r u l e s are compared with computer 
simmulations f o r Lennard-Jones mixtures wi t h v a r y i n g s i z e 
d i f f e r e n c e s . 

D e r i v a t i o n 

The d e r i v a t i o n of the new mixing r u l e s c l o s e l y f o l l o w s the 
d e r i v a t i o n of the hard sphere expansion (HSE) mixing r u l e s presented 
by Mansoori and Leland (19_). One f i r s t assumes that the N-body 
c o n f i g u r a t i o n a l energy of a mixture or pure f l u i d i s pairw i s e 
a d d i t i v e and that each p a i r w i s e p o t e n t i a l can be w r i t t e n as a sum of 
an e f f e c t i v e hard sphere r e p u l s i o n and long range a t t r a c t i o n which 
i s a u n i v e r s a l f u n c t i o n of reduced i n t e r m o l e c u l a r separation r / o j j 

v r ) - u S ( r ) + e i j u u ( r / ° i j

) 

I t i s a l s o g e n e r a l l y assumed that the pairwise p o t e n t i a l parameters 
may be temperature and/or d e n s i t y dependent (12). 

The next step i s to make an approximation concerning the r a d i a l 
d i s t r i b u t i o n f u n c t i o n s i n the mixture. In the HSE, Mansoori and 
Leland introduced the mean dens i t y approximation (MDA) 

g i j ( r : C p a ] ' T : C e a B L C a a 6 ] ) " g o ( r / o i j ; k T / e i j ' ^ 

In t h i s equation [ p a ] denotes the set of molecular number 
d e n s i t i e s i n the mixture and [ e a $ ] and [ a a g ] i n d i c a t e that i n the 
mixture, the r a d i a l d i s t r i b u t i o n f u n c t i o n depends upon the complete 
set of i n t e r m o l e u c l a r p o t e n t i a l parameters. The s u b s c r i p t o denotes 
a pure f l u i d r a d i a l d i s t r i b u t i o n f u n c t i o n . In words, the mean 
de n s i t y approximation says that the d i s t r i b u t i o n of molecules i n a 
mixture as a f u n c t i o n of reduced distance and temperature i s the 
same as that i n a pure f l u i d evaluated at an e f f e c t i v e or mean 
reduced number d e n s i t y , po3. 

The mean d e n s i t y approximation i s a great improvement over the 
more common van der Waals o n e - f l u i d approximation which assumes that 

g i J ( r ; [ p a ] , T ; [ e c i 8 ] , [ o a 8 ] ) = g ^ r / a ^ ;KT/e,po3) 

although the mean d e n s i t y approximation and van der Waals (VDW1) 
approximations are i d e n t i c a l i n the case of equal energy parameters. 
The shortcomings of the VDW1 approximation are i l l u s t r a t e d i n 
Figure 1 which has been redrawn from (20). This f i g u r e i l l u s t r a t e s 
the r a d i a l d i s t r i b u t i o n f u n c t i o n s f o r a binary mixture and 
h y p o t h e t i c a l pure f l u i d (denoted by " o " ) . Nonetheless, a problem 
s t i l l e x i s t s w i t h the MDA i n that as the s i z e d i f f e r e n c e s i n the 
mixture increase, the mean den s i t y no longer s u p p l i e s an adequate 
estimate of the environment encountered by the i - i or j - j p a i r s , 
although i t almost always provides a good estimate of the i - j 
d i s t r i b u t i o n (30). 
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In order to at l e a s t p a r t i a l l y improve t h i s s i t u a t i o n we have 
developed a simple m o d i f i c a t i o n to the MDA given by the f o l l o w i n g 

g i j ( r , ; C p a ] ' T ; [ e a B ] ' C ° a B ] ) = R i J « o ( r / ° U s k T / e i j ' p ; ' 3 ) ( 1 ) 

where 

R i j = 8 i > i j ' [ ^ [ ^ ] ) / C ( ° ! P ° 3 ) ( 2 ) 

We s h a l l r e f e r to t h i s as the "modified" mean de n s i t y approximation 
(MMDA). One way of viewing t h i s approximation i s i s that we not 
only must s c a l e the e f f e c t i v e pure d i s t r i b u t i o n f u n c t i o n i n the 
r a d i a l d i r e c t i o n but a l s o i n the p r o b a b i l i t y d i r e c t i o n , thereby 
avoiding the problems demonstrated i n Figure 1. To i l l u s t r a t e the 
e f f e c t s of t h i s approximation more c l e a r l y , Figure 2 compares the 
MDA and MMDA r a d i a l d i s t r i b u t i o n f u n c t i o n s to the simulated 
argon-argon d i s t r i b u t i o n i n an argon-krypton mixture reported by Mo, 
et a l . (21_). As i s shown i n t h i s f i g u r e , there i s a d e f i n i t e 
improvement at small i n t e r m o l e c u l a r separations even f o r a system 
where the s i z e d i f f e r e n c e i s small ( 0 2 / 0 1 = 1.07). An obvious 
shortcoming of t h i s approximation i s that MMDA g j j ( r ) does not 
approach 1 as r -» °°. In p r a c t i c e t h i s i s not a problem s i n c e we 
always deal with i n t e g r a l s of g j j ( r ) and g 0 ( r ) does approach the 
c o r r e c t l i m i t . Thus, one should view the MMDA as a s c a l i n g of 
i n t e g r a l s of g j j ( r ) . 

Continuing w i t h the d e r i v a t i o n of the mixing r u l e s , the pure 
f l u i d d i s t r i b u t i o n f u n c t i o n appearing i n Equation 1 i s expanded i n a 
power s e r i e s i n 1/T to ob t a i n 

S i j ( r ^ ] ' T ; [ W ' [ a a 3 ] ) " R i j [ g o ( r / a i j ; P ^ 3 ) 

( 3 ) 

n=1 J J 

A s i m i l a r expansion f o r a h y p o t h e t i c a l pure f l u i d w i t h parameters 0 ' 
and e y i e l d s 

00 

g(r;p,T;e,o) = g Q ( r / o ; p o 3 ) + ̂  ^ / k ^ U Y ( r /°;po 3)] W 
n=1 

F i n a l l y , to complete the d e r i v a t i o n , one takes the v i r i a l 
equation (22) f o r a mixture 

N N r 
2*&P E E Vi K 

i - 1 j - 1 J 

zmix " 1 - 2 ^ E E V j J 0
 p 3 ^ i / ^ g i j ( r ) d r 

and h y p o t h e t i c a l pure f l u i d at the same number d e n s i t y 

- 1 = 2ir6p J r 3 (du /dr) g ( r ) dr o o 0 0 
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g (r) 

g (r) 

Figure 1. R a d i a l d i s t r i b u t i o n f u n c t i o n s f o r a mixture of s o f t 
spheres with a s i z e r a t i o of approximately two (20). The van der 
Waals approximation (denoted by o) y i e l d s a d i s t r i b u t i o n f u n c t i o n 
which i s very reasonable f o r the 1-2 p a i r but u n s a t i s f a c t o r y f o r 
the 1-1 and 2-2 p a i r s i n the mixture. 

g(r) 

Figure 2. Comparison of the mean d e n s i t y and modified mean 
den s i t y approximations to the r a d i a l d i s t r i b u t i o n f u n c t i o n f o r the 
krypton-krypton p a i r i n an equimolar argon-krypton mixture (21). 
The open c i r c l e s are from the computer s i m u l a t i o n , s o l i d l i n e i s 
the MDA and dashed l i n e i s the MMDA. 
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16. ELY One-Fluid Conformal Solution Calculations 335 

s u b s t i t u t e s Equations 3 and 4 f o r the r a d i a l d i s t r i b u t i o n f u n c t i o n s 
and s u b t r a c t s to f i n d 

N N 

• if g | K ^ ^ U - J, <*> 

» - n+1 N N 
+ E (PF) I E E [x.x.a 3 . R..s nt 1 - a 3 c n + 1 ] 

In t h i s equation J n and I n are i n t e g r a l s over the hard sphere 
d i s t r i b u t i o n f u n c t i o n g 0 and the ¥ n, r e s p e c t i v e l y , and the 
d e r i v a t i v e of the in t e r m o l e c u l a r p o t e n t i a l . By s e t t i n g the zeroth 
and f i r s t order terms of the expansion given i n Equation 5 equal to 
zero, one obtains the de s i r e d mixing r u l e s 

o N N 
o5 = T V x.x. a5. R. . (6) 

ft fa i J U U 

and 

s a 3 

N N 
E E 3 x.x. e. . o. . R.. i J i j l j i j (7) 

where R j j i s defined i n Equation 2 . 
Note that as w r i t t e n , a appears on both s i d e s of these 

equations, and that the hard sphere d i s t r i b u t i o n f u n c t i o n s which 
def i n e R j j depend upon d e n s i t y and composition. Also s i n c e 

HS _ . HS l i m g.. = l i m g = 1 11 o p+o J p-»o 

the mixing r u l e s reduce to the common van der Waals o n e - f l u i d r u l e s 
Q N N Q 

and 
N N 

Sdw \dw " E E x.x. e.. o.. 

i n the l i m i t of low de n s i t y . 

Hard Spheres 

The f i r s t notable aspect of the new mixing r u l e s (MMDA r u l e s ) i s 
that they are exact f o r the c o m p r e s s i b i l i t y f a c t o r of hard spheres 
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= °)« This i s obvious from the w e l l known r e l a t i o n s f o r the 
equations of s t a t e f o r pure hard spheres and hard sphere mixtures 

Z H S = 1 + 4 n g H S (a ) (9) 
O 0 0 0 

and 

HS N N 
Z = 1 + E E x.x.n..g H S (a..) (10) 
mix £j l j I J & I J I J 

where n = T P a 3 and n, . = 5 p a?.. Equating 9 and 10 r e s u l t s i n . 'o_ 6 . . o_ i j 6 K i j M ° e x a c t l y Equation 5. 
One can solve f o r a f o r hard spheres a l g e b r a i c a l l y given 

values f o r the contact d i s t r i b u t i o n f u n c t i o n s . We s h a l l consider 
two cases, the Percus-Yevick and that given by Carnahan and S t a r l i n g . 
From the Wertheim (23) and T h i e l e (2*1) s o l u t i o n f o r the 
Percus-Yevick equation one has 

HS,PY, ^ 1 3 Xm . M l x 
* i j ( 0 i j ) - + —72 d i j 

m <1 - O 
m 

and 

HS,PY, N ^ ^o ^ / I O N 
g
0
 (o

0> - ( 1 2 ) 

(1 - n o) 

where 

m 6 K 3 m 6 K 2 

N 
S = T x.a1? n I l 

1*1 

and 

d i j • 2 V j / ( o i + a
J

) 

n 0 i s defined above. In the Carnahan-Starling (25) and 
corresponding MCSL (26) case f o r mixtures one f i n d s 

HS.MCSL, , _ _1 3 c% nm d i j 

m 

c 2 2 ,2 
0 S 0 n d.. 3 f__2>! m i j 

m 

(13) 
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and 

' ( O = ^ 0*0 
° ° « 1 -

S o l v i n g Equation 5 f o r n (= -g- po 3) using the contact d i s t r i b ­
u t i o n f u n c t i o n s given by Equations 11 and 12 one f i n d s 
- (1 + 2G) - 1 + 6G Ml,x 
n = r r ^ 2 G ) ( 1 5 ) 

where 

n V* V* HS,PY, . G = >, >, x.x. n. . g. . (o. .) ft j f t i J i J i J i J 

Likewise, the s o l u t i o n of Equation 5 f o r rj using the contact 
d i s t r i b u t i o n s given by Equations 13 and 14 i s the r e a l root of 
-3 6G 1 + 1 -2 60' + 1 - . N /1 /- \ 

where Gf i s evaluated with the MCSL contact d i s t r i b u t i o n f u n c t i o n . 
To i l l u s t r a t e the d i f f e r e n c e s between the new mixing r u l e s and 

the VDW-1 r u l e s , Figures 3-4 show the hard sphere r e s u l t s obtained 
with Equations 6, 13 and 14 r e l a t i v e to that from the VDW-1 mixing 
r u l e , Equation 8 at two packing f r a c t i o n s , n = 0.2 and n = 0.4. We 
note that the e f f e c t i s asymmetric i n the con c e n t r a t i o n , X£, of the 
l a r g e r component i n that small concentrations of large molecules 
have l a r g e e f f e c t s on the e f f e c t i v e mean densit y . In Figure 5 the 
same r a t i o of new o n e - f l u i d dimater to the van der Waals r e s u l t i s 
shown as a f u n c t i o n of density (packing f r a c t i o n ) at a constant 
composition of x-j =0.8. As one would expect, the d i f f e r e n c e i s 
most pronounced at the highest d e n s i t i e s and increases as the s i z e 
r a t i o i ncreases. 

In Figure 6, the d i f f e r e n c e between the VDW Carnahan-Starling 
c o m p r e s s i b i l i t y f a c t o r i s p l o t t e d versus the "exact" value given by 
the MCSL equation. In t h i s case there i s no e r r o r a s s o c i a t e d w i t h 
the new mixing r u l e s . Figure 7, however, p l o t s the e r r o r i n the 
Helmholtz f r e e energy from the van der Waals r u l e and that obtained 
from Equations 6, 13 and 14. The l i n e s above the zero l i n e 
represent the VDW-1 case and the l i n e s below the zero l i n e are the 
new r e s u l t s . The VDW-1 r e s u l t s are uniformly i n greater e r r o r than 
the new r u l e s and are a l s o of opposite s i g n . 

F i n a l l y , Figures 8 and 9 compare the o n e - f l u i d diameters 
c a l c u l a t e d using Equations 11, 12 and 15, i . e . , the Percus-Yevick 
s o l u t i o n f o r hard spheres to the MCSL r e s u l t s at two compositions. 
We note that there i s n e g l i g i b l e d i f f e r e n c e between the two (maximum 
being 0.04$) thus one i s j u s t i f i e d i n using the a l g e b r a i c a l l y 
simpler Percus-Yevick r e s u l t s f o r p r a c t i c a l c a l c u l a t i o n s . 

Although the van der Waals diameter i s reasonable, Equations 15 
and 16 are d e f i n i t e improvements. A l s o , these r e s u l t s f o r hard 
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g 1.08 -

g 1.07 -

I 1.06 -
D 

1.05 -

Composition, Xi 

Figure 4. Ra t i o of the hard sphere diameter r e s u l t i n g from the 
MMDA to that of the VDW1 model as a f u n c t i o n of s i z e r a t i o and 
composition at packing f r a c t i o n of 0.2. 
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Packing Fraction 

Figure 5. Ratio of the MMDA hard sphere diameter to that of the 
VDW1 model as a fu n c t i o n of packing f r a c t i o n and s i z e r a t i o at a 
fi x e d composition of x<| = 0 . 8 . 

3.000 i 1 r 

Packing Fraction, rj 

Figure 6. E r r o r i n the mixture hard sphere c o m p r e s s i b i l i t y f a c t o r 
as a fu n c t i o n of s i z e r a t i o and packing f r a c t i o n at x-j = 0 . 8 . The 
MMDA i s exact f o r t h i s hard sphere property. 
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Figure 7. Error i n the mixture r e s i d u a l Helmholtz fre e energy as 
a f u n c t i o n of s i z e r a t i o and packing f r a c t i o n at x-| = 0.5. The 
curves above the zero l i n e are obtained with the VDW1 diameter 
while those below the zero l i n e were c a l c u l a t e d w i t h the MMDA. 

i 1 1 r 

Xi=0.9 

Packing Fraction 

Figure 8. Comparison of the MMDA hard sphere diameter obtained 
with the MCSL contact hard sphere d i s t r i b u t i o n f u n c t i o n s and those 
obtained w i t h the Percus-Yevick v i r i a l equation. Results are 
shown as a f u n c t i o n of s i z e r a t i o ( r ) at various packing f r a c t i o n s 
at a f i x e d composition of x-j =0.9. 
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.20 .30 

Packing Fraction, η 

.40 .50 

Figure 9. Comparison of the MMDA hard sphere diameter obtained 
w i t h the MCSL contact hard sphere d i s t r i b u t i o n f u n c t i o n s and those 
obtained with the Perçus-Yevick v i r i a l equation. R e s u l t s are 
shown as a f u n c t i o n of s i z e r a t i o ( r ) at various packing f r a c t i o n s 
at a f i x e d composition of x-j =0.5. 
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spheres c l e a r l y demonstrate that mixing r u l e s must be den s i t y 
dependent to a c c u r a t e l y represent c o n t r i b u t i o n s from r e p u l s i v e 
f o r c e s . 

Lennard-Jones Mixtures 

In order to t e s t the new mixing r u l e s f o r mixtures c o n s i s t i n g of 
more r e a l i s t i c molecules, conformai s o l u t i o n c a l c u l a t i o n s using 
Equations 6, 7, 11 and 12 have been performed using a Lennard-Jones 
6-12 reference f l u i d . The 32 term BWR type equation of s t a t e 
reported by N i c o l a s , et a l . (27) was used to ob t a i n the 
Lennard-Jones 6-12 p r o p e r t i e s . In general, the c a l c u l a t i o n 
procedure y i e l d e d the d e n s i t y , excess volume, excess enthalpy, 
excess Gibbs energy and excess i n t e r n a l energy. M i x i n g was 
performed at constant pressure, i . e . , 

Ν 
X h ( T , p , [ x ] ) - X m i X ( T , p , [ x ]) - £ x. Χ . ( Ρ , Τ ) 

i=1 
where X e i s any excess property and X ^ denotes a pure f l u i d value of 
that property. In a l l c a l c u l a t i o n s the Lo r e n t z - B e r t h e l o t combing 
r u l e s were used f o r the u n l i k e p a i r p o t e n t i a l parameters. 

Comparisons were made with three d i f f e r e n t s e t s of computer 
s i m u l a t i o n r e s u l t s : Singer and Singer*s (28) Monte Ca r l o r e s u l t s 
and the more recent molecular dynamics s i m u l a t i o n s of Gupta (1_8) and 
Hoheis e l , et a l . (|_6). Figures 10-11 compare the excess volumes 
c a l c u l a t e d by the HSE-MDA model (29), VDW-1 and the MMDA presented 
i n t h i s work as a f u n c t i o n of s i z e r a t i o at three d i f f e r e n t energy 
r a t i o s . In general, the MDA i s s l i g h t l y b e t t e r than the MMDA f o r 
the excess volume but both the MMDA and MDA are s u b s t a n t i a l improve­
ments overthe VDW-1 model. Table I compares the p r e d i c t i o n s f o r V E , 
H E and G E to those obtained w i t h the VDW-1 model and the Monte C a r l o 
c a l c u l a t i o n s . 

Figure 12 compares the MMDA to the excess volume and Figure 13 
compares the excess Gibbs energy to the recent i s o t h e r m a l - i s o c h o r i c 
r e s u l t s of Gupta and H a i l e f o r 02/= 2. Included on these f i g u r e s 
are the corresponding r e s u l t s f o r the VDW-1 model. Figure 13 a l s o 
shows the c a l c u l a t e d Perçus-Yevick r e s u l t s reported by Gupta. 
Table I I compares the c a l c u l a t e d r e s u l t s to si m u l a t i o n s . I t i s 
apparent from these comparisons that the MMDA o f f e r s a g r e a t l y 
improved p r e d i c t i o n of the excess volume f o r systems where the s i z e 
d i f f e r e n c e s are l a r g e . I t i s apparent, however, that even though 
the p r e d i c t i o n s of the excess Gibbs energy are b e t t e r than the VDW-1 
model, some improvement i s s t i l l i n order. 

To explore the e f f e c t of l a r g e energy and s i z e d i f f e r e n c e s , 
Table I I I compares MMDA and VDW-1 p r e d i c t i o n s to the recent r e s u l t s 
of H o h e s i e l , et a l . (1_6). Again, the MMDA o f f e r s a s u b s t a n t i a l 
improvement over the VDW-1 r e s u l t s , e s p e c i a l l y f o r the excess 
volume. 

Summary and Conclusions 

We have presented a simple m o d i f i c a t i o n to the mean de n s i t y a p p r o x i ­
mation which improves the r e s u l t s obtained from conformai s o l u t i o n 
p r e d i c t i o n s . The model i s exact f o r the c o m p r e s s i b i l i t y f a c t o r of 
hard sphere mixtures. The r e s u l t s f o r r e a l i s t i c f l u i d s are not 
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ει/ε2 = .656 
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Figure 10. Comparisons of c a l c u l a t e d and simulated excess volumes 
as a f u n c t i o n of s i z e r a t i o . The simulated and VDW1 values were 
taken from (28) while the MDA values were obtained from (29). 
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Figure 11. Comparisons of c a l c u l a t e d and simulated excess volumes 
as a f u n c t i o n of u n i t y r a t i o . The simulated and VDW1 values were 
taken from (28) while the MDA values were obtained from (29). 
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Table I . Comparison of the MMDA, VDW-1 and Monte Ca r l o 
Results (28) f o r Equimolar Lennard-Jones 
Mixture Excess P r o p e r t i e s . 

V E H E G E 

ε2^ ε1 σ2/ σ1 Model 97 Κ 117 Κ 97 Κ 117 Κ 97 Κ 117 Κ 

0.656 1 .000 MC 
MMDA 
VDW1 

-0.89 
-0.84 
-0.92 

-1 .66 
-1.53 
-1.77 

0.15 
0.13 
0.11 

0.12 
0.09 
0.09 

0.176 
0.181 
0.186 

0.159 
0.158 
0.167 

1 .0619 MC 
MMDA 
VDW1 

-1 .08 
-0.97 
-1.11 

-2.02 
-1 .74 
-2.08 

0.24 
0.27 
0.23 

0.19 
0.21 
0.19 

0.242 
0.268 
0.263 

0.208 
0.222 
0.224 

1 .1277 MC 
MMDA 
VDW1 

-1 .29 
-1.17 
-1 .39 

-2.43 
-2.07 
-2.48 

0.34 
0.41 
0.35 

0.26 
0.32 
0.29 

0.305 
0.352 
0.334 

0.250 
0.282 
0.274 

1 .1978 MC 
MMDA 
VDW1 

-1 .50 
-1 .39 
-1.76 

-2.87 
-2.42 
-3.00 

0.45 
0.53 
0.47 

0.34 
0.42 
0 .39 

0.368 
0.402 
0.402 

0.287 
0.331 
0.317 

1 .2727 MC 
MMDA 
VDW1 

-1.76 
-1 .68 
-2.23 

-3.35 
-2.68 
-3.61 

0.58 
0.64 
0.58 

0.42 
0.49 
0.48 

0.423 
0.489 
0.454 

0.319 
0.368 
0.354 

1.000 1 .000 MC 
MMDA 
VDW1 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.000 
0.000 
0.000 

0.000 
0.000 
0.000 

1 .0619 MC 
MMDA 
VDW1 

0.01 
-0.02 
-0.05 

-0.02 
-0.02 
-0.05 

0.01 
0.00 
0.00 

0.00 
0.00 
0.00 

-0.001 
-0.003 
-0.003 

-0.003 
-0.003 
-0.003 

1 .1277 MC 
MMDA 
VDW1 

0.02 
-0.08 
-0.18 

-0.05 
-0.11 
-0.20 

0.03 
-0.02 
0.00 

0.01 
-0.01 
0.00 

-0.005 
-0.013 
-0.011 

-0.011 
-0.013 
-0.011 

1 .1978 MC 
MMDA 
VDW1 

-0.05 
-0.20 
-0.41 

-0.14 
-0.26 
-0.49 

0.05 
-0.05 
0.00 

0.02 
-0.03 
0.00 

-0.013 
-0.030 
-0.024 

-0.024 
-0.029 
-0.024 

1.000 1 .2727 MC 
MMDA 
VDW1 

-0.10 
-0.34 
-0.72 

-0.24 
-0.46 
-0.79 

0.09 
-0.09 
0.00 

0.04 
-0.05 
0.00 

-0.023 
-0.054 
-0.043 

-0.044 
-0.052 
-0.042 

1.235 1 .000 MC 
MMDA 
VDW1 

-0.96 
-0.84 
-0.92 

-1 .72 
-1 .55 
-1 .77 

0.04 
0.13 
0.11 

0.08 
0.18 
0.09 

0 .178 
0.181 
0.185 

0.161 
0.159 
0.167 
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Table I. Continued. 

HE 

02/0] Model 97 Κ 117 Κ 97 κ 117 Κ 97 Κ 117 Κ 

1 .0619 MC -0. 80 -1 .43 -0. 01 0.00 0.122 0.018 
MMDA -0 76 -1.36 -0. 27 -0.04 0.084 0.086 
VDW1 -0 81 -1 .58 0 00 -0.01 0.103 0.105 

1.1277 MC -0 68 -1.18 -0 10 -0.07 0.040 0.049 
MMDA -0 69 -1 .24 -0 20 -0.17 -0.021 0.016 
VDW1 -0 81 -1 .48 -0 12 -0.11 0.014 0.037 

1.1978 MC -0 55 -0.95 -0 17 -0.14 -0.033 -0.016 
MMDA -0 69 -1.18 -0 38 -0.31 -0.132 -0.081 
VDW1 -0 .90 -1.47 -0 .25 -0.21 -0.082 -0.036 

1.2727 MC -0 .45 -0.76 -0 .24 -0.20 -0.113 -0.087 
MMDA -0.72 -1.16 -0 .58 -0.46 -0.249 -0.173 
VDW1 -1 .06 -1 .57 -0 .36 -0.31 -0.178 -0.115 

ω 
ο 
Ε 
m 
Ε 
Ο 

-10 

1 1 1 
θ2/σι = 2, £2/ει = 1 

.25 .50 

Χι 

.75 1.0 

Figure 12. Comparison of c a l c u l a t e d and simulated excess volumes 
f o r a system of Lennard-Jones molecules as a f u n c t i o n of 
composition. The open c i r c l e s are the simulated p o i n t s c a l c u l a t e d 
from (1_8). Note the s u b s t a n t i a l improvement shown by the MMDA as 
compared to the VDW1 model. 
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Figure 13. Comparison of simulated and c a l c u l a t e d excess Gibbs 
energy values as a f u n c t i o n of composition. Simulated r e s u l t s are 
from (18). 
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Table I I . Comparison of MMDA and VDW1 P r e d i c t i o n s to 
Simul a t i o n Results (1_8) (ε22/£11 = 1 i n 

a l l cases). 

σ 22/σι ι X1 Model V E , cm3/mole GE/NkT 

0.25 MD -0.098 -0.053 
MMDA -0.131 -0.035 
VDW1 -0.373 -0.036 

0.50 MD -0.145 -0.075 
MMDA -0.175 -0.057 
VDW1 -0.500 -0.050 

0.75 MD -0.131 -0.059 
MMDA -0.133 -0.042 
VDW1 -0.377 -0.040 

0.25 MD -0.378 -0.070 
MMDA -0.437 -0.109 
VDW1 -1.542 -0.119 

0.50 MD -0.388 -0.111 
MMDA -0.530 -0.166 
VDW1 -2.067 -0.174 

0.75 MD -0.383 -0.099 
MMDA -0.405 -0.147 
VDW1 -1.558 -0.147 

0.25 MD -0.369 -0.133 
MMDA -0.784 -0.196 
VDW1 -3.629 -0.235 

0.50 MD -0.813 -0.229 
MMDA -1.071 -0.311 
VDW1 -4.824 -0.350 

0.75 MD -0.865 -0.236 
MMDA -0.817 -0.294 
VDW1 -3.629 -0.305 

0.25 MD -0.228 -0.207 
MMDA -1 .172 -0.287 
VDW1 -6.672 -0.377 

0.50 MD -0.480 -0.339 
MMDA -1.669 -0.468 
VDW1 -8.888 -0.566 

0.75 MD -0.644 -0.320 
MMDA -1 .265 -0.463 

Americanvl$emical SooëÊi^: 
-0.504 

Library 
1155 16th St., N.W. 

Washington, D.C, 20036 
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Table I I I . Comparisons of MMDA P r e d i c t i o n s to Simulated R e s u l t s 
f o r Equimolar Mixtures With Large S i z e and Energy 
D i f f e r e n c e s (16). 

02/01 ε 2/ε 1 Τ, Κ Ρ, Bar Model V E , cm3/mole GE/NkT HE/NkT 

1 , .5 201 .4 3563 MD -0, ,040 0, .041 -0. .025 
MMDA -0. ,011 -0. .029 -0. .066 
VDW1 -0. ,284 -0, .088 -0, .102 

4, .5 200.5 3551 MD -0. .302 -0, .140 -0. .108 
MMDA -0. .287 -0, .117 -0, .056 
VDW1 -0. ,362 -0. .112 -0, .064 

1 . .5 198.4 1629 MD -0. .268 -0. .564 -0, .161 
MMDA -0, .894 -0, .586 -0. .226 
VDW1 - 3 . .306 -0, .540 -0, .563 

4, .5 199.0 1904 MD -1 . .261 -0, .409 -0, .375 
MMDA -0, .625 -0, .485 -1 , .299 
VDW1 -5, .246 -0, .890 -1 , .107 
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q u i t e as accurate as those obtained from the HSE theory, but are 
simpler to incorporate since the MMDA gives the optimal e f f e c t i v e 
hard sphere diameter d i r e c t l y . Other s i m i l a r approximations could 
be made which might f u r t h e r improve the r e s u l t s of t h i s type of 
model. To some degree progress i n t h i s area has been hampered by 
the l a c k of d e t a i l e d information concerning the r a d i a l d i s t r i b u t i o n 
f u n c t i o n s i n mixtures. This s i t u a t i o n i s improving r a p i d l y w i t h the 
a v a i l a b i l i t y of new mixture s i m u l a t i o n r e s u l t s and thus one can 
speculate that improved r a d i a l d i s t r i b u t i o n f u n c t i o n based conformai 
s o l u t i o n models w i l l be forthcoming. 
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17 
Recent Mixing Rules for Equations of State 

A n Industrial Perspective 

Thomas W. Copeman and Paul M . Mathias 

Air Products and Chemicals, Inc., Allentown, PA 18105 

The number of applications for equations of state capable of 
describing phase behavior of mixtures with asymmetric interactions 
is high - and continuing to grow. Gas-processing applications such 
as enhanced oil recovery and glycol dehydration involve carbon 
dioxide, water, hydrogen sulfide, and hydrocarbons at high 
pressure. Organic-chemical and polymer production involve an 
increasingly wide variety of conditions, not restricted to low 
pressures (1). Supercritical extraction is actively being applied 
to the purification of natural products, which involves mixtures of 
complex polar compounds near the critical point of a gas like carbon 
dioxide (2). 

Engineering models to describe phase equilibrium can be divided 
into two broad categories: equations of state and activity 
coefficient models. Equations of state have been successfully 
applied to mixtures of nonpolar and slightly polar compounds at all 
conditions of engineering interest. These models have been used 
most extensively by the gas processing industry for the design of 
various processes (see for example Refs. 3 and 4). 

Conversely the mathematical f l e x i b i l i t y of a c t i v i t y c o e f f i c i e n t 
models has c o n v e n t i o n a l l y been considered necessary to d e s c r i b e 
systems which e x h i b i t h i g h l i q u i d - p h a s e n o n i d e a l i t y . These models 
have been most e x t e n s i v e l y used by the chemicals and polymer 
i n d u s t r i e s f o r design of v a r i o u s processes. Process design f o r the 
production o f p o l y v i n y l a l c o h o l (5) i s one example. The a c t i v i t y -
c o e f f i c i e n t approach i s adequate at low reduced temperatures where 
the l i q u i d phase i s incompressible and up to moderate pressures. 
The use of d i f f e r e n t models f o r the v a r i o u s phases precludes c o r r e c t 
d e s c r i p t i o n o f mixture c r i t i c a l p o i n t s and a d d i t i o n a l problems a r i s e 
f o r s u p e r c r i t i c a l components (6). 

The e q u a t i o n - o f - s t a t e approach does not i n h e r e n t l y s u f f e r from 
these l i m i t a t i o n s and the extension of equations of s t a t e to 
des c r i b e asymmetric i n t e r a c t i o n s i s c u r r e n t l y a h i g h l y a c t i v e area 
of research. This paper reviews recent developments of mixing r u l e s 
f o r equations of s t a t e w i t h an engineering-design p e r s p e c t i v e . 

0097-6156/ 86/ 0300-O352$06.00/ 0 
© 1986 American Chemical Society 
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E v o l u t i o n of Equation of State Mixing Rules 

353 

Considerable e f f o r t has been expended over the past f i f t y years 
to develop new equations of s t a t e f o r pure components. Much l e s s 
a t t e n t i o n has been given to improving mixing r u l e s . The o n e - f l u i d 
mixing r u l e s of van der Waals (7) (known h e r e a f t e r as the vdW-1 
mixing r u l e s ) are s t i l l i n widespread use; the equations of s t a t e o f 
Soave (8) and Peng and Robinson (9) are two such examples. 

I t should be noted that the vdW-1 mixing r u l e s are reasonably 
w e l l based i n both theory and the t y p i c a l e x c e s s - f u n c t i o n behavior 
of normal f l u i d s . Leland, Chappelear, and Gamson (10) have shown 
that these mixing r u l e s a r i s e from very reasonable assumptions f o r 
the j i r a d i a l d i s t r i b u t i o n f u n c t i o n s . (Also see Refs. _Π and 12). 
Henderson and Leonard (13, 14) have shown that these mixing r u l e s 
provide good agreement w i t h the quasi-experimental machine-
s i m u l a t i o n r e s u l t s f o r hard-sphere and Lennard-Jones (6:12) 
mixtures. Further, V i d a l (l_5) has demonstrated that the vdW-1 
mixing r u l e s p r e d i c t excess f u n c t i o n s very s i m i l a r to r e g u l a r 
s o l u t i o n theory and thus they should provide a good d e s c r i p t i o n o f 
most nonpolar mixtures. 

An important landmark i n the development of i n d u s t r i a l l y 
s i g n i f i c a n t mixing r u l e s was the work of S t o t l e r and Benedict (16) 
who suggested the use o f bi n a r y i n t e r a c t i o n parameters. They found 
that the o n e - f l u i d mixing r u l e s suggested f o r the Benedict-Webb-
Rubin equation (17, 18) could be markedly improved by the use of 
small pair-dependent c o r r e c t i o n terms. Another important e f f o r t was 
the work of Pr a u s n i t z and Gunn (19) who noted that the i n t e r a c t i o n 
parameter was not a t o t a l l y e m p i r i c a l c o r r e c t i o n f a c t o r , but was 
r e l a t e d to the theory o f in t e r m o l e c u l a r f o r c e s . 

Many e f f o r t s to improve the vdW-1 mixing r u l e s attempted to f i n d 
b e t t e r forms while r e t a i n i n g the o n e - f l u i d concept. P l o c k e r et a l . 
(20), Radosz et a l . (21) and Lee et a l . (22) v a r i e d an exponent i n 
the mixing r u l e s , which can be represented as 

εση = Z Z x i X j e j i a j i ( l ) 

om = E l X i X j a j i (2) 

where η = m = 3 represents the van der Waals o n e - f l u i d mixing r u l e s . 

P locker (20) chose n=0.75 and m=3, while Radosz (21) chose 
n=-0.25 and m=3. Lee (22) used n=m=4.5. While some degree of 
success i n improving mixture p r e d i c t i o n s i s claimed f o r each of the 
methods, t h e i r a p p l i c a t i o n to h i g h l y asymmetric polar-nonpolar 
systems i s l i m i t e d . 

P e r t u r b a t i o n theory i s u s e f u l as a guide to the development o f 
both pure f l u i d and mixture equations of s t a t e f o r engineering 
c a l c u l a t i o n s (23). Donohue and P r a u s n i t z (24) developed an 
equation of s t a t e f o r mixtures of molecules w i t h l a r g e s i z e 
d i f f e r e n c e s based on a p e r t u r b a t i o n expansion f o r square-well f l u i d s 
at low d e n s i t i e s and ideas from polymer s o l u t i o n theory. The 
expansion was then truncated a f t e r the f o u r t h a t t r a c t i v e term. 
While a simple quadratic composition dependence was obtained f o r the 
f i r s t a t t r a c t i v e term, each of the higher-order terms y i e l d s 
a d d i t i o n a l (non-quadratic) mixing r u l e s . Good r e s u l t s were obtained 
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f o r mixtures c o n t a i n i n g alkanes (up to C 3 0 ) , aromatics and l i g h t 
i n organic gases. 

Wilson (25) has suggested that the l i q u i d - p h a s e excess Gibbs 
energy data can be used to provide i n f o r m a t i o n f o r improving mixing 
r u l e s at high d e n s i t i e s . V i d a l (15), Huron and V i d a l (26), Heyen 
(27), and Won (28) have f u r t h e r proposed non-quadratic mixing r u l e s 
based on the behavior of l i q u i d - p h a s e a c t i v i t y c o e f f i c i e n t s . These 
mixing r u l e s do not reproduce the r e q u i r e d quadratic composition 
dependence of the second v i r i a l c o e f f i c i e n t , as pointed out by Huron 
and V i d a l (26) and l a t e r by Whiting and P r a u s n i t z (29, 30) and 
Mollerup (31). These i n i t i a l l o c a l - c o m p o s i t i o n equations of s t a t e , 
however, d i d provide an important advance by demonstrating that 
complex polar-nonpolar systems could be c o r r e l a t e d w i t h equations of 
s t a t e i n the same ( e m p i r i c a l ) manner as w i t h a c t i v i t y - c o e f f i c i e n t 
models. For example, v a p o r - l i q u i d e q u i l i b r i u m c o r r e l a t i o n s were 
developed f o r ethanol-benzene and acetone-water by Heyen (27) and 
Huron and V i d a l (26), r e s p e c t i v e l y . 

To overcome the above-mentioned d e f i c i e n c y at low pressure, 
Whiting and P r a u s n i t z (29, 30), Mollerup (31) and Won (32) proposed 
density-dependent l o c a l - c o m p o s i t i o n mixing r u l e s . A common proposal 
i n a l l three models i s the use of conventional mixing r u l e s f o r the 
r e p u l s i v e term i n the equation of s t a t e and l o c a l - c o m p o s i t i o n mixing 
r u l e s w i t h density-dependent Boltzmann f a c t o r s f o r the a t t r a c t i v e 
term. These equations of s t a t e p l e a s i n g l y resemble the Wilson (33) 
a c t i v i t y - c o e f f i c i e n t model at high d e n s i t i e s and conventional 
equations of s t a t e at low d e n s i t i e s . Mathias and Copeman (34) 
however demonstrated that the l o c a l - c o m p o s i t i o n Peng-Robinson 
equation of s t a t e derived by Mollerup (31) l a c k s adequate p r e d i c t i v e 
c a p a b i l i t y f o r nonpolar mixtures w i t h even moderate s i z e 
d i f f e r e n c e s . The l o c a l - c o m p o s i t i o n e f f e c t i s too l a r g e , which can 
r e s u l t i n g r e a t l y underpredicted f u g a c i t y c o e f f i c i e n t s ( f o r example, 
3-4 orders of magnitude f o r methane i n decane). S i z a b l e i n t e r a c t i o n 
parameters along w i t h s i z e parameters (e.g., surface area) are 
necessary f o r reasonable p r e d i c t i o n s of phase e q u i l i b r i u m . The 
Mollerup (31) Peng-Robinson equation of s t a t e , along w i t h the 
Redlich-Kwong and other analogs, was concluded to be too u n r e l i a b l e 
f o r general a p p l i c a t i o n to i n d u s t r i a l problems. 

An important idea has been proposed by D i m i t r e l i s and P r a u s n i t z 
(35). They propose that l o c a l - c o m p o s i t i o n e f f e c t s do not r e s u l t 
when j i i n t e r a c t i o n s are d i f f e r e n t from i i but r a t h e r when j i are 
d i f f e r e n t from some " i d e a l " combinations of i i and j j i n t e r a c t i o n s , 
r e f e r r e d to as ji°. D i m i t r e l i s and P r a u s n i t z defined ji° as an 
a r i t h m e t i c mean i n t h e i r work. Mathias and Copeman (34) and 
Mollerup (36), however, chose the geometric mean and developed a 
density-dependent l o c a l - c o m p o s i t i o n Peng-Robinson equation o f s t a t e 
that meets an important a d d i t i o n a l l i m i t : non-conformal e f f e c t s are 
not n e c e s s a r i l y l a r g e (or even non-zero) f o r an asymmetric system. 
This f e a t u r e enables the model to r e t a i n the good p r e d i c t i o n s o f the 
standard Peng-Robinson equation of s t a t e f o r nonpolar systems and 
f a c i l i t a t e s c o r r e l a t i o n of phase e q u i l i b r i u m of h i g h l y non-ideal 
p o l a r systems. A d d i t i o n a l forms of the equation of s t a t e were 
suggested by Mathias and Copeman (34) based on expansion of the 
Boltzmann f a c t o r s i n the a t t r a c t i v e part w i t h t r u n c a t i o n a f t e r the 
second term i n the s e r i e s . Reduced computational time along w i t h 
s u r p r i s i n g l y good r e s u l t s f o r bin a r y hydrocarbon-water l i q u i d - l i q u i d 
e q u i l i b r i a were shown. 
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Ludecke and P r a u s n i t z (37) have proposed a s i m i l a r equation o f 
s t a t e based on the van der Waals form. They chose the Mansoori et 
a l . (38) expression f o r the hard-sphere part and a simple van der 
Waals expression f o r the a t t r a c t i v e p a r t . For mixtures, the 
Mansoori et a l . expression i s used f o r the hard-sphere c o n t r i b u t i o n , 
while f o r the a t t r a c t i v e c o n t r i b u t i o n the conventional 
density-independent qua d r a t i c mixing r u l e i s used as a l e a d i n g term 
and a density-dependent c o r r e c t i o n (cubic i n mole f r a c t i o n ) i s used 
to describe " n o n - c e n t r a l " f o r c e s . Good r e s u l t s were obtained f o r 
v a p o r - l i q u i d and l i q u i d - l i q u i d e q u i l i b r i a i n b i n a r y mixtures 
c o n t a i n i n g water, phenol, p y r i d i n e , methanol and hydrocarbons. The 
equation of s t a t e , however, o v e r - p r e d i c t s the t w o - l i q u i d r e g i o n i n 
the ternary systems s t u d i e d . The above approach i s a simple, yet 
p o t e n t i a l l y very e f f e c t i v e , way to d e s c r i b e p o l a r , asymmetric 
systems and should be developed f u r t h e r f o r i n d u s t r i a l a p p l i c a t i o n s . 

A p o s s i b l e way to avoid v i o l a t i n g the q u a d r a t i c dependence of 
the second v i r i a l c o e f f i c i e n t and yet have separate mixing r u l e s f o r 
h i g h and low d e n s i t i e s has been suggested by Larsen and P r a u s n i t z 
(39). These researchers have d i v i d e d the a t t r a c t i v e c o n t r i b u t i o n to 
the Helmholtz energy i n t o a s e c o n d - v i r i a l p o r t i o n and a d e n s e - f l u i d 
p o r t i o n , thereby a l l o w i n g an a r b i t r a r y mixing r u l e f o r the 
d e n s e - f l u i d p a r t . Good r e s u l t s have been obtained f o r the 
methane-water b i n a r y . This work i s important s i n c e i t can be 
extended to proper i d e n t i f i c a t i o n of v a r i o u s types of c o n t r i b u t i o n s 
at the p u r e - f l u i d l e v e l , l e a d i n g to the use of t h e o r e t i c a l l y 
suggested mixing r u l e s f o r each c o n t r i b u t i o n . 

L i et a l . (40) have combined the p u r e - f l u i d equation of s t a t e 
developed by Chung et a l . (41) w i t h l o c a l - c o m p o s i t i o n mixing r u l e s . 
The l o c a l - c o m p o s i t i o n mixing r u l e s along w i t h van der Waals 
o n e - f l u i d mixing r u l e s were evaluated against both v a p o r - l i q u i d 
e q u i l i b r i u m and d e n s i t y data f o r b i n a r y systems. The p r e d i c t i v e 
c a p a b i l i t y of the L i et a l . model should be evaluated. 

Table I presents a l i s t o f systems s t u d i e d by v a r i o u s 
i n v e s t i g a t o r s using l o c a l - c o m p o s i t i o n mixing r u l e s . The m a j o r i t y of 
s t u d i e s have not included e v a l u a t i o n of l i q u i d - l i q u i d e q u i l i b r i u m 
and d e n s i t y p r e d i c t i o n s . 

I t appears that improved mixture models w i l l come from the 
concept of density-dependent mixing r u l e s . However, i t i s not c l e a r 
at the present time which of the proposed forms i s the "best." Most 
appear to provide s i g n i f i c a n t improvement over vdW-1 f o r c o r r e l a t i o n 
of the phase e q u i l i b r i u m of b i n a r y systems, i n c l u d i n g complex 
behavior l i k e l i q u i d - p h a s e i m m i s c i b i l i t y . However, very few s t u d i e s 
have addressed the more d i f f i c u l t problem of multicomponent 
p r e d i c t i o n s . 

P a r a l l e l work i n computer s i m u l a t i o n and t h e o r e t i c a l s t a t i s t i c a l 
mechanics i s extremely important as i t provides a g u i d e l i n e f o r the 
development of e m p i r i c a l models. 

Approaches to Derive Local Composition Mixing Rules 

The e a r l y d e r i v a t i o n s of l o c a l - c o m p o s i t i o n mixing r u l e s were 
based on l a t t i c e t h e o r i e s and/or e m p i r i c a l f o r m u l a t i o n s f o r 
i n t e r n a l , Helmholtz, or Gibbs energy (33, 42 - 44). The d e r i v a t i o n 
by Kemeny and Rasmussen (44), based on l a t t i c e p a r t i t i o n f u n c t i o n s 
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Table I. Binary Systems Studies w i t h Equation of State L o c a l -
Composition Mixing Rules 

I n v e s t i g a t o r s Year Systems Type 

Huron and V i d a l (25) 1979 1-8 VLE 
Heyen (26 ) 1981 9-11 VLE 
Won (27) 1981 12, 13 VLE 
Whiting and P r a u s n i t z (29) 1982 14 VLE 
Won (31) 1983 5, 15-18 VLE 
Mathias and Copeman (33) 1983 1, 10, 11, 119-24 VLE, LLE 
Mollerup (35) 1983 1, 5, 20, 25-34 VLE 
Ludecke and P r a u s n i t z (36) 1985 20, 22, 23, 25, 35-41 VLE, LLE 
L i et a l . (39) 1984 1, 5, 6, 14, 16, 19, VLE, 

20, 25 , 29, 31, 42-46 d e n s i t y 

1. acetone-water 24. 1-methylnapthalene-water 
2. carbon dioxide-ethane 25. methanol-water 
3. ethane-acetone 26. ethanol-water 
4. ethane-methyl acetate 27. 2-propanol-water 
5. methanol-carbon d i o x i d e 28. acetone-carbon d i o x i d e 
6. propane-ethanol 29. methano1-n-hexane 
7. methanol-1,2 dichloroethane 30. me t hano1-eye1ohexane 
8. ac e tone-eye1ohexane 31. e thano1-n-hexane 
9. ethanol benzene 32. e t hano1-n-hep t ane 
10. butanol-water 33. e thano1-eye1ohexane 
11. carbon dioxide-methane 34. e thano1-me thy1eye1ohexane 
12. carbon dioxide-napthalene 35. pyridine-water 
13. ethylene-napthalene 36. pyridine-benzene 
14. water-methane 37. wa t e r-cyc1ohexane 
15. carbon dioxide-n-octane 38. water-heptane 
16. carbon dioxide-n-decane 39. water-octane 
17. carbon dioxide-butanol 40. phenol-water 
18. water-carbon d i o x i d e 41. propane-water 
19. methane-n-decane 42. ethane-butane 
20. methanol-benzene 43. carbon dioxide-benzene 
21. isobutylene-methanol 44. ammonia-water 
22. benzene-water 45. e t hano1-n-dec ane 
23. hexane-water 46. ethane-water 
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and t w o - l i q u i d theory, provided a thorough e x p l a n a t i o n of the 
assumptions required to o b t a i n the Wilson equation. Following the 
quasichemical approach, the c o m b i n a t o r i a l f a c t o r i n the 
configurâtional p a r t i t i o n f u n c t i o n i s expressed i n terms of the 
count of contacts and a c o r r e c t i o n f a c t o r , denoted by h. To meet 
the proper random-mixture l i m i t , an e xpression was d e r i v e d f o r h 
using a Taylor s e r i e s expansion about complete randomness. The 
l a t t i c e theory d e r i v a t i o n c l e a r l y shows that the Wilson equation i s 
most v a l i d f o r near-random mixtures of s i m i l a r s i z e d molecules. 
Kemeny and Rasmussen a l s o presented an equation f o r the 
combinatorial f a c t o r which leads to expressions f o r l o c a l area 
f r a c t i o n s , as used i n the s u c c e s s f u l UNIQUAC a c t i v i t y c o e f f i c i e n t 
model (45). L a t t i c e t h e o r i e s have provided l i t t l e f u r t h e r progress 
i n developing improved mixing r u l e s s i n c e the mid 1970*s. 

More r e c e n t l y , Lee et a l . (46) d e r i v e d general r e l a t i o n s f o r 
l o c a l compositions i n terms of r a d i a l d i s t r i b u t i o n f u n c t i o n s and 
r e l a t e d p o t e n t i a l s of mean f o r c e to the Wilson f o r m u l a t i o n . T h i s 
work represents a s i g n i f i c a n t c o n t r i b u t i o n , b r i d g i n g the gap between 
conventional l o c a l - c o m p o s i t i o n mixing r u l e s and r i g o r o u s f l u i d - p h a s e 
s t a t i s t i c a l mechanics. Mansoori and E l y (47) have f u r t h e r d e r i v e d a 
u n i f i e d treatment of the l o c a l - c o m p o s i t i o n concept f o r f l u i d - p h a s e 
mixtures. The energy, pressure, and c o m p r e s s i b i l i t y equations were 
expressed i n terms of l o c a l p a r t i c l e numbers. For example, the 
i n t e r n a l energy i s given by 

Ε = -NkT/2 Σ Σ χ ι / " n j i i r ) (dUj ι ( r ) / d r ) dr (3) 

Various approximations f o r n j i were analyzed by Mansoori and 
E l y . Their general procedure i s based on equating the mixture 
p o t e n t i a l energy f u n c t i o n and l o c a l p a r t i c l e number to that of a 
h y p o t h e t i c a l pure f l u i d . An advantage of the Mansoori and E l y 
approach i s that microscopic approximations to the r a d i a l 
d i s t r i b u t i o n f u n c t i o n s can be t r a n s l a t e d i n t o expressions f o r l o c a l 
p a r t i c l e numbers and mixing r u l e s . The r e l a t i o n s , based on the 
c o m p r e s s i b i l i t y equation, are novel and merit f u r t h e r e v a l u a t i o n . 
One probable disadvantage f o r i n d u s t r i a l a p p l i c a t i o n i s that the 
m i x i n g - r u l e expressions are g e n e r a l l y not e x p l i c i t w i t h respect to 
the mixture parameters, r e q u i r i n g s i g n i f i c a n t a d d i t i o n a l 
computational expense. 

Seaton and Glandt (48) have explored l o c a l compositions f o r 
mixtures described by the adhesive i n t e r m o l e c u l a r p o t e n t i a l . The 
unique f e a t u r e of t h e i r work i s the unambiguous d e f i n i t i o n of 
nearest neighbors s i n c e a t t r a c t i v e f o r c e s are extremely short-ranged 
and neighboring molecules are i n contact. The l o c a l p a r t i c l e 
numbers were shown to be 

n j i = irpiXj io] i/3 (4) 

where the X j ι are obtained from the s o l u t i o n of three q u a d r a t i c 
a l g e b r a i c equations f o r a b i n a r y mixture. The Wilson equation was 
compared to the a d h e s i v e - p o t e n t i a l model and concluded to be 
inaccurate i n d e s c r i b i n g l o c a l compositions f o r mixtures of 
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unequal-sized molecules. This c o n c l u s i o n i s s i m i l a r t o that reached 
by Gierycz and Nakanishi (49) and suggests that more a t t e n t i o n 
should be given to s i z e d i f f e r e n c e s i n l o c a l - c o m p o s i t i o n 
f o r m u l a t i o n s . 

Comparison of Local Composition Formulations to Computer S i m u l a t i o n 

Nakanishi and co-workers have used molecular dynamics and Monte 
Carl o s i m u l a t i o n s to provide u s e f u l information f o r the l o c a l 
s t r u c t u r e of v a r i o u s kinds of mixtures (49 - 52). I n s i g h t i n t o 
l o c a l f l u i d s t r u c t u r e has been obtained by comparing l o c a l 
compositions c a l c u l a t e d from computer s i m u l a t i o n s to l o c a l 
compositions p r e d i c t e d from semi-empirical models ( l i k e Wilson, 25). 

The number of p a r t i c l e s j around a p a r t i c l e i i s determined from 
the s i m u l a t i o n r e s u l t s as 

R 

n j i = 4irNj/V J r 2 g j i ( r ) d r (5) 

The l o c a l composition of j around i i s 

x j i = n d i / ( E k n k i ) (6) 

Nakanishi and co-workers have set the upper l i m i t o f i n t e g r a t i o n 
i n Equation (5) to the dis t a n c e o f the f i r s t peak i n the r a d i a l 
d i s t r i b u t i o n f u n c t i o n . Lennard-Jones p o t e n t i a l and Loren t z -
B e r t h e l o t combining r u l e s were chosen f o r c a l c u l a t i o n s on mixtures 
w i t h v a r i e d s i z e and energy parameters. The Lennard-Jones energy 
parameters were s u b s t i t u t e d f o r the p o t e n t i a l s o f mean f o r c e i n the 
lo c a l - c o m p o s i t i o n f o r m u l a t i o n s . 

In t h e i r most extensive works (49, 52), molecular dynamic 
c a l c u l a t i o n s were made over a range of o v e r a l l mole f r a c t i o n s and 
the l o c a l compositions were compared to the Wilson (25) and Renon 
and P r a u s n i t z (42) f o r m u l a t i o n s . The Wilson equation was found to 
p r e d i c t l o c a l compositions p o o r l y f o r the mixtures described above, 
while the Renon and P r a u s n i t z equation w i t h <* = 0.4 showed b e t t e r 
agreement ( œ i s the nonrandomness parameter). Since the Boltzmann 
f a c t o r s of these two models d i f f e r o n l y by a f a c t o r of 0.4, the 
Wilson f o r m u l a t i o n o v e r - p r e d i c t s the l o c a l - c o m p o s i t i o n e f f e c t . For 
mixtures o f unequal-sized molecules the Renon-Prausnitz model 
p r e d i c t i o n s are l e s s accurate. Firm conclusions cannot be drawn on 
the a b i l i t y of these models to c o r r e l a t e the a c t i v i t y - c o e f f i c i e n t 
behavior of r e a l f l u i d s , but these s t u d i e s do provide a g u i d e l i n e 
f o r model development. Gierycz and Nakanishi (49) proposed 
improvements to the Renon-Prausnitz model based on t h e i r 
comparisons. E v a l u a t i o n of these improvements using r e a l mixtures 
of i n d u s t r i a l i n t e r e s t i s a v a l u a b l e next-step. 

While a number of assumptions were used i n N a k a n i s h i 1 s 
comparisons ( s e t t i n g R to the f i r s t peak of the r a d i a l d i s t r i b u t i o n 
f u n c t i o n and s u b s t i t u t i n g Lennard-Jones energy parameters f o r 
p o t e n t i a l s of mean f o r c e ) , t h i s work c o n t r i b u t e s to the 
understanding of l o c a l l i q u i d s t r u c t u r e and l o c a l - c o m p o s i t i o n 
f o r m u l a t i o n s . 
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A d d i t i o n a l work to assess the impact of d e f i c i e n c i e s i n mixing 
r u l e s on p r o p e r t i e s used i n process design, such as a c t i v i t y -
c o e f f i c i e n t s , i s needed. Recently, Hu et a l . (53) have compared 
t h e i r e q u a t i o n - o f - s t a t e p r e d i c t i o n s to the computer-simulation 
r e s u l t s of Shing and Gubbins (54). Of p a r t i c u l a r i n t e r e s t i s the 
d i r e c t comparison of r e s i d u a l chemical p o t e n t i a l s at low d i l u t i o n , a 
s t r i n g e n t t e s t of the equation of s t a t e . 

van der Waals P a r t i t i o n Function and Square-Well F l u i d s 

In an on-going s e r i e s of papers, Sandler and co-workers (55-57) 
have attempted to use a combination of theory and computer 
si m u l a t i o n s to develop fundamentally-based equations of s t a t e . They 
have used the g e n e r a l i z e d van der Waals p a r t i t i o n f u n c t i o n to 
s i m p l i f y the development of new models and to examine the 
assumptions i n e x i s t i n g models. F u r t h e r , they have performed Monte 
Carl o s i m u l a t i o n s on square-well f l u i d s to develop new models of 
engineering u t i l i t y . 

The a n a l y s i s by Sandler and co-workers of " l o c a l - c o m p o s i t i o n s " 
and t h e i r e f f e c t on e q u a t i o n - o f - s t a t e mixing r u l e s i s of p a r t i c u l a r 
importance to the present review. A s e r i e s of i n t e r e s t i n g 
observations and conclusions were presented i n t h e i r s t u d i e s . 

• The square-well p o t e n t i a l i s v a l u a b l e f o r i n v e s t i g a t i v e 
s t u d i e s because i t i s r e a l i s t i c , yet has a w e l l - d e f i n e d , 
f i n i t e a t t r a c t i v e range. 

• The Boltzmann f a c t o r that i s commonly used to model l o c a l 
compositions i s o n l y c o r r e c t at low d e n s i t i e s . At h i g h 
d e n s i t i e s the Boltzmann f a c t o r o v e r p r e d i c t s the l o c a l 
compositions s i n c e the f l u i d s t r u c t u r e i s predominantly 
determined by r e p u l s i v e f o r c e s . 

• Local compositions are best defined i n terms of l o c a l 
p a r t i c l e numbers, which i s equal to an i n t e g r a l over the 
r a d i a l d i s t r i b u t i o n f u n c t i o n . In the case of i n f i n i t e 
range p o t e n t i a l s (e.g., Lennard-Jones) i t i s probably 
b e t t e r to model the configurâtional energy d i r e c t l y . 

• The vdW-1 and l o c a l - c o m p o s i t i o n models are p o o r l y named 
sinc e both can be viewed to a r i s e from l o c a l - c o m p o s i t i o n 
assumptions. The key d i f f e r e n c e between the two i s that 
the f i r s t c l a s s of models a r i s e s from the assumption that 
the c o o r d i n a t i o n number v a r i e s w i t h composition, whereas 
i n the second c l a s s the c o o r d i n a t i o n number i s f i x e d . 

• The density-dependent l o c a l - c o m p o s i t i o n models of Whiting 
and P r a u s n i t z (29, 30), Mollerup (31) and Won (31) are 
q u a l i t a t i v e l y i n e r r o r s i n c e they assume that the e f f e c t 
of the a t t r a c t i v e f o r c e s i s more important at h i g h 
d e n s i t i e s than at low d e n s i t i e s . 

We present our viewpoint on the statements i n the f o l l o w i n g 
s e c t i o n : 
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A n a l y s i s 

There seems to be on-going confusion about v a r i o u s concepts and 
c o n f l i c t regarding r e s u l t s and assumptions among the s e v e r a l 
approaches to model development. 
vdW-1 Vs. Random Mixing. Many researchers assume or imply that the 
vdW-1 mixing r u l e s r e s u l t from the assumption that the mixture i s 
random. In terms of d i s t r i b u t i o n f u n c t i o n theory, a random mixture 
i s one i n which a l l the j i p a i r d i s t r i b u t i o n f u n c t i o n s are 
i d e n t i c a l . Leland and Chappelear (12) have shown that t h i s 
assumption leads to a mixing r u l e that depends on the p a i r 
p o t e n t i a l . I f a l l p a i r s i n the mixture obey the Lennard-Jones 
p o t e n t i a l , the mixing r u l e that f o l l o w s i s 

ε = (Σ Σ Χι x j εjι aj i 6 ) 2 

(7) 
(Σ Σ X i x j εjι aj i 1 2 ) 

(Σ Σ X i x j εjι o3i

 12)1 

(Σ Σ X i x j εj i aj i 6 ) 1 / 

(8) 

The above mixing r u l e s lead to extremely poor p r e d i c t i o n s even 
when there are small d i f f e r e n c e s i n molecular s i z e s and energies of 
a t t r a c t i o n . 

The vdW-1 mixing r u l e s r e s u l t s from a co n s i d e r a b l y more 
appealing assumption. I t i s assumed that the i j r a d i a l d i s t r i b u t i o n 
f u n c t i o n can be approximated as 

(9) 

Equation (9) assumes that the j i d i s t r i b u t i o n f u n c t i o n at 
dimensionless d i s t a n c e ( r / a j i ) i s the same as that of a pure 
hard-sphere f l u i d at the same reduced d e n s i t y as that of the mixture 
w i t h p e r t u r b a t i o n terms to account f o r the a t t r a c t i v e f o r c e s . The 
power of the model i s that the f u n c t i o n s g ( 0 > and Ϋ need not be 
known. Now i t can be shown that the vdW-1 mixing r u l e s (Equations 
(1) and (2)) are exact up to order 1/T (12). 

The vdW-1 mixing r u l e s are c l e a r l y a s i m p l i f i c a t i o n . Terms or 
order ( l / T ) 2 and greater are neglected, which should introduce 
e r r o r s at low temperatures. A d d i t i o n a l l y , the model assumes that 
g < 0 > at the point of contact i s the same f o r a l l j i p a i r s , which 
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i s known to be wrong at h i g h d e n s i t i e s . However, the reasonableness 
and the c l a r i t y of the assumptions must a l s o be recognized as we 
attempt to develop improved mixing r u l e s (58). 
The P r e d i c t i v e and C o r r e l a t i v e Power of the vdW-1 Mixing Rules. In 
a d d i t i o n to t h e i r foundation i n theory, the vdW-1 mixing r u l e s have 
provided good p r e d i c t i v e and c o r r e l a t i v e c a p a b i l i t y . We have 
already mentioned the work of Henderson and Leonard (13, 14) who 
found that the vdW-1 mixing r u l e s provided good p r e d i c t i o n s o f 
machine-simulation r e s u l t s f o r hard-sphere and Lennard-Jones 
mixtures. We r e i t e r a t e that comparison w i t h computer s i m u l a t i o n s i s 
a strong t e s t of t h e o r e t i c a l f o r m u l a t i o n s s i n c e the parameters are 
known and cannot be adjusted. However, these comparisons should be 
made i n the d i l u t e region not (as i s usual) f o r equimolar mixtures. 

Sandler and co-workers have obtained machine-simulation r e s u l t s 
f o r both pure f l u i d s and mixtures i n t e r a c t i n g w i t h the square-well 
p o t e n t i a l s (56, 57), thus enabling a t e s t of the simple vdW-1 mixing 
r u l e s . These s i m u l a t i o n s are f o r e q u i s i z e d molecules. Therefore 
the vdW-1 mixing r u l e s reduce to the simple form 

ε = Σ Σ X i X j εjι (10) 

The r e s u l t s f o r the vdW-1 p r e d i c t i o n s are presented i n F i g u r e s 1 
and 2. Figure 1 shows that i n the case where the temperature i s 
r e l a t i v e l y h i g h (note that ε/kTc - 0.8), the vdW-1 mixing 
r u l e s provide e x c e l l e n t p r e d i c t i o n s of the configurâtional energy at 
a l l compositions and d e n s i t i e s . In the case where the temperature 
i s lower (Figure 2 ) , the vdW-1 mixing r u l e s provide good p r e d i c t i o n s 
at h i g h d e n s i t i e s , and underpredict the configurâtional energy at 
low d e n s i t i e s . 

A b e t t e r mixing r u l e f o r low-density mixtures i s a 
l o c a l - c o m p o s i t i o n model based on the second v i r i a l c o e f f i c i e n t : 

Ε = Σ Σ X i X j Ε ( ε ^ ; Τ,ρ) ( i l ) 

Equation ( i l ) i s exact at zero d e n s i t y (55). The dashed l i n e i n 
Figure 2 shows that the low-density mixing r u l e provides improved 
p r e d i c t i o n s of the mixture data. But the model s t i l l u n d erpredicts 
the data. This i s perhaps caused by mixture c o n d i t i o n s w i t h i n the 
unstable r e g i o n of the f l u i d , which i s supported by the s c a t t e r i n 
the s i m u l a t i o n data. 

Several i n v e s t i g a t o r s have pointed out that the simple vdW-1 
mixing r u l e s provide good p r e d i c t i o n s f o r systems c o n t a i n i n g 
e q u i - s i z e d molecules w i t h d i f f e r i n g energies of i n t e r a c t i o n ( f o r 
example, see F i s c h e r , 58). However, the vdW-1 form i s inadequate 
f o r the more d i f f i c u l t mixtures c o n t a i n i n g molecules w i t h l a r g e s i z e 
d i f f e r e n c e s (54, 48). 

I t should be noted that i t i s not necessary to use the vdW-1 
approximation f o r the r e p u l s i v e part of an equation of s t a t e s i n c e 
t h e o r e t i c a l l y - b a s e d , t r a c t a b l e models are a v a i l a b l e f o r 
unequal-sized hard-sphere mixtures (60, 38). Hu et a l . (53) have 
used the Mansoori-Carnahan S t a r l i n g - L e i a n d equation (38) f o r the 
r e p u l s i v e term and obtained good agreement w i t h computer-simulation 
data. 
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A p p l i c a t i o n s to Important I n d u s t r i a l Equations of S t a t e . I t i s 
u s e f u l to apply the r a d i a l - d i s t r i b u t i o n - f u n c t i o n framework f o r l o c a l 
compositions (46, 55) to the important i n d u s t r i a l equations of 
s t a t e . This allows examination of the l o c a l compositions i m p l i e d by 
the p r a c t i c a l l y - s u c c e s s f u l vdW-1 mixing r u l e s and those of the 
attempts to improve them (29 - 31). Perhaps more important, there 
are i n d i c a t i o n s that the s i m p l i f i c a t i o n s inherent i n the p u r e - f l u i d 
equations of s t a t e must be considered when applying the mixing r u l e s 
suggested by a ri g o r o u s t h e o r e t i c a l framework. 

Consider the i n t e r n a l energy obtained by applying the vdW-1 
mixing r u l e s to the common cubic equations of s t a t e 

3 a j i / T 
Ε = - F v Σ Σ X i X j 

1 J 3 1/T 
(12) 

where the f u n c t i o n F v i s dependent on the form chosen f o r the 
a t t r a c t i v e term of the equation of s t a t e . For example: 

van der Waals: F v 

Red1i ch-Kwong: F v 1 l n ( l + pb) 
b 

(13) 

(14) 

Peng-Robinson: F v = In 
2/2b 

1 4- (1+72) bp 
1 + ( W 2 ) bp 

(15) 

The Redlich-Kwong and Peng-Robinson forms f o r F v reduce to the 
simple l i n e a r dependence on d e n s i t y (Equation (13)) i n the l i m i t o f 
low d e n s i t y . (See Figure 3.) 

Now consider the s t a t i s t i c a l mechanical expression f o r the 
i n t e r n a l energy of a system where the t o t a l i n t e r m o l e c u l a r p o t e n t i a l 
i s p a i r w i s e a d d i t i v e . 

Ε = ρ/2 Σ Σ X i X j J u j i ( r ) g j i ( r ) 4trr 2dr (16) 

As p-»0, the r a d i a l d i s t r i b u t i o n f u n c t i o n g j i ( r ) approaches 
the Boltzmann f a c t o r 

l i m g j i ( r ) = e 
p-»0 

- U j i ( r ) / R T 
(17) 

I f Equation (17) i s s u b s t i t u t e d i n t o Equation (16), i t can be 
shown (46) that the i n t e r n a l energy at low d e n s i t i e s i s r e l a t e d to 
the temperature d e r i v a t i v e o f the second v i r i a l c o e f f i c i e n t : 

3B2 j ι 
Ε = Rp Σ Σ X i X j 

1 J 3 1/T 
(18) 
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Figure 3. Density dependence of a t t r a c t i v e term - Simple 
equations of s t a t e 
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Comparing Equation (18) w i t h the low-density l i m i t of Equation 
(12) ( F v - p ) , we o b t a i n an expression f o r a j i i n terms of 
the second v i r i a l c o e f f i c i e n t . 

3B2 j ι 
a d i = -RT J 1 / T d ( l / T ) 

1/T = 0 r\ -

-RT >2ji - B 2 j ι (T = °°) 

(19) 

Thus, as i s w e l l known, a jι a r i s e s from the a t t r a c t i v e p o r t i o n 
of the j i p a i r p o t e n t i a l . Equations (16) and (17) show t h a t , at low 
d e n s i t i e s , the simple equations q u a l i t a t i v e l y d e s c r i b e the l o c a l 
compositions r e s u l t i n g from the Boltzmann f a c t o r . 

We can now get some idea of the h i g h - d e n s i t y r a d i a l d i s t r i b u t i o n 
f u n c t i o n assumed by the simple equations of s t a t e . The van der 
Waals equation assumes that there i s no e f f e c t of d e n s i t y . The 
Redlich-Kwong and Peng-Robinson models assume that the low-density 
Boltzmann f a c t o r r e s u l t s i n an o v e r p r e d i c t i o n of the h i g h - d e n s i t y 
configurâtional energy, but t h i s can be c o r r e c t e d by a simple 
f u n c t i o n of d e n s i t y , F v/p. We emphasize that t h i s i s a 
nonunique i n t e r p r e t a t i o n . 

More important to the d i s c u s s i o n at hand, the vdW-1 mixing r u l e s 
assume that the l o c a l compositions are independent of d e n s i t y s i n c e 
the c o r r e c t i o n f a c t o r i s the same f o r a l l j i p a i r s . This point has 
been noted by Sandler (55) who a l s o s t a t e s that t h i s behavior i s 
i n c o n s i s t e n t w i t h the i n v e s t i g a t i o n s of Chandler and Weeks (61) and 
Weeks et a l . (62) who have shown that the s t r u c t u r e of a 
h i g h - d e n s i t y f l u i d i s l a r g e l y determined by the r e p u l s i v e f o r c e s . 

However, these simple equations of s t a t e , together w i t h the 
vdW-1 mixing r u l e s , have r e s u l t e d i n r e l i a b l e and f r e q u e n t l y 
accurate p r e d i c t i o n s f o r a wide v a r i e t y of nonpolar mixtures 
i n c l u d i n g those whose components have l a r g e d i f f e r e n c e s i n t h e i r 
i n t e r m o l e c u l a r f o r c e s (63). I t i s important to pursue the nature 
and impact of these d i f f e r e n c e s to guide improvements to the vdW-1 
mixing r u l e s f o r mixtures where they are o b v i o u s l y inadequate (e.g., 
polar-nonpolar b i n a r i e s l i k e methanol-benzene). 

We therefore review the assumptions l e a d i n g to Equation (19): 
a j i i s not s t r i c t l y a low-density parameter. In f a c t , i t i s more 
c o r r e c t l y a h i g h - d e n s i t y parameter s i n c e i t s value i s determined by 
f i t t i n g vapor pressure or phase e q u i l i b r i u m data, f o r which the 
v a r i a t i o n of the l i q u i d - p h a s e f u g a c i t i e s u s u a l l y dominate. F u r t h e r , 
we a l s o note that the second v i r i a l c o e f f i c i e n t s p r e d i c t e d by the 
cubic equations are u s u a l l y l e s s negative than the experimental 
v a l u e s , i n d i c a t i n g that the e f f e c t of the a t t r a c t i v e f o r c e s i s 
underpredicted at low d e n s i t i e s . 

-RT - b j i 
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Perhaps a b e t t e r i n t e r p r e t a t i o n of Equations (16) and (17) i s 
that the a j i a r i s e s from an e f f e c t i v e p a i r p o t e n t i a l which permits 
a reasonable d e s c r i p t i o n of the i n t e r n a l energy at h i g h d e n s i t i e s . 
However, these simple models do not r e v e a l the form they assume f o r 
microscopic q u a n t i t i e s , s i n c e we cannot deduce the form of a 
f u n c t i o n from a s i n g l e value of i t s i n t e g r a l . 

This u n c e r t a i n t y i n the j i d i s t r i b u t i o n f u n c t i o n s f o r the vdW-1 
case makes an a n a l y s i s of the density-dependent l o c a l - c o m p o s i t i o n 
models very tenuous indeed. One argument, o f f e r e d by Sandler and 
co-workers, suggests that the l o c a l compositions caused by the 
a t t r a c t i v e f o r c e s are highest at low d e n s i t i e s and decrease w i t h 
d e n s i t y s i n c e h i g h - d e n s i t y s t r u c t u r e i s determined by the r e p u l s i v e 
f o r c e s . According to t h i s argument the density-dependent 
l o c a l - c o m p o s i t i o n models (29 - 31) are q u a l i t a t i v e l y wrong s i n c e 
they assume that the l o c a l - c o m p o s i t i o n e f f e c t i s zero at low 
d e n s i t i e s and increases w i t h d e n s i t y . Further comments are needed 
to put t h i s statement i n t o p e r s p e c t i v e . 

I t should f i r s t be noted that the density-dependent 
l o c a l - c o m p o s i t i o n models do not p r e d i c t random behavior at low 
d e n s i t i e s s i n c e they d e s c r i b e second v i r i a l c o e f f i c i e n t behavior 
c o r r e c t l y (Equation 19). Now the question i s : Is i t q u a l i t a t i v e l y 
c o r r e c t to assume that the l o c a l - c o m p o s i t i o n e f f e c t increases w i t h 
density? 

Sandler's study, c o n s i s t e n t w i t h other s t u d i e s , shows us that 
the Wilson Boltzmann f a c t o r s do overestimate the l o c a l composition 
e f f e c t at h i g h d e n s i t i e s . The computer s i m u l a t i o n s of Nakanishi and 
co-workers have shown that there i s some l o c a l - c o m p o s i t i o n e f f e c t at 
h i g h d e n s i t i e s due to the a t t r a c t i v e f o r c e s and t h i s c l u s t e r i n g i s 
approximately described by the NRTL model. Thus there i s some 
j u s t i f i c a t i o n f o r the model at h i g h d e n s i t i e s and the 
density-dependent l o c a l - c o m p o s i t i o n models at l e a s t meets 
macroscopic boundary c o n d i t i o n s at low and h i g h d e n s i t i e s . 

We s t r e s s that " l o c a l - c o m p o s i t i o n " i s an ambiguous and 
intermediate q u a n t i t y . I t i s perhaps more appropriate to evaluate 
models according to t h e i r d e s c r i p t i o n of more meaningful p r o p e r t i e s 
l i k e the configurâtional energy. 

The Future 

vdW-1 mixing r u l e s are reasonably based i n theory and have 
enabled r e l i a b l e p r e d i c t i o n s i n many nonpolar systems. Further work 
using vdW-1 mixing r u l e s as a b a s i s f o r extension appears to be 
warranted. 

P e r t u r b a t i o n theory suggests that separate mixing r u l e s are 
needed f o r d i f f e r e n t i n t e r m o l e c u l a r e f f e c t s . Approaches based on 
p e r t u r b a t i o n theory should c o n t r i b u t e to the continued development 
of new mixing r u l e s . 

Most l o c a l composition mixing r u l e f o r m u l a t i o n s now resemble 
Wilson's equation, which both overestimates the l o c a l - c o m p o s i t i o n 
e f f e c t and becomes l e s s accurate f o r mixtures w i t h i n c r e a s i n g s i z e 
d i f f e r e n c e s . New ideas are needed to improve these d e f i c i e n c i e s . 
For example, E l y (64) has r e c e n t l y shown f o r square-well mixtures 
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n j i - e 
- βε j ι 

δ j i - B p j 

3pj 

8pi H a r d S p h e r e 
+ 4TT R 3 (20) 

which can be s u b s t i t u t e d i n t o the energy equation (Equation 3) to 
d e r i v e the mixture equation of s t a t e . E l y ' s development 
incorporates hard-sphere s i z e e f f e c t s i n t o the l o c a l - c o m p o s i t i o n 
f o r m u l a t i o n . Further work i n t h i s d i r e c t i o n i s s t r o n g l y encouraged. 

Conclusions 

The c a p a b i l i t y of equations of s t a t e to d e s c r i b e asymmetric 
mixtures has improved s u b s t a n t i a l l y over the past f i v e years. The 
o l d r u l e of thumb that one must use a c t i v i t y c o e f f i c i e n t models f o r 
mixtures w i t h p o l a r components i s beginning to fade away. This 
trend w i l l b e n e f i t chemical process design and o p t i m i z a t i o n , as more 
than one approach has been needed, i n some cases, to simulate one 
e n t i r e process. 

Equations of s t a t e w i t h l o c a l - c o m p o s i t i o n mixing r u l e s o f f e r 
short-term p o t e n t i a l to d e s c r i b e h i g h l y polar-asymmetric systems i n 
the same ( e m p i r i c a l ) manner as a c t i v i t y c o e f f i c i e n t models. These 
models now l a r g e l y resemble Wilson's equation and new ideas are 
needed to develop improved f o r m u l a t i o n s . 

Computer s i m u l a t i o n s t u d i e s are being used to provide 
i n f o r m a t i o n on l o c a l f l u i d s t r u c t u r e . Some improvements to mixing 
r u l e s have been suggested, however, have not yet been evaluated on 
r e a l systems. Further work to improve mixing r u l e s f o r a p p l i c a t i o n 
to r e a l systems based on computer s i m u l a t i o n i s badly needed. While 
comparisons based on l o c a l compositions can provide some guidance i n 
developing b e t t e r models, a n a l y s i s of macroscopic p r o p e r t i e s , such 
as a c t i v i t y c o e f f i c i e n t s and i n t e r n a l energy, i s recommended to 
avoid p o t e n t i a l a m b i guities and p i t f a l l s . A u n i f i e d f o r m u l a t i o n of 
the energy, pressure and c o m p r e s s i b i l i t y equations i n terms of l o c a l 
p a r t i c l e numbers now e x i s t s and can s t r a i g h t f o r w a r d l y be used to 
develop mixture equations of s t a t e f o r new f o r m u l a t i o n s . 
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L i s t of Symbols 

a a t t r a c t i v e constant i n van der Waals-based equation of s t a t e 
b s i z e constant i n van der Waals-based equation of s t a t e 
Β second v i r i a l c o e f f i c i e n t 
Ε i n t e r n a l energy 
g r a d i a l d i s t r i b u t i o n f u n c t i o n 
k Boltzmann's constant 
η l o c a l p a r t i c l e number 
Ν number of molecules 
R l i m i t of i n t e g r a t i o n 
Τ absolute temperature 
u i n t e r m o l e c u l a r p a i r p o t e n t i a l 
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V 
X 
β 
δ 

volume 
f l u i d - p h a s e mole f r a c t i o n 
1/KT 
Kronecker d e l t a 
energy parameter i n p o t e n t i a l f u n c t i o n 
chemical p o t e n t i a l 
d e n s i t y 
hard-sphere diameter 

ε 
μ 
ρ 
σ 
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18 
Calculation of Fluid-Fluid and Solid-Fluid Equilibria 

in Cryogenic Mixtures at High Pressures 

Ulrich K. Deiters 

Lehrstuhl für Physikalische Chemie II, Ruhr-Universität, D-4630 Bochum 1, Federal 
Republic of Germany 

A non-cubic equation of state, which includes quantum 
corrections and special corrections for molecular size 
differences, is used to correlate fluid-fluid phase 
equilibria (vapour-liquid, liquid-liquid, and gas-gas) 
in binary cryogenic mixtures (containing H2, CO, noble 
gases, etc.) up to 2000 bar. Volumetric properties of 
these mixtures are predicted successfully. The cubic 
Redlich-Kwong equation of state is shown to perform less 
satisfactorily. The thermodynamic functions of the mix­
tures are calculated from modified versions of either 
one-fluid theory or mean density approximation. An ex­
pression for the Gibbs energy of a pure solid is derived; 
from this it is possible to predict solid-fluid equili­
bria, including solid-liquid-gas three-phase lines, from 
experimental fluid-fluid equilibrium data, and vice versa. 

T h e c a l c u l a t i o n o f p h a s e e q u i l i b r i a i n b i n a r y m i x t u r e s a t e l e v a t e d 

p r e s s u r e r e q u i r e s m u c h m o r e c o m p u t a t i o n a l e f f o r t t h a n c a l c u l a t i o n s o f 

l o w p r e s s u r e e q u i l i b r i a . A t h i g h p r e s s u r e i t i s n o l o n g e r p e r m i s s i b l e 

t o r e g a r d o n e o r m o r e o f t h e p h a s e s i n e q u i l i b r i u m a s i d e a l , a n d t h e o ­

r e t i c a l a p p r o a c h e s b a s e d o n a c t i v i t y c o e f f i c i e n t s b e c o m e i n e f f i c i e n t , 

b e c a u s e a p p r o p r i a t e s t a n d a r d s t a t e s a r e l a c k i n g . O n t h e o t h e r h a n d , 

e q u a t i o n s o f s t a t e c a n f o r m a p r o p e r b a s i s f o r p h a s e e q u i l i b r i u m c a l ­

c u l a t i o n m e t h o d s f o r s e v e r a l r e a s o n s : 

- T h e y a r e a p p l i c a b l e t o l i q u i d , v a p o u r , a n d s u p e r c r i t i c a l s t a t e s a l i k e , 

s o t h a t c o n c e p t u a l d i f f i c u l t i e s i n t h e v i c i n i t y o f c r i t i c a l p o i n t s , 

w h i c h a r e s o o f t e n e n c o u n t e r e d w i t h a c t i v i t y c o e f f i c i e n t m e t h o d s , a r e 

c o m p l e t e l y a v o i d e d . 

- B e c a u s e o f t h e i r b u i l t - i n c o n s i s t e n c y i t i s p o s s i b l e t o c a l c u l a t e 

v a p o u r - l i q u i d e q u i l i b r i a , l i q u i d - l i q u i d e q u i l i b r i a , a n d a l l t r a n s i ­

t i o n s b e t w e e n t h e s e t w o k i n d s f r o m t h e s a m e i n p u t i n f o r m a t i o n . 

- C a l c u l a t i o n s w i t h e q u a t i o n s o f s t a t e n o t o n l y y i e l d t h e e q u i l i b r i u m 

p h a s e c o m p o s i t i o n s , b u t a l s o d e n s i t i e s a n d h e a t s o f v a p o r i z a t i o n . 

I t i s t h e a i m o f t h i s w o r k t o d e m o n s t r a t e t h a t m o d e r n e q u a t i o n s o f 

s t a t e a r e n o t o n l y c a p a b l e o f c o r r e l a t i n g f l u i d - f l u i d e q u i l i b r i a , b u t 

a l s o o f p r e d i c t i n g P V T d a t a a n d s o l i d - f l u i d e q u i l i b r i a o f m i x t u r e s 

( s o l i d - s u p e r c r i t i c a l f l u i d e q u i l i b r i a , m e l t i n g ) s u c c e s s f u l l y . 

0097-6156/ 86/ 0300-0371 $06.00/0 
© 1986 American Chemical Society 
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Equations of State 

Pure Substances. For the c a l c u l a t i o n s described below we have used 
two van der Waals type equations of s t a t e , i . e . equations c o n s i s t i n g of 
d i s t i n c t r e p u l s i o n and a t t r a c t i o n terms, namely: 
- the Redlich-Kwong (RK) equation (1) as a representative of the widely 

used c l a s s of cubic equations of s t a t e : 

ρ _ ρ _ ρ _ R T _ Ά (1 ) 
rep a t t V -b VTV (V + b) 

m m m 
(Here a and b are the (substance-specific) parameters of a t t r a c t i o n 
and r e p u l s i o n . ) 

- and our own equation of s t a t e (2): 

Ρ _ Η 
ν 
m 

with 

ξ = ρ ρ = ^— (reduced d e n s i t i e s ) 

Τ •̂ £-y Τ = — (reduced temperatures) « c ) a ef f " Y(p,c) 

c 0 = 0.6887 λ = -0.07c 

The other expressions i n Equation 2 are functions of ρ and c, which 
have been explained elsewhere (2). This equation of state i s c l e a r l y 
non-cubic; i t s three parameters a, b, and c may be understood as cha­
r a c t e r i s t i c temperature, covolume, and anisotropy. 

At low temperatures, some l i g h t gases such as helium, neon, hydro­
gen e t c . show deviations from c l a s s i c a l mechanics, which are u s u a l l y 
r e f e r r e d to as quantum e f f e c t s . The larger part of these deviations can 
be explained by r e s t r i c t i o n s of the p a r t i c l e motions: at high d e n s i t i e s 
each molecule i s more or less confined to a c e l l by the r e p u l s i o n of 
i t s neighbour molecules. Then the t r a n s l a t i o n a l eigenstates are no 
longer c l o s e l y spaced, so that i t i s not permissible to c a l c u l a t e the 
p a r t i t i o n f unction by i n t e g r a t i o n . I t i s p o s s i b l e , however, to repre­
sent the quantum corrected p a r t i t i o n f u n c t i o n as a product of the c l a s ­
s i c a l p a r t i t i o n f u n c t i o n and a c o r r e c t i o n f u n c t i o n (3): 

Q = Q , q 3 N (3) quant c l a s s corr 

For small deviations from c l a s s i c a l behaviour the c o r r e c t i o n function 
can be approximated by 

q = 1 - \ (4) 
corr 2 

with y = Λ / L (reduced wavelength) 

Λ = π ^ γ ~ (thermal de Broglie wavelength) 
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18. D E I T E R S Fluid-Fluid and Solid-Fluid Equilibria 373 

( c e l l s i z e ) 

The c e l l s i z e depends on the free volume of the f l u i d . For large redu­
ced wavelengths the c o r r e c t i o n f u n c t i o n can be obtained from a s e r i e s 
expansion; the c o e f f i c i e n t s are given i n Table I: 

In q 
13 

- I 
j = 1 

r .y 
J 

(5) 

Table I. Expansion C o e f f i c i e n t s of the Quantum Cor r e c t i o n Function 

j r . 
J j r . 

J 
0 0 7 +8 .663 291 244 9 
1 -0.499 951 749 27 8 -8 .727837 8272 
2 -0.128672 732 48 9 +5 .742 346 562 0 
3 +0.026 360 453 309 10 -2 .444507 6274 
4 -0.552 534 071 60 11 +0 .648 968 1 16 33 
5 +2.240 993 820 8 12 -0 .097 758 376489 
6 -5.570201 592 1 13 +0 .006 387 718839 

The free volume depends on the equation of s t a t e . For van der Waals 
type equations, which c o n s i s t of a r e p u l s i o n and an a t t r a c t i o n term, 
the f r e e volume i s defined by 

In rep 
nRT dV (6) 

The f r e e volume associated with the equation of s t a t e 2 i s given by 

V f = V exp| 

From Equations 3, 5, and 6 i t i s evident that the quantum corrected 
version of any van der Waals type equation of stat e i s given by 

Ρ = Ρ (1 rep I j r . y j ) - Ρ r 1 a t t J 
(8) 

Since the dominating expansion c o e f f i c i e n t s are negative, the quantum 
c o r r e c t i o n amounts to an increase of the r e p u l s i o n pressure. This i s i n 
agreement with the perturbation theory r e s u l t s of Singh and Sinha (4). 
The influence of the quantum c o r r e c t i o n on the representation of PVT 
data and c r i t i c a l data of pure substances has been discussed elsewhere 
(3, 5 ). I t should be noted that the i n t r o d u c t i o n of quantum c o r r e c t i o n s 
always leads to non-cubic equations of s t a t e . 

Mixtures. One of the most successful methods of g e n e r a l i z i n g a pure 
substance equation of state to mixtures i s the o n e - f l u i d theory. I t 
amounts to applying the pure substance equation of stat e to a mixture, 
using concentration dependent parameters. The concentration dependence 
is u s u a l l y contained i n a set of i n t e r p o l a t i o n formulas, r e f e r r e d to as 
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374 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

mixing r u l e s . For the Redlich-Kwong equation the following quadratic 
mixing r u l e s have been used: 

a = x^a^ ^ + 2x^x^a^2 + x £ a 2 2 

2 2 
b = x ^ b ^ + 2 x ^ 2 ^ 2 + x2 b22 

These mixing r u l e s do not imply random mixing (6), nor are they compa­
t i b l e with the van der Waals mixing theory; the Redlich-Kwong a t t r a c t i o n 
parameter i s r e l a t e d to the molecular p o t e n t i a l w e l l depth and diameter 
by a ^ ε3'2 σ 3 , whereas the a t t r a c t i o n parameter of the van der Waals 
equation of stat e i s p r o p o r t i o n a l to ε 1 o 3. A d e t a i l e d d i s c u s s i o n of the 
phy s i c a l meaning of a t t r a c t i o n parameters i n several equations of stat e 
and i m p l i c a t i o n s f o r improved mixing r u l e s have been given by Mansoori 
in t h i s symposium (7). Here we only want to make the point that other 
than van der Waals type mixing r u l e s have s u c c e s s f u l l y been used for a 
long time, and that i t i s not necessary for a succ e s s f u l mixing r u l e to 
be of the van der Waals type. 

For Equation 2 the fo l l o w i n g mixing r u l e s have been used (8): 

c = x - j C ^ + X2 C22 

2 2 
b = x i b i i + ^ x i x 2 b 1 2 + x2 b22 

2 x 1 s 1 1 q 2 A a
 M „ 

a = x.a., + x , a „ , + , • (13; 
1 1 1 2 2 2 1 + /1 • 4 q i q 2 [ e x p ( ^ ) - 1 ] 

^ a12 a11 a22 with Aa = - - (exchange energy) 
S12 S11 S22 

X i S i i 
and q. = (surface f r a c t i o n ) 

ι X
1

S
1 1

+ X
2

S 2 2 
The c a l c u l a t i o n of the e f f e c t i v e surface r a t i o s s has been described 
elsewhere (9) (compare Equation 24). The square root term i n Equation 
13 accounts f o r non-randomness according to a quasichemical model (80. 
It contributes to the equation of stat e at low temperatures only. In 
the high temperature l i m i t Equation 13 becomes approximately equivalent 
to averaging εσ 2 ; the a c t u a l value of the σ-exponent depends somewhat 
on the s i z e r a t i o . 

The c o n t r i b u t i o n s of the quantum e f f e c t s to the equation of st a t e 
are averaged according to the fol l o w i n g formula: 

Ρ = Ρ (1 - χ, Y j r . y j - x 0 £ j r . y h - Ρ _ (14) rep 1 . 1 1 2 r ι 2 a t t J J 
with y. = A./L J ι ι 

The reduced wavelengths are c a l c u l a t e d separately for each component 
of the mixture. The e f f e c t i v e c e l l s i z e L i s obtained from the mean 
reduced density using Equations 12, 2, and 7. 
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18. DEITERS Fluid-Fluid and Solid-Fluid Equilibria 375 

I f the molecules of a mixture d i f f e r very much i n s i z e (diameter 
r a t i o above 1 . 6 ) , the mixing r u l e s given above are no longer s u f f i c i e n t . 
I t i s p o s s i b l e , however, to extend Equation 2 to mixtures with even 
larger s i z e r a t i o s by s u b s t i t u t i n g the r i g i d sphere c o m p r e s s i b i l i t y 
factor by an appropriately modified r i g i d sphere mixture expression 
( 10 ). Here the expression of Mansoori, Carnahan, S t a r l i n g , and Leland 
( 1 1 ) has been used. 

^ • ^ [ i ^ . ' ^ j r ^ ] ( i s ) rrep • V~ I ' + t c ° ΓΪ 
m 

3 ( ν Χ 2 Κ 2 1 ) ( Χ 1 + Χ 2 Κ 2 1 }
 Λ with Ε = ^ + 1 

χ .j •+• χ 2 ̂ 2 Ί 

(χ,| + X 2 R 2 1 ) 

and F = ^ — ^ 1 R 0 1 = \\ (diameter r a t i o ) 
(χ ̂  + X 2 R 2 ) 

R 
2 1 • 1 NT 

The averaging procedures implied by Equation 1 4 and the use of Equation 
15 c o n s t i t u t e a departure from o n e - f l u i d theory. Conversely, i f formal 
v a l i d i t y of o n e - f l u i d theory i s assumed, these two equations would lead 
to density and temperature dependent parameters. 

The parameters and b u are estimated from the usual geometric, 
resp. arithmethic, mean r u l e s . Their exact values are always determined 
by f i t t i n g the equation of stat e to binary phase e q u i l i b r i u m data. 

Phase E q u i l i b r i a 

F l u i d - F l u i d E q u i l i b r i a . The thermodynamic conditions of phase e q u i l i ­
brium i n a binary f l u i d mixture are ( 1 2 ) : 

P' = P" 
T' = T" 

μ1. = μ'.' i = 1 
1 1 

( 1 6 ) 

The chemical p o t e n t i a l s μ are obtained as d e r i v a t i v e s of the Gibbs 
energy at constant pressure and temperature: 

J i lôn.L m 
L i J P , T , n . ι . 

( 1 7 ) 

In the case of a f l u i d mixture, the Gibbs energy G (Ρ,Τ) i s obtained 
from the fol l o w i n g formula: 

V 
G f(P,T) = η ^ ^ Ρ ' , Τ ) + n 2G£(P°,T) - J P(V,T) dV + PV - nRT 

V° 
+ nRT(x^ln χ Ί + x 2 l n x^) ( 1 8 ) 

The G° denote Gibbs energies of the pure components i n the p e r f e c t gas 
state (very small pressure P° , very large volume V ° ) . These terms can-
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376 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

eel in the course of the phase eq u i l i b r i u m c a l c u l a t i o n , i f chemical 
reactions are excluded. The integrand i s the equation of state of the 
mixture. Equation 18 is a p p l i e d to vapours, l i q u i d s , and s u p e r c r i t i c a l 
states a l i k e . Because of the c o n t i n u i t y p r i n c i p l e i t i s p o s s i b l e to 
integrate the equation of st a t e "through" the vapour pressure l i n e (see 
Figure 1 ) . Together with Equation 18, 16 represents a system of non­
l i n e a r equations, which can be solved numerically for the e q u i l i b r i u m 
phase compositions (13). 

The conditions of phase e q u i l i b r i u m can a l s o be formulated using 
f u g a c i t i e s ; the r e s u l t i n g equations are equivalent to those given 
above, but can be made to appear less complicated, i f the functions of 
the standard st a t e are suppressed and r e s i d u a l p roperties are used. But 
i n t h i s work the use of chemical p o t e n t i a l s and Gibbs energies i s pre­
f e r r e d for two reasons: Equation 18 i s better adapted to our phase 
eq u i l i b r i u m algorithm (13), and the g e n e r a l i z a t i o n of our computational 
method to mixtures with chemical reactions i s more straightforward. 

S o l i d - F l u i d E q u i l i b r i a . Since the c o n t i n u i t y p r i n c i p l e cannot be ex­
tended to s o l i d phases, i t i s neither p o s s i b l e nor d e s i r a b l e to use the 
same equation of s t a t e f o r f l u i d and s o l i d phases without c r e a t i n g con­
ceptual d i f f i c u l t i e s . In some cases a s u c c e s s f u l c o r r e l a t i o n of s o l i d -
gas e q u i l i b r i a has been accomplished by f i t t i n g a f l u i d equation of 
state to s o l i d state data, thus t r e a t i n g the solid-gas e q u i l i b r i u m 
formally as a liquid-vapour e q u i l i b r i u m . But as t h i s approach renders 
the d e s c r i p t i o n of s o l i d - l i q u i d - g a s three-phase l i n e s impossible and 
i s not capable of e x p l a i n i n g the complete phase diagram of a mixture, 
i t i s not used i n t h i s work. Instead, a separate equation of st a t e i s 
employed for the s o l i d s t a t e . Usually the following r e l a t i o n provides 
a s u f f i c i e n t d e s c r i p t i o n of s o l i d PVT behaviour: 

V S ( P , T ) = v s ( p s f , T ) ( i - *(p - p s f ) ) (19) 
sf 

Ρ i n Equation 19 denotes the sublimation or melting pressure (which­
ever i s more appropriate at the temperature T); κ i s the isothermal 
s o l i d c o m p r e s s i b i l i t y . In most cases there w i l l not be s u f f i c i e n t ex­
perimental data a v a i l a b l e to construct a more s o p h i s t i c a t e d s o l i d equa­
t i o n of s t a t e . In order to obtain an expression f o r the Gibbs energy of 
a pure s o l i d at a r b i t r a r y pressure, which can be used f o r phase equi­
l i b r i u m c a l c u l a t i o n s , we have to l i n k Equation 19 to 18 in a c o n s i s t e n t 
manner (10): 

Ρ 

G S(P,T) = G f ( P S f , T ) + f V S(P,T) dP (20) 
Jpsf 

This equation i s obtained by (compare Figure 1) 
- determining the Gibbs energy of the f l u i d phase at the sublimation/ 

melting p o i n t , 
- r e a l i z i n g that at t h i s point s o l i d and f l u i d phase have the same 

molar Gibbs energy, g ^ 
- i n t e g r a t i n g the s o l i d equation of st a t e from Ρ up to the pressure 

de s i r e d . 
Equation 20 in conjunction with 18 enables us to c a l c u l a t e phase equi­
l i b r i a between a f l u i d mixture and a pure c r y s t a l l i n e phase. 
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18. DEITERS Fluid-Fluid and Solid-Fluid Equilibria 317 

Other authors have used a s i m i l a r concept for t r e a t i n g s o l i d - f l u i d 
phase e q u i l i b r i a (14, 15). The formalism proposed here i s thermodynami-
c a l l y equivalent, but avoids the use of a c t i v i t y c o e f f i c i e n t s and meta-
stable or hypothetical reference s t a t e s . Furthermore our formalism 
accounts f o r the c o m p r e s s i b i l i t y of the s o l i d phase, the influence of 
which on phase e q u i l i b r i a i s not always n e g l i g i b l e . 

Modified Mean Density Approximation 

An a l t e r n a t i v e mixing theory, which i n i t s o r i g i n a l form i s only 
s l i g h t l y i n f e r i o r to the o n e - f l u i d theory ( 16 ) , i s the mean density 
approximation. I t has the advantage, however, that i t can be modified 
without too much mathematical e f f o r t . For example, the i n t r o d u c t i o n of 
density dependent a t t r a c t i o n parameters i n t o Equation 2 would y i e l d an 
unwieldy formalism within o n e - f l u i d theory, but can be made e a s i l y 
within the mean density approximation. Our p r o p o s i t i o n i s to replace 
the i n t e g r a l i n Equation 18, which represents a Helmholtz energy of 
compression, by 

I I x.x.g.. Γ P(V ,T;a..,b,c..,...) dV 
J J ι J i j J m i j i j π 

y y x.x.g.. 
r r 1 J 1 J 

m 
A = - - ± - J 1 (21) 
comp 

J 
where the weight f a c t o r s g are the contact values of the ( i , j ) - r a d i a l 
d i s t r i b u t i o n f u n c t i o n of a r i g i d sphere mixture. The average covolume 
parameter b i s again obtained by Equation 12. According to scaled par­
t i c l e theory ( 17 ) , the values of the g.. are functions of composition 
and density according to 1~' 

g.. = ^ ( ( C . .+1 ) 3 -C3. J (22) 

2 

ξ R i 1 X 1 + X 2 R 2 1 
with C.. = -r-—- r — (23) 

1 J ' " Ξ 1+R.. χ , + X o R o i 
i j 1 2 21 

For a more d e t a i l e d explanation of the t h e o r e t i c a l background of the 
modified mean density approximation see (18) . Furthermore, two other 
contributions to t h i s symposium are also concerned with modified mean 
density approximation (19, 20 ) . 

At high d e n s i t i e s t h i s theory y i e l d s the same s t a t i s t i c a l weight 
f a c t o r s f o r the a t t r a c t i v e i n t e r a c t i o n as Equation 13, but - i n con­
t r a s t to t h i s equation - i t a l s o leads to a c o r r e c t low pressure l i m i t 
(18) . Therefore t h i s modified mean density approximation (Equation 21) 
i s i n t e r e s t i n g f o r mixtures of molecules of very d i f f e r e n t s i z e s , i n 
which a l s o a large range of d e n s i t i e s must be accounted f o r . 

8 22 g 22 2 lim = 1 lim = R ? 1 = s ? 9 

ζ-0 g11 ξ-1 811 Z l L L 

,. 8 12 Λ

 8 12 f 2 Ί 2 

lim = 1 lim = h — = s 1 0 

ξ^Ο g11 811 υ + R 1 2 J 1 2 

(24) 
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In t h i s case the surface r a t i o s s have been c a l c u l a t e d according to 
Eduljee and Sandler (9, 21_, 22). 

I t might be argued that the averaging procedure Equation 21 should 
be written in terms of pressures rather than i n terms of Helmholtz 
energies. I t would be d i f f i c u l t , however, to perform a formal i n t e g r a ­
t i o n on the pressure equation to obtain A, G, or μ, whereas the d i f f e ­
r e n t i a t i o n of the Helmholtz energy equation to obtain the pressure i s 
simple. F i n a l l y we want to point out that the modified mean density 
approximation cannot be applied to cubic equations of st a t e without 
loosing the "cubic character" of the mixture equation of s t a t e . 

Results 

In a l l the f o l l o w i n g c a l c u l a t i o n s two adjustable binary parameters, 
a n and b^ , have been used. Because of the great s e n s i t i v i t y of phase 
eq u i l i b r i u m c a l c u l a t i o n s f o r dense mixtures, one adjustable parameter 
is u s u a l l y not s u f f i c i e n t . I t must be noted, however, that the ad­
j u s t a b l e parameters are determined only once f o r a binary mixture; they 
are considered independent of temperature, density, and composition. 
Furthermore, the same parameters have always been used even for the 
c a l c u l a t i o n of d i f f e r e n t thermodynamic p r o p e r t i e s . If not stated other­
wise, o n e - f l u i d theory has been used. 

The hydrogen/methane system i s an e s p e c i a l l y f a s c i n a t i n g system 
for t e s t i n g computational methods: The experimental data (23) cover a 
wide range of reduced temperatures, because of the high pressures both 
c o e x i s t i n g phases have high d e n s i t i e s and therefore large deviations 
from i d e a l i t y , and at low temperature quantum e f f e c t s become important. 
Figure 2 shows three isotherms of the /Cl^ system. The binary para­
meters of the equations of state have been determined from the middle 
(130 K) isotherm only. I t i s evident that Equation 2 leads to a rather 
good representation of the experimental m a t e r i a l , whereas the RK equa­
t i o n i s good at low pressures, but has d i f f i c u l t i e s at low temperatures 
and high pressures. The 100 Κ isotherm has also been c a l c u l a t e d with 
the modified mean density approximation (using Equation 2 ) . Its r e s u l t s 
agree w e l l with the experimental data i n the c r i t i c a l r egion, where the 
o n e - f l u i d theory shows some de v i a t i o n s ; at low pressures, the r e s u l t s 
of the mean density approximation and of the o n e - f l u i d theory c o i n c i d e . 

We have used Equation 2 to c a l c u l a t e the c r i t i c a l l i n e of the 
H 2/CH 4 system. The r e s u l t s are shown i n Figure 3. Evidently t h i s equa­
t i o n of s t a t e , together with the extensions and mixing r u l e s described 
above, gives r e l i a b l e extrapolations of phase envelopes to d i f f e r e n t 
temperatures. 

As a severe t e s t of the consistency of our approach we have used 
Equation 2 in connection with 19 to p r e d i c t the s o l i d - l i q u i d - g a s three-
phase e q u i l i b r i u m , which has been observed i n t h i s system at low tempe­
ratures (23). I t turns out that the s l g three-phase l i n e i s indeed 
represented s u c c e s s f u l l y ; the deviations at high pressure are mostly 
due to the inaccuracy of the experimental volumetric data of s o l i d 
methane (24). Even so the temperature minimum of the s l g l i n e , which 
has been observed experimentally, i s reproduced by the c a l c u l a t i o n . 
Again we must point out that the parameters of the equation of s t a t e 
have not been f i t t e d to the s o l i d - f l u i d e q u i l i b r i u m , but are the same 
as f o r the VLE c a l c u l a t i o n mentioned above. 

Furthermore we have t r i e d to c a l c u l a t e volumetric data of homoge­
neous H 2/CH 4 mixtures from the equations of st a t e 1 and 2, again using 
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18. D E I T E R S Fluid-Fluid and Solid-Fluid Equilibria 379 

Figure 1. C a l c u l a t i o n of the Gibbs energy of a pure substance. 
Key: o, c r i t i c a l p o i n t ; Δ, t r i p l e point; , sublimation, melting, 
or vapour pressure curve; — i n t e g r a t i o n of the f l u i d equation 
of s t a t e ; — » , i n t e g r a t i o n of the s o l i d equation of s t a t e . 
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the same set of parameters as before. I t turns out that both equations 
represent the experimental data (25) quite w e l l for mixtures r i c h i n 
hydrogen, but that the RK equation shows large deviations at other com­
p o s i t i o n s . Apparently the cubic equation of state cannot f i t phase 
eq u i l i b r i u m data and volumetric data simultaneously, whereas the other 
equation of state does not suff e r from t h i s l i m i t a t i o n (Figure 4 ) . 
E v i d e n t l y the RK equation does not properly represent the molar volumes 
of l i q u i d methane. Of course i t is p o s s i b l e to f i n d a parameter set 
which would lead to a better representation of the methane PVT data, 
but then the agreement of c a l c u l a t e d and experimental phase e q u i l i b r i u m 
data would d e t e r i o r a t e . We consider t h i s an important disadvantage of 
the RK equation, because the aim of t h i s work i s not the c o r r e l a t i o n of 
s i n g l e thermodynamic p r o p e r t i e s , but the simultaneous d e s c r i p t i o n of 
several p r o p e r t i e s with the same computational method. 

As another example of a phase e q u i l i b r i u m c a l c u l a t i o n based on the 
modified mean density approximation, we present the P-x diagram of the 
hydrogen/carbon monoxide system at 70K ( F i g 5) In view of the high pres­
sures involved, the o n e - f l u i d theory as well as the mean density appro­
ximation can be said to represent the experimental data s u c c e s s f u l l y , 
but i t i s evident that i n t h i s case the mean density approximation i s 
superior. At "low" pressure, however, both methods agree very w e l l . 
Because of i t s higher CPU time requirements the modified mean density 
approximation should be applied to high density phase e q u i l i b r i a only. 

In p r i n c i p a l , there are no d i f f e r e n c e s between l i q u i d s and gases, 
and our formulation should apply to sublimation and melting diagrams 
a l i k e . This i s demonstrated i n Figure 6, which contains an isothermal 
melting diagram of the tetrafluoromethane/krypton system. The agreement 
between the experimental data (27) and the c a l c u l a t i o n (using Equation 
2) is quite good. The strong curvature of the e q u i l i b r i u m curve i n d i ­
cates that t h i s system i s f a r from i d e a l i t y . The systematic deviations 
of the c a l c u l a t e d l i n e at low pressures are probably due to the forma­
t i o n of a s o l i d s o l u t i o n instead of a pure c r y s t a l l i n e krypton phase 
(21). The e q u i l i b r i u m l i n e o r i g i n a t i n g at the melting point of CF 4 has 
been c a l c u l a t e d from the same parameter set as the other e q u i l i b r i u m 
l i n e . Unfortunately no volumetric data of s o l i d CF4 for the required 
temperature and pressure range are reported i n l i t e r a t u r e , so that i t s 
s o l i d molar volume had to be f i t t e d to some binary data. 

The binary system ethene/naphthalene shows an i n t e r e s t i n g i n t e r ­
a c t i o n between s o l i d - f l u i d and f l u i d - f l u i d e q u i l i b r i a . At moderate 
temperatures there i s a s o l i d - s u p e r c r i t i c a l f l u i d e q u i l i b r i u m (Figure 
7), to which we have f i t t e d the binary parameters of Equation 2/15. The 
agreement between the experimental data and the c a l c u l a t e d e q u i l i b r i u m 
states i s q u i t e good. Reversing the procedure described f o r the hydro­
gen/methane system, we have now used the parameters e s t a b l i s h e d from 
the s o l i d - f l u i d e q u i l i b r i u m to p r e d i c t the v a p o u r - l i q u i d e q u i l i b r i u m . 
The r e s u l t i n g phase diagram i s shown i n Figure 8: The c r i t i c a l l i n e of 
the mixture, which would normally j o i n the c r i t i c a l points of ethene 
and naphthalene, i s i n t e r r u p t e d by the s l g three-phase l i n e . The s o l i d -
s u p e r c r i t i c a l f l u i d phase e q u i l i b r i a contained in Figure 7 belong to 
the P-T region marked "sg". The s e c t i o n of the c r i t i c a l l i n e , which i s 
outside the s l g area, i s predicted accurately by Equation 2. Further­
more, the s l g l i n e o r i g i n a t i n g at the t r i p l e point of naphthalene i s 
represented q u i t e w e l l ; the deviations from the experimental data (28, 
29) , which are probably due to the lack of r e l i a b l e c o m p r e s s i b i l i t y 
data of naphthalene near i t s melting point, are never l a r g e r than 4 K. 
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Figure 3. P-T phase diagram of the hydrogen/methane system. Key: 
·, A , c r i t i c a l point and t r i p l e point of methane; , methane 
melting or vapour pressure l i n e ; o, experimental binary c r i t i c a l 
points (23); +, exp. s l g three-phase s t a t e s ; , c a l c u l a t e d c r i t i ­
c a l l i n e (with Equation 2/14); , c a l c u l a t e d three-phase l i n e . 
Reproduced with permission from (32). Copyright 1985, E l s e v i e r . 
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Figure 4. Volumetric p r o p e r t i e s of the hydrogen/methane system. 
Key: •, experimental data (25); , c a l c u l a t e d with Equation 2/14; 

, c a l c u l a t e d with the Redlich-Kwong equation. 
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V 

0.0 0.2 0.4 0.6 0.8 

x(H 2) 

Figure 4. Volumetric p r o p e r t i e s of the hydrogen/methane system. 
Key:B, experimental data ( 2 5 ) ; — , c a l c u l a t e d w i t h Equation 2/14; 

, c a l c u l a t e d w i t h the Redlich-Kwong equation. 
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60 

0.0 0.2 0.4 0.6 0.8 1.0 

x ( H 2 ) 

Figure 5. P-x diagram of the hydrogen/carbon monoxide system. Key: 
Δ, exp. data (26); , c a l c u l a t e d with Equation 2/14 using one-
f l u i d theory; , using modified mean density approximation. 
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0.0 0.2 0.4 0.6 0.8 1 

x ( C F 4 ) 

Figure 6. Isothermal melting diagram of the CFU /krypton system. 
Key: Α, Δ, experimental data (27); , c a l c u l a t e d with Equation 2. 

0.00 0.02 0.04 0.06 0.08 
* ( C 1 0 H 8 ) 

Figure 7. Isothermal s o l i d - s u p e r c r i t i c a l f l u i d phase e q u i l i b r i a 
of the ethene/naphthalene system. Key: Δ, V, exp. data (28, 29) ; 

, c a l c u l a t e d with Equation 2/15. 
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Oh^ · * -
250 300 350 J / K 

Figure 8. Phase diagram of the ethene/naphthalene system. Key: 
•, t r i p l e point of naphthalene; ·, c r i t i c a l point of ethene; , 
melting or vapour pressure l i n e s ; o, exp. binary c r i t i c a l point; 
+ , exp. s l g three-phase s t a t e ; , c a l c . c r i t i c a l l i n e (Equation 
2/15); , c a l c . s l g three-phase l i n e . 
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F i n a l l y we want to demonstrate that i t i s p o s s i b l e to p r e d i c t 
v a pour-liquid e q u i l i b r i a from 1 i q u i d - l i q u i d phase separations even i n 
d i f f i c u l t cases. In many tetrafluoromethane/alkane mixtures a l i q u i d -
l i q u i d phase separation occurs, where the c r i t i c a l l i n e has a shallow 
temperature minimum. Figure 9 shows the c r i t i c a l l i n e s ( c a l c u l a t e d 
with Equation 2) of the systems CF4 / propane, /butane, and CF 4/pen-
tane, together with some experimental data (30, 31). The agreement i s 
quite good. The CF4 /alkane systems are i n t e r e s t i n g from a phase-theore­
t i c a l point of view: In the CF4 /propane system the v a p o u r - l i q u i d and 
l i q u i d - l i q u i d c r i t i c a l curves are separate; in the CYk /pentane system 
a continuous t r a n s i t i o n between vap o u r - l i q u i d and l i q u i d - l i q u i d e q u i l i ­
b r i a occurs. The behaviour of the CF 4/butane system i s s i m i l a r to that 
of CF 4/propane, but here tern the c r i t i c a l endpoint occurs at a tempera­
ture above the c r i t i c a l temperature of CF4 . This i s perhaps unusual, 
but i n agreement with phase theory. An isothermal P-x diagram of the 
CF 4/butane system taken at a temperature s l i g h t l y above the temperature 
minimum (Figure 10) contains three c r i t i c a l p o i nts: one f o r the vapour-
l i q u i d e q u i l i b r i u m , two for the l i q u i d - l i q u i d e q u i l i b r i a . Having f i t t e d 
the binary parameters to the high pressure l i q u i d - l i q u i d e q u i l i b r i u m , we 
f i n d that Equation 2 generates the lower l i q u i d - l i q u i d and the vapour-
l i q u i d e q u i l i b r i a i n good agreement with the experimental data (30), 
whereas the r e s u l t s of the RK equation are only q u a l i t a t i v e l y c o r r e c t . 

We conclude that the non-cubic equation of state 2, eventually 
enhanced by Equations 14 and 15, does not only permit successful c o r r e ­
l a t i o n s of f l u i d - f l u i d e q u i l i b r i a , but a l s o p r e d i c t i o n s of f l u i d - f l u i d 
e q u i l i b r i a of a d i f f e r e n t type, volumetric data, and s o l i d - f l u i d equi­
l i b r i a i n a wide temperature and pressure range. The Redlich-Kwong 
equation performs well at low d e n s i t i e s , but f a i l s at high pressures 
and at p r e d i c t i o n s of d e n s i t i e s . In some cryogenic phase e q u i l i b r i a at 
high pressures the r e s u l t s of the c a l c u l a t i o n can be s i g n i f i c a n t l y im­
proved, i f the o n e - f l u i d theory i s replaced by the modified mean den­
s i t y approximation. 

Symbols 

a a t t r a c t i o n parameter 
A Helmholtz energy 
b covolume parameter 
c anisotropy parameter 
g contact value of RDF 
G Gibbs energy 
h Planck constant 
k Boltzmann constant 
L e f f e c t i v e c e l l s i z e 
m molecular mass 
η amount of substance 
Ν number of molecules 
Ρ pressure 
q surface f r a c t i o n 

Subscripts 
i component index 
m molar property 
rep r e p u l s i o n 
a t t a t t r a c t i o n 
f free volume 

p a r t i t i o n f u n c t i o n 
expansion c o e f f i c i e n t 
u n i v e r s a l gas constant 
diameter r a t i o 
e f f e c t i v e surface 
temperature 
volume 
molar f r a c t i o n 
reduced wavelength 
isothermal c o m p r e s s i b i l i t y 
thermal de B r o g l i e wavelength 
chemical p o t e n t i a l 

Superscripts 
° perfect gas st a t e 
s s o l i d 
f f l u i d 
1 , 1 1 phase i n d i c a t o r 
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200 250 300 350 400 450 

Figure 9. Phase diagram of some CF /alkane systems. The curves 
are marked with the carbon number n. Key: ·, pure substance c r i t . 
point; , vapour pressure l i n e ; o, + , exp. binary c r i t . p o i n t , 
(30, 31, res p . ) ; , c a l c u l a t e d c r i t i c a l l i n e s (Equation 2 ) . For 
the CF^ /pentane system, the c r i t i c a l l i n e o r i g i n a t i n g at the CF^ 
c r i t i c a l p o i nt has been omitted. 
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0 0.2 0Â 0.6 0.8 1 
xlCFJ 

Figure 10. P-x diagram of the CF^ /butane system (logarithmic s c a l e ) . 
o, exp. data (30); , c a l c u l a t e d with Equation 2; c a l c . with 
the Redlich-Kwong equation; three-phase s t a t e . Reproduced with 
permission from (10). Copyright 1984, Ver lag Chemie, Weinheim. 
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19 
Optimal Temperature-Dependent Parameters 

for the Redlich-Kwong Equation of State 

Randall W. Morris and Edward A. Turek 

Amoco Production Company, Tulsa, OK 74102 

Redlich-Kwong "a" and "b" parameters for several light 
hydrocarbons, carbon dioxide, nitrogen, and hydrogen 
sulfide have been optimized at many temperatures using 
accurate correlations of PVT data available in the l i t ­
erature. The regressed parameter values have been fit 
as functions of temperature for convenient use in cal­
culations. The accuracy of volumetric calculations 
using the new parameters is compared to that obtained 
using the original Redlich-Kwong equation and the Soave 
and Yarborough modifications. The new parameters sig­
nificantly improve the accuracy of volumetric calcula­
tions using the Redlich-Kwong equation. 

One a p p l i c a t i o n of equations of state i n the petroleum industry i s in 
the numerical modeling of petroleum r e s e r v o i r s . Since these mathe­
matical models are very complex, a r e l a t i v e l y simple equation of 
state i s needed f o r computer s o l u t i o n of the model to be p r a c t i c a l . 
The Redlich-Kwong equation (1.) i s a common form of equation of state 
used i n such s i t u a t i o n s . The equation, 

RT a 
Ρ = (1) 

V-b T°* 5V(V+b) 

r e l a t e s the pressure, molar volume, and temperature of a f l u i d using 
the two parameters, "a" and "b". For a mixture, the values of these 
parameters are determined by combining the parameters of the i n d i ­
v i d u a l components. Thus, i n general, mixture c a l c u l a t i o n s w i l l y i e l d 
the best r e s u l t s when the i n d i v i d u a l component parameters provide the 
best f i t s to the properties of those components. 

Accurate c o r r e l a t i o n s of PVT data are a v a i l a b l e from IUPAC (2-4) 
for carbon dioxide, nitrogen, and methane, the National Bureau of 
Standards (5-8) f o r ethane, propane, isobutane, and normal butane, 
and the Texas A&M U n i v e r s i t y Thermodynamics Research Center (9) f o r 
hydrogen s u l f i d e . We have used data from these c o r r e l a t i o n s to e v a l ­
uate the accuracy of the Redlich-Kwong equation of state and to 

0097-6156/86/0300-0389$06.00/0 
© 1986 American Chemical Society 
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develop new parameters. Since the q u a l i t a t i v e r e s u l t s were the same 
fo r a l l substances studied, a d e t a i l e d a n a l y s i s of the r e s u l t s w i l l 
be presented only for carbon dioxide. 

Background 

In the o r i g i n a l development of the Redlich-Kwong equation of stat e , 
the parameters "a" and "b" were s p e c i f i e d to be constant f o r a given 
f l u i d . For a pure substance, they were defined in terms of the c r i t ­
i c a l temperature and c r i t i c a l pressure of the substance. These 
values of the parameters f o r carbon dioxide are represented by the 
h o r i z o n t a l l i n e s i n Figures 1 and 2, and w i l l be r e f e r r e d to as the 
"standard" Redlich-Kwong parameters in the following d i s c u s s i o n . 
Errors i n volumetric c a l c u l a t i o n s for C O 2 using these parameters are 
shown i n Figures 3 and 4. Note the large errors i n the c a l c u l a t i o n 
of l i q u i d volumes. 

In the Soave m o d i f i c a t i o n (10,11 ) of the Redlich-Kwong equation, 
the "a" parameter i s replaced with a function of temperature which i s 
adjusted to f i t vapor pressures. The "b" parameter re t a i n s i t s stan­
dard value. This m o d i f i c a t i o n i s intended to improve phase e q u i l i ­
brium c a l c u l a t i o n s and r e s u l t s i n l i t t l e improvement i n the v o l u ­
metric c a l c u l a t i o n s . Figure 1 shows the temperature dependence of 
the Soave "a" parameter consistent with Equation 1. Figures 5 and 6 
show the er r o r s i n volumetric c a l c u l a t i o n s for C O 2 using the Soave 
parameters. 

Zudkevitch and J o f f e (_12) allowed both parameters to vary with 
temperature below the c r i t i c a l temperature, determining t h e i r values 
from the pressure, l i q u i d density, and fug a c i t y c o e f f i c i e n t at satu­
r a t i o n f o r a substance at a given temperature. They used the values 
of the parameters determined at the c r i t i c a l temperature for tempera­
tures above the c r i t i c a l . Yarborough ( O ) applied t h i s method using 
generalized c o r r e l a t i o n s to c a l c u l a t e vapor pressure, saturated 
l i q u i d density, and f u g a c i t y c o e f f i c i e n t . The r e s u l t i n g c o r r e l a t i o n 
expresses the equation of state parameters in dimensionless form as 
functions only of reduced temperature and a c e n t r i c f a c t o r . Values of 
these parameters f o r C O 2 are included i n Figures 1 and 2 f o r compar­
ison to the standard and Soave parameters. Figures 7 and 8 show the 
e r r o r s i n volumetric c a l c u l a t i o n s for C O 2 using these parameters. 
Note that the accuracy of the l i q u i d volume c a l c u l a t i o n s i s improved 
considerably. 

New Parameters 

While the Yarborough parameters o f f e r s u b s t a n t i a l improvement over 
the standard and Soave parameters at temperatures below the c r i t i c a l 
temperature, a f u r t h e r improvement i s possible by allowing the param­
eters to vary with temperature above the c r i t i c a l a l s o . We have done 
t h i s f o r several substances, l i s t e d above, which are commonly encoun­
tered at s u p e r c r i t i c a l temperatures. Values of the parameters were 
determined by optimizing the f i t of the Redlich-Kwong equation to 
single-phase volumetric data. We also determined new values of the 
parameters at s u b c r i t i c a l temperatures using both single-phase v o l u ­
metric data and s a t u r a t i o n data. 

Optimal values of the parameters were determined at many temper­
atures. For each temperature, 197 pressure-volume data points were 
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MORRIS A N D T U R E K Parameters for the Redlich-Kwong Equation 

3 6 0 0 0 0 · 
T = T C Legend: 

Standard Redlich-Kwong _ 
Soave Redlich-Kwong _ 
Yarborough 

- 1 0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 

Temperature, *F 
Figure 1. C O 2 "a" Parameter f o r the Redlich-Kwong Equation 

Λ = Τ 

Legend: 
Standard Redlich-Kwong 
Yarborough 
New Parameters 

. 1 1 1 1 
- 1 0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 

Temperature, eF 

Figure 2. C O 2 "b , f Parameter f o r the Redlich-Kwong Equation 
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EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

1 0-H 1 h 1 1 1 1 1 1 |J 1 1 1 1 
- 1 0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0 1 2 0 0 

Temperature, °F 
Figure 3. Error i n Molar Volume Calculated f o r C O 2 using the 
Redlich-Kwong Equation with Standard Parameters 

Volume, ft 3 / lbmol 

Figure 4. Error i n Molar Volume Calculated f o r C O 2 using the 
Redlich-Kwong Equation with Standard Parameters 
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MORRIS A N D T U R E K Parameters for the Redlich-Kwong Equation 

1 0-Η 1 h 1 1 1 1 1 1 r 1 1 1 1 
- 1 0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0 1 1 0 0 1 2 0 0 

Temperature, eF 

Figure 5. E r r o r i n Molar Volume Calculated f o r C O 2 using the 
Redlich-Kwong Equation with Soave Parameters 

Figure 6. Error i n Molar Volume Calculated f o r C O 2 using the 
Redlich-Kwong Equation with Soave Parameters 
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1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 6 0 0 8 0 0 1 0 0 0 1 1 0 0 1 2 0 0 

Temperature, °F 

Figure 7 . E r r o r i n Molar Volume Calculated f o r C O 2 using the 
Redlich-Kwong Equation with Yarborough Parameters 

Γ T = T C 

Volume, ft 3 / lbmol 

Figure 8 . Error i n Molar Volume Calculated f o r C O 2 using the 
Redlich-Kwong Equation with Yarborough Parameters 
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19. MORRIS A N D T U R E K Parameters for the Redlich-Kwong Equation 395 

obtained from the c o r r e l a t i o n s . The d i s t r i b u t i o n of these points was 
l i n e a r with respect to lo g - l o g of volume i n order to give the desired 
d i s t r i b u t i o n of l i q u i d and vapor volumes. Any of the 197 points that 
f e l l i n the two-phase region f o r the given temperature were e l i m i ­
nated. For temperatures below the c r i t i c a l temperature, the satura­
t i o n pressure and saturated l i q u i d and vapor volumes were also used 
r e s u l t i n g i n a maximum of 200 data points at a given temperature. 
Volumetric data were weighted according to the d e v i a t i o n of the Ζ 
f a c t o r from 1, since the f i t to data e x h i b i t i n g i d e a l gas behavior 
was found to be i n s e n s i t i v e to the values of the equation of state 
parameters. Weightings of the s a t u r a t i o n property deviations were 
adjusted by t r i a L to give a reasonable balance with the volumetric 
data. The f i n a l o b j e c t i v e f u n c t i o n minimized at each temperature was 

F = Σ[(Ζ-1) 2Δν] 2 + (16ΔΡ ) 2 + (25Δν Λ ) 2 + (2Δν ^ ) 2 (2) 
sat s a t , l sat,ν 

where the Δ q u a n t i t i e s are f r a c t i o n a l d e v i a t i o n s , i . e . , 

ΔΧ = (Χ Λ - X )/X 
ca l c exp exp 

for a given quantity X. Parameters were constrained during the 
regression to be consistent with the experimental c r i t i c a l tempera­
ture, i . e . , parameter values y i e l d i n g three roots i n the equation of 
state above the experimental c r i t i c a l temperature or only one root 
below the experimental c r i t i c a l temperature were r e j e c t e d . 

The optimized parameter values were f i t as functions of tempera­
ture f o r each substance. Since petroleum r e s e r v o i r a p p l i c a t i o n s of 
equations of state are g e n e r a l l y at a constant temperature, the par­
ameters must be determined only once f o r a large number of c a l c u l a ­
t i o n s . For t h i s reason, the f u n c t i o n a l forms used to f i t the o p t i ­
mized parameter values could be made as complex as necessary f o r the 
desired accuracy without adversely a f f e c t i n g computing times. I t 
should a l s o be noted that the method used to determine these parame­
ters r e s u l t s i n a d i s c o n t i n u i t y i n the temperature d e r i v a t i v e s of the 
parameters at the c r i t i c a l temperature. This i s not a problem f o r 
constant temperature a p p l i c a t i o n s but may need to be considered f o r 
c a l c u l a t i o n s r e q u i r i n g the temperature d e r i v a t i v e s of the equation of 
state parameters, e.g., enthalpy c a l c u l a t i o n s . The f i t s to the o p t i ­
mized parameters are described i n the Appendix. 

The new parameters f o r C O 2 are compared to the standard values, 
and the Soave and Yarborough values i n Figures 1 and 2. Errors i n 
volumetric c a l c u l a t i o n s using the new parameters are shown i n F i g ­
ures 9 and 10. Note that the large errors i n c a l c u l a t e d volumes are 
now confined to the near proximity of the c r i t i c a l point where they 
are unavoidable with the Redlich-Kwong equation of s t a t e . The i n c l u ­
sion of volumetric data i n the parameter regressions at s u b c r i t i c a l 
temperatures s t i l l allows a reasonable f i t to the sa t u r a t i o n pres­
sures as shown i n Figure 11. Saturation pressures f o r C O 2 c a l c u l a t e d 
using the new parameters show an average e r r o r of about 0.3%. 

Improvements i n the accuracy of volumetric c a l c u l a t i o n s f o r the 
other substances studied are s i m i l a r to those obtained f o r C 0 2 -
Errors i n volumetric c a l c u l a t i o n s at selected conditions f o r a l l sub­
stances studied are shown i n Tables I through VIII along with average 
er r o r s over the e n t i r e range of pressures and volumes considered. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
01

9

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



396 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

r T = T C 1 

ι m H = „ 
EZ3 0.2 to 0.5% 

in 1 \ j- WM\ 0.5 to 2.0% 

\}f/ J V i H 2.0 to 5.0% 

Ύ H i 5.0 to 10.0% 

Y 
1 

Î 

1 • ! 1 I 1 1 1 1 

• ϋ Over 10.0% 

• ! 1 1 1 
- 1 0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 B O O 0 0 0 1 0 0 0 1 1 0 0 1 2 0 0 

Temperature, e F 

Figure 9. Error i n Molar Volume Calculated f o r C O 2 using the 
Redlich-Kwong Equation with New Parameters 

Volume, ft 3 / lbmol 

Figure 10. Error i n Molar Volume Calculated f o r C O 2 using the 
Redlich-Kwong Equation with New Parameters 
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19. MORRIS A N D T U R E K Parameters for the Redlich-Kwong Equation 397 

Legend: 
Standard Redlich-Kwong _ \^ 
Suave Redlich-Kwong _ V 
Yarborough \ 
New j)ara meters \^ 

-4H 

\ 

0 Û 2 0 4 0 6 0 8 0 1 0 0 

Temperature, *F 

Figure 11. E r r o r i n Vapor Pressure C a l c u l a t e d f o r C O 2 using the 
Redlich-Kwong Equation 
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398 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

Table I . Percent Error i n Calculated Volume for Carbon Dioxide 

Τ ρ Standard Soave Yarborough New 
r r Parameters Parameters Parameters Parameters 

0.85 0.5 16.68 11.49 0.17 0.27 
0.85 2.0 11.66 8.65 1.20 1.72 
0.85 10.0 5.91 4.90 3.33 3.96 
1.05 0.5 0.10 0.42 0.61 1.07 
1.05 2.0 12.92 16.46 14.70 2.13 
1.05 10.0 3.89 4.39 6.09 4.52 
1.15 0.5 0.59 0.49 0.93 0.27 
1.15 2.0 0.16 11.47 0.39 0.38 
1.15 10.0 2.79 4.50 4.84 3.84 
1.50 0.5 0.89 0.70 1.00 0.41 
1.50 2.0 3.38 4.14 3.64 1.07 
1.50 10.0 1.28 5.34 0.22 0.37 
2.00 0.5 0.75 0.71 0.78 0.34 
2.00 2.0 2.67 2.91 2.70 0.91 
2.00 10.0 4.88 5.03 3.95 0.03 

Average 3.15 4.10 2.19 1.02 

Table I I . Percent Error i n Calculated Volume for Nitrogen 

Τ ρ Standard Soave Yarborough New 
r r Parameters Parameters Parameters Parameters 

2.00 0.5 0.32 0.26 0.32 0.29 
2.00 2.0 1.06 1.20 1.08 0.72 
2.00 10.0 2.78 1.16 2.95 0.56 
3.00 0.5 0.30 0.20 0.30 0.04 
3.00 2.0 1.10 0.71 1.12 0.09 
3.00 10.0 3.83 0.79 3.92 0.14 

Average 1.85 0.88 1.91 0.20 

Table I I I . Percent Error i n Calculated Volume for Methane 

Τ ρ Standard Soave Yarborough New 
r r Parameters Parameters Parameters Parameters 

1.15 0.5 0.35 0.27 0.29 1.01 
1.15 2.0 7.56 8.55 7.08 0.63 
1.15 10.0 0.38 0.50 0.37 0.22 
1.50 0.5 0.23 0.08 0.21 0.65 
1.50 2.0 0.31 1.88 0.30 1.62 
1.50 10.0 0.63 1.87 0.04 0.81 
2.00 0.5 0.21 0.22 0.20 0.28 
2.00 2.0 0.36 1.35 0.38 0.56 
2.00 10.0 0.62 2.39 1.01 0.21 
3.00 0.5 0.21 0.20 0.21 0.02 
3.00 2.0 0.70 0.80 0.73 0.01 

Average 1.12 1.72 1.11 0.75 
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19. MORRIS A N D T U R E K Parameters for the Redlich-Kwong Equation 399 

Table IV. Percent Er r o r i n Calculated Volume f o r Ethane 

τ ρ Standard Soave Yarborough New 
I 
r r Parameters Parameters Parameters Parameters 

0.85 0.5 11.11 9.17 1.53 0.31 
0.85 2.0 6.83 5.74 0.76 2.34 
0.85 10.0 1.96 1.60 3.82 5.13 
1.05 0.5 0.17 0.06 0.33 0.59 
1.05 2.0 11.24 12.73 11.66 2.48 
1.05 10.0 1.44 1.65 2.04 4.87 
1.15 0.5 0.46 0.05 0.56 0.07 
1.15 2.0 2.90 8.58 2.73 0.40 
1.15 10.0 1.10 1.87 1.66 3.95 
1.50 0.5 0.57 0.29 0.61 0.49 
1.50 2.0 1.67 2.58 1.77 1.13 
1.50 10.0 0.71 2.81 0.30 0.61 

Average 2.45 3.14 1.53 1.03 

Table V. Percent Er r o r i n Calculated Volume f o r Propane 

τ ρ Standard Soave Yarborough New 
1 
r r Parameters Parameters Parameters Parameters 

0.85 0.5 13.72 10.37 1.33 0.41 
0.85 2.0 8.88 6.97 0.78 2.31 
0.85 10.0 3.32 2.69 3.77 5.08 
1.05 0.5 0.29 0.06 0.59 0.68 
1.05 2.0 12.01 14.37 13.09 2.93 
1.05 10.0 1.98 2.31 3.28 4.98 
1.15 0.5 0.54 0.22 0.74 0.17 
1.15 2.0 1.12 9.40 0.98 0.60 
1.15 10.0 1.24 2.40 2.46 2.62 
1.50 0.5 0.49 0.70 0.55 0.31 
1.50 2.0 2.85 2.83 3.01 1.72 
1.50 10.0 1.56 3.27 0.66 1.03 

Average 3.65 4.24 2.00 1.33 

Table VI. Percent E r r o r i n C alculated Volume f o r Isobutane 

τ ρ Standard Soave Yarborough New 
1 
r 

r 
r 

Parameters Parameters Parameters Parameters 
0.85 0.5 14.88 10.68 0.77 0.37 
0.85 2.0 9.65 7.25 1.29 2.32 
0.85 10.0 3.55 2.76 4.34 5.26 
1.05 0.5 0.60 0.17 0.99 0.24 
1.05 2.0 11.81 14.69 13.21 4.11 
1.05 10.0 1.85 2.26 3.53 4.10 
1.15 0.5 0.91 0.00 1.17 0.76 
1.15 2.0 0.11 9.67 0.27 0.67 
1.15 10.0 0.91 2.31 2.48 0.55 

Average 4.42 4.82 2.20 1.64 
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T a b l e V I I . P e r c e n t E r r o r i n C a l c u l a t e d V o l u m e f o r N o r m a l B u t a n e 

τ ρ S t a n d a r d S o a v e Y a r b o r o u g h N e w 
1 

r 
Jr 

r P a r a m e t e r s P a r a m e t e r s P a r a m e t e r s P a r a m e t e r s 

0.85 0.5 16.28 11.68 1.31 0.37 
0.85 2.0 10.92 8.28 0.68 2.19 
0.85 10.0 4.65 3.77 3.69 5.00 
1.05 0.5 0.34 0.12 0.78 0.66 
1.05 2.0 13.06 16.21 14.60 3.75 
1.05 10.0 2.84 3.28 4.69 4.35 
1.15 0.5 0.68 0.29 0.96 0.37 
1.15 2.0 0.50 11.04 0.32 0.69 
1.15 10.0 1.85 3.36 3.58 1.22 

A v e r a g e 5.07 5.58 2.44 1.59 

T a b l e V I I I . P e r c e n t E r r o r i n C a l c u l a t e d V o l u m e f o r H y d r o g e n S u l f i d e 

τ ρ S t a n d a r d S o a v e Y a r b o r o u g h N e w 
1 

r 
XT 

r P a r a m e t e r s P a r a m e t e r s P a r a m e t e r s P a r a m e t e r s 

0.85 0.5 9.75 8.05 0.68 0.39 
0.85 2.0 6.28 5.32 0.98 2.06 
0.85 10.0 2.34 2.02 3.29 4.37 
1.05 0.5 0.28 0.49 0.14 0.63 
1.05 2.0 11.22 12.58 11.53 3.23 
1.05 10.0 2.20 2.40 2.69 2.79 
1.15 0.5 0.08 0.40 0.16 0.07 
1.15 2.0 6.42 11.85 6.23 0.68 
1.15 10.0 2.14 2.86 2.59 3.64 
1.50 0.5 0.24 0.58 0.27 0.11 
1.50 2.0 0.19 3.89 0.27 0.20 
1.50 10.0 1.46 4.85 1.80 2.84 

A v e r a g e 2.87 3.79 1.79 0.93 

C o n c l u s i o n 

T h e a c c u r a c y o f v o l u m e t r i c c a l c u l a t i o n s u s i n g t h e R e d l i c h - K w o n g e q u a ­

t i o n o f s t a t e w a s i m p r o v e d s i g n i f i c a n t l y b y a l l o w i n g t h e " a " a n d "b" 
p a r a m e t e r s t o v a r y w i t h t e m p e r a t u r e b o t h a b o v e a n d b e l o w t h e c r i t i c a l 

t e m p e r a t u r e . B y u t i l i z i n g s a t u r a t i o n d a t a a s w e l l a s v o l u m e t r i c d a t a 

i n t h e d e v e l o p m e n t o f t h e n e w p a r a m e t e r s , t h e s e i m p r o v e m e n t s w e r e 

m a d e w i t h o u t s a c r i f i c i n g t h e f i t t o v a p o r p r e s s u r e s . T h e o p t i m i z e d 

p a r a m e t e r s d e v e l o p e d i n t h i s w o r k w e r e f i t a s f u n c t i o n s o f t e m p e r a ­

t u r e f o r c o n v e n i e n t u s e i n c a l c u l a t i o n s . 

N o m e n c l a t u r e 

a = p a r a m e t e r f o r e q u a t i o n 1, p s i a f t 6 ° R 0 , 5 / l b m o l 2 

b = p a r a m e t e r f o r e q u a t i o n 1, f t 3 / l b m o l 
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19. MORRIS A N D T U R E K Parameters for the Redlich-Kwong Equation 401 

b* = l i m i t i n g value for parameter b, f t 3 / l b m o l 
F = o b j e c t i v e function f o r parameter o p t i m i z a t i o n 
ΔΡ = f r a c t i o n a l d e v i a t i o n i n pressure c a l c u l a t i o n 
ΔΤ = (T/T ) - 1 c 
Δν = f r a c t i o n a l d e v i a t i o n i n molar volume c a l c u l a t i o n 
Ρ = pressure, psi a 
P^ = c r i t i c a l pressure, p s i a 
P^ = reduced pressure, P/P c 

R = gas constant, psi a f t 3 / l b m o l °R 
Τ = temperature, °R 
T c = c r i t i c a l temperature, °R 

= reduced temperature, T/T^ 
V = molar volume, f t 3 / l b m o l 
Ζ = c o m p r e s s i b i l i t y f a c t o r , PV/RT 

Subscripts 

c = c r i t i c a l point 
c a l c = c a l c u l a t e d 
exp = experimental 
1 = l i q u i d 
r = reduced 
sat = s a t u r a t i o n 
ν = vapor 

Appendix 

The optimized Redlich-Kwong "a" and "b" parameters determined i n t h i s 
work were f i t as functions of temperature. The functions used i n 
these f i t s are empirical and no physical s i g n i f i c a n c e should be 
attached to t h e i r forms. Since the f i t s were developed separately 
over a period of time, some v a r i a t i o n i n f u n c t i o n a l form may be seen. 
For convenience, a l l the functions are expressed i n terms of the 
v a r i a b l e ΔΤ, defined as 

ΔΤ = (T/T ) - 1 c 

i . e . , the dimensionless displacement from the c r i t i c a l temperature. 
C r i t i c a l temperatures and ranges of f i t s of the parameters are shown 
in Table IX. 
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Table IX. C r i t i c a l Temperatures and Ranges of Parameter F i t s 

Substance C r i t i c a l temperature, R Range of f i t , °F 
Carbon Dioxide 
Nitrogen 
Methane 
Ethane 
Propane 
Isobutane 
Normal Butane 
Hydrogen S u l f i d e 

547.578 
227.16 
343.00 
549.594 
665.730 
734.130 
765.288 
672.354 

-63 to 800 
-75 to 650 
-75 to 650 

-200 to 600 
-200 to 600 
-200 to 600 
-200 to 600 
-90 to 600 

The equation of state parameters were f i t as dimensional quanti­
t i e s . Parameter "a f f i s i n psia f t 6 °R° · 5 / l b m o l 2 . Parameter "b" i s 
in f t 3 / l b m o l . Separate f i t s were required f o r s u b c r i t i c a l and 
s u p e r c r i t i c a l parameters i n order to f i t the "spike" i n the parameter 
values at the c r i t i c a l temperature. 

In order to insure the proper behavior at temperatures s l i g h t l y 
above the c r i t i c a l , a check must be applied to the c a l c u l a t e d values 
of the parameters. The quantity "b*", the minimum allowable value of 
the s u p e r c r i t i c a l "b" parameter i s c a l c u l a t e d from the "a" parameter 
at the same temperature with the following equation: 

If ΔΤ i s le s s than 0.004 or i f the c a l c u l a t e d value of the "b" param­
eter i s l e s s than "b*", "b*" must be used as the value of the "b" 
parameter. This check may be omitted for nitrogen and methane since 
t h e i r f i t s do not extend down to t h e i r c r i t i c a l temperatures. The 
parameter f i t s f o r a l l substances studied are given below. 

Carbon Dioxide Parameters, AT = 0 

a = aoAT 3 + a i A T 2 + a 2AT • a 3 + a 4 ( a 5 - A T ) a e + a 7/(a 8-AT) 

b = b 0AT 3 + b i A T 2 + b 2AT + b 3 + b 4 ( b 5 - A T ) b 6 + b 7/(bg-AT) 

ao = 1.1323818E+05 bo = -2.3973118E+00 
a i = -1.9341561E+05 bi = -1.8705039E+00 
a 2 = -2.0363902E+05 b 2 = -7.0399570E-01 
a 3 = -5.2494786E+07 b 3 = 4.6945137E-01 
a 4 = 5.2775697E+07 b 4 = -1.9580259E-01 
as = 1.6289565E-04 b 5 = 3.3775759E-06 
a6 = -7.9739155E-05 be = 3.1643771E-01 
a 7 = 4.5206914E-05 by = 1.3103149E-11 
as = 8.4787834E-09 bg = 1.2868684E-09 

b* = bia/[T (l+b 2AT)] c 
1.5 (3) 

where: bi 
b 2 

1.8886163E-02 
0.99974 
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19. MORRIS A N D T U R E K Parameters for the Redlich-Kwong Equation 403 

Carbon Dioxide Parameters, AT ^ 0 

a = aoAT 3 + a i A T 2 + a 2 A T + a 3 + a 4(AT-a 5) 

b = b 0AT 3 + b i A T 2 + b 2AT + b 3 + b 4(AT-b 5) 

ao = -1.2327970E+04 b 0 = 4.9137761E-02 
a i = -3.9510605E+03 bi = -1.5082045E-01 
a2 = 1.5753912E+04 b 2 = 1.9277928E-01 
a3 = 2.9883762E+05 b 3 = 4.0844576E-01 
a 4 = 1.2638522E-02 b 4 = 1.9737045E-04 
as = -1.2669980E-01 b 5 = -3.8637696E-02 
ae = -6.9947616E+00 b 6 = -1.7936190E+00 

Nitrogen and Methane Parameters 

a = aoAT 3 + a i A T 2 + &2ΔΊ + a 3 + a 4/(AT-as) 

b = b 0AT 3 + bi A T 2 + b 2AT + b 3 + b 4/(AT-b 5) 

Nitrogen Methane 
ao = -1.6347508E+01 5.7694890E+03 
a i = 1.2161843E+03 -3.2063240E+04 
a2 = -2.2892243E+04 3.0940267E+04 
a 3 = 1.2959794E+05 1.6229084E+05 
a 4 = -4.8072688E+04 -4.6636347E+00 
as = -7.5945730E-01 1.1820010E-01 

bo = -2.8577341E-04 3.0568302E-03 
b i = 3.8658153E-03 -1.5876295E-02 
b 2 = -1.7061211E-02 2.2593112E-02 
b 3 = 5.2704092E-01 4.8294387E-01 
b 4 = -1.2361065E-01 -4.0107835E-04 
b 5 = -1.2508721E+00 8.0512599E-02 

Ethane, Propane, Isobutane, and Normal Butane Parameters, ΔΤ = 0 

a = a i A T 5 + a 2 A T 4 + a 3AT 3 + a 4AT 2 + a 5AT + a 6 + a 7(ag - Δ Τ ) 3 9 

b = biAT 5 + b 2AT 4 + b 3AT 3 + b 4AT 2 + b 5AT + b 6 + b 7 ( b 8 - A T ) b 9 

Ethane Propane Isobutane Normal Butane 
a i = 0.0 1.3807587E+05 3.6060539E+05 4.0124834E+05 
a 2 = 0.0 0.0 0.0 0.0 
a 3 6.0408944E+04 0.0 0.0 0.0 
a 4 = -3.3524012E+05 -6.8075273E+05 -8.9042232E+05 -9.9038190E+05 
as = -2.4440624E+05 -5.1847288E+05 -7.4744128E+05 -8.2677046E+05 
a6 = -5.3770245E+06 -4.1533054E+08 1.1845554E+06 1.2222223E+06 
a7 = 5.8143088E+06 4.1613493E+08 3.6937924E+04 6.7757452E+04 
as = 4.5467943E-05 3.2664789E-05 1.7804777E-04 1.1836024E-04 
a9 = -9.6079783E-04 -2.5461817E-05 -1.8159933E-01 -1.3348188E-01 
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b i = 0.0 0.0 0.0 0.0 
b 2 = 0.0 2.8826091E-01 0.0 0.0 
b 3 = -3.8152843E-•01 0.0 -5.0788946E-01 -5.0388863E-01 
b 4 -7.6440305E-•01 -7.2744096E-01 -1.2234509E+00 -1.2016256E+00 
b 5 = -4.9300521E-•01 -5.4966388E-01 -7.8285224E-01 -7.5953251E-01 
b 6 = 8.3401715E-•01 -7.0736939E+02 -4.8981625E+02 -4.9144994E+02 
b? = -2.5418456E--01 7.0819594E+02 4.9086550E+02 4.9249286E+02 
b 8 = 2.8828651E-•05 3.7042340E-05 6.0889312E-05 5.0910144E-05 
bg = 7.9453607E-•02 -2.4660292E-05 -5.1127477E-05 -5.1232547E-05 

Ethane, Propane, Isobutane, and Normal Butane Parameters, AT = 0 

a = a i A T 5 + a 2AT 4 + a 3AT 3 + a 4AT 2 + a 5AT + a6 + a 7 ( a i 3+AT) a 9 

b = biAT 5 + b 2AT 4 + b 3AT 3 + b 4AT 2 + b 5AT + b 6 + b 7 ( b 8 + A T ) b 9 

Ethane Propane Isobutane Normal Butane 
a i = 0.0 0.0 0.0 0.0 
a 2 = 0.0 1.2332546E+06 0.0 5.2547626E+06 
a3 = 0.0 0.0 3.7513525E+06 0.0 
a 4 = -2.9168739E+04 -1.7413558E+06 -4.1274194E+06 -4.3472555E+06 
as = 6.6705082E+04 1.2077341E+06 1.4272780E+06 2.4222201E+06 
ae = 4.6578248E+05 -5.4364187E+08 1.2027989E+06 -3.2439274E+07 
a 7 = 1.2357826E+00 5.4425460E+08 2.5675094E+02 3.3361438E+07 
as = 4.3979460E-02 1.5085713E-02 4.7010838E-02 1.3513673E-02 
ag = -3.2057354E+00 -1.3187677E-04 -2.1024705E+00 -3.6386297E-03 

b i 2.3099616E-01 0.0 0.0 0.0 
b 2 = -2.9478506E-01 1.3021642E+00 0.0 1.1231303E+01 
b 3 = 0.0 0.0 3.3538827E+00 -7.6112989E+00 
b 4 = 0.0 -1.8915504E+00 -3.6241228E+00 0.0 
b 5 = 1.9013417E-01 1.4616927E+00 1.4281118E+00 1.0382612E+00 
be = 6.4692946E-01 -1.1210554E+01 1.1243492E+00 1.1002003E+00 
by = 1.1226280E-03 1.1849368E+01 1.3058917E-05 5.5989194E-04 
b 8 = 1.5821016E-02 9.8746681E-03 6.0297320E-02 3.5280578E-02 
b 9 = -1.0175663E+00 -6.5869382E-03 -3.3703921E+00 -1.7457633E+00 

Hydrogen S u l f i d e Parameters, AT ύ 0 

a = a i A T 3 + a 2AT 2 + a 3AT + a 4 + a 5 ( a 6 - A T ) a 7 

b = biA T 3 + b 2AT 2 + b 3AT + b 4 + b 5 ( b 6 - A T ) b 7 

a i = 2.7553548E+05 b i = 7.5061764E-02 
a 2 = -1.5271335E+05 b 2 = -2.6513067E-01 
a 3 = -2.2153932E+05 b 3 = -2.7365804E-01 
a 4 = -7.8818355E+09 b 4 = -7.1403337E+03 
as = 7.8822161E+09 b 5 = 7.1407259E+03 
ae = 3.7436399E-04 b 6 = 2.4591169E-04 
a 7 = -9.8433542E-07 b 7 = -1.4554375E-06 
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19. MORRIS AND TUREK Parameters for the Redlich-Kwong Equation 405 

Hydrogen S u l f i d e Parameters, AT ^ 0 

a = a i A T 3 + a 2 A T 2 + a 3AT + a 4 + a 5(a 6+AT) 

b = b i A T 3 + b 2AT 2 + b 3AT + b 4 + b 5(b 6+AT) 

a i = 8.9992497E+04 bi = 1.6468196E-01 
*2 = -2.1018269E+05 b 2 = • -2.7842604E-01 
*3 = 9.3022318E+04 b 3 = 1.7715814E-01 
a 4 = 4.1713206E+05 b 4 = • -1.8220125E+02 
as = 5.4872735E+02 b 5 = 1.8259959E+02 
ae = 3.4032689E-02 b 6 = 8.3692118E-03 
a7 = -1.1257065E+00 b 7 = • -9.1864978E-05 
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Phase Behavior of Mixtures of San Andres Formation 

Oils with Acid Gases 

Application of a Modified Redlich-Kwong Equation of State 

Joseph J. Chaback and Edward A. Turek 

Amoco Production Company, Tulsa, OK 74102 

A modified Redlich-Kwong equation of state, with appro­
priate parameter adjustments, was successful in repro­
ducing the volumetric properties and complex phase 
equilibria exhibited by San Andres Formation oil-acid 
gas systems. These parameter adjustments are carried 
out by trial and error to match a portion of experi­
mental PVT and phase equilibria data available for 
these oils and their mixtures with acid gases. The 
remaining data are used to test the selected parame­
ters. The similarity of the C7+ fraction throughout 
the geologic formation allowed application of a common 
C7+ compositional distribution for all the San Andres 
oils. Thus, for any oil from the subject formation, 
only the overall fluid composition and reservoir tem­
perature are required to calculate volumetric proper­
ties and phase behavior. 

Development and e v a l u a t i o n programs f o r m i s c i b l e enhanced o i l 
recovery (EOR) processes r e q u i r e f l u i d p r o p e r t i e s f o r both the r e s ­
e r v o i r o i l and mixtures of the d i s p l a c i n g gas and the r e s e r v o i r 
o i l . Western Texas contains numerous candidate f i e l d s f o r carbon 
d i o x i d e f l o o d i n g . In most cases these f i e l d s have been pressure-
depleted and waterflooded. Yet these f i e l d s s t i l l represent a sub­
s t a n t i a l resource base. The net reserves p o t e n t i a l l y recoverable 
w i t h carbon d i o x i d e approaches 700 m i l l i o n b a r r e l s . S i x of these 
f i e l d s have been the subject of extensive experimental PVT and 
phase e q u i l i b r i u m s t u d i e s . These f i e l d s produce from the San 
Andres Formation. 

These experimental i n v e s t i g a t i o n s i n c l u d e f i r s t - c o n t a c t and 
mu l t i p l e - c o n t a c t s t u d i e s . F i r s t - c o n t a c t studies are those i n which 
only mixtures of r e s e r v o i r o i l and carbon d i o x i d e are s t u d i e d . In 
mu l t i p l e - c o n t a c t s t u d i e s , two phase e q u i l i b r i u m i s achieved f o r an 
o i l - c a r b o n d i o x i d e mixture. Then e i t h e r the o i l - r i c h or C 0 2 ~ r i c h 
phase i s recontacted w i t h f r e s h C O 2 or f r e s h r e s e r v o i r o i l , respec-

0097-6156/86/0300-0406$08.00/0 
© 1986 American Chemical Society 
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20. C H A B A C K A N D T U R E K Phase Behavior of San Andres Formation Oils 407 

t i v e l y . Only f i r s t - c o n t a c t data are discussed here; a subsequent 
paper w i l l d i s c u s s the extension to m u l t i p l e contact r e s u l t s . 

The o v e r a l l o b j e c t i v e of the present i n v e s t i g a t i o n was to pro­
vide a Redlich-Kwong equation of stat e d e s c r i p t i o n which would be 
rep r e s e n t a t i v e of a l l the o i l s produced from an e n t i r e formation. 
Thus, i f s u c c e s s f u l , only the o i l composition and r e s e r v o i r temper­
ature would u l t i m a t e l y be required to p r e d i c t the important C O 2 - 0 1 I 
phase e q u i l i b r i a . Such an approach was taken i n order to minimize 
the need f o r a d d i t i o n a l c o s t l y experimental studies on f l u i d s from 
w e l l s not already t r e a t e d i n the experimental program. This i s a 
severe t e s t of the equation of s t a t e . The successes and shortcom­
ings of f l u i d d e s c r i p t i o n s so developed are discussed below. 

Development of the F l u i d D e s c r i p t i o n s : Overview 

The strategy employed i n the i n v e s t i g a t i o n c o n s i s t s of f i r s t d e v e l ­
oping an equation of st a t e d e s c r i p t i o n f o r the r e s e r v o i r o i l p r i o r 
to contact w i t h a d i s p l a c i n g gas. This uncontacted or base o i l 
d e s c r i p t i o n includes a C7+ heavy hydrocarbon d i s t r i b u t i o n and char­
a c t e r i z i n g parameters and customized methane-C7+ i n t e r a c t i o n param­
ete r s f o r that d i s t r i b u t i o n . The d e s c r i p t i o n was then extended to 
mixtures of CO2 with the base r e s e r v o i r o i l . 

In a d d i t i o n , the e f f e c t of compressing the C7+ d e s c r i p t i o n was 
examined. For the base o i l , the 34 components r e s u l t i n g from chro­
matographic a n a l y s i s were regrouped to create d e s c r i p t i o n s with 14, 
7, 3 and 2 C7+ pseudocomponents. For C 0 2 ~ r i c h systems C7+ d e s c r i p ­
t i o n s with 14 and 3 pseudocomponents were developed. These cases 
allowed a comparison to be made between an extended C7+ d e s c r i p t i o n 
and a more compressed d e s c r i p t i o n s u i t e d to compositional r e s e r v o i r 
model c a l c u l a t i o n s where the t o t a l number of components must be 
r e s t r i c t e d because of computer time and memory c o n s t r a i n t s . 

D e s c r i p t i o n s were developed using as much of the a v a i l a b l e 
phase e q u i l i b r i u m data as p o s s i b l e . For these San Andres f i e l d s a 
lar g e q u a n t i t y of base o i l PVT information was accumulated p r i o r to 
i n i t i a t i o n of EOR s t u d i e s . T y p i c a l l y , t h i s i n f o r m a t i o n includes 
r e s e r v o i r f l u i d compositional a n a l y s i s , a d i f f e r e n t i a l v a p o r i z a t i o n 
a n a l y s i s (DVA), and pe r t i n e n t operating parameters from the w e l l . 
Even though much of these data were obtained t h i r t y to f o r t y years 
ago, they s t i l l were found to form a co n s i s t e n t data s e t . 

In a d d i t i o n , more recent work ass o c i a t e d w i t h enhanced gas 
d r i v e studies was incorporated i n t o the base o i l data c o l l e c t i o n . 
These experimental data were evaluated f o r consistency of reported 
composition and f l u i d p r o p e r t i e s . Those data found c o n s i s t e n t were 
used to develop a re p r e s e n t a t i v e C7+ heavy hydrocarbon d i s t r i b u t i o n 
(simulated true b o i l i n g point a n a l y s i s ) and equation of st a t e par­
ameters i n c l u d i n g methane-C7+ i n t e r a c t i o n parameters. Next, the 
base o i l d e s c r i p t i o n was r e f i n e d to match p r o p e r t i e s of C02~base 
o i l mixtures. Obtaining s a t i s f a c t o r y agreement of c a l c u l a t e d and 
experimental r e s u l t s n e c e s s i t a t e d adjustment of carbon dioxide-C7+ 
and carbon dioxide-methane i n t e r a c t i o n parameters. Moreover, where 
hydrogen s u l f i d e was present i n s i g n i f i c a n t amounts i n the d i s ­
p l a c i n g gas, s p e c i a l i z e d H2S-C7+ and H2S-CO2 i n t e r a c t i o n parameters 
were a l s o developed. 

In a l l cases, the parameter adjustments were made by t r i a l and 
e r r o r using an h e u r i s t i c adjustment method; that i s , changes were 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
02

0

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 
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made i n t e r a c t i v e l y at a computer console rather than by some 
forma l i z e d mathematical o p t i m i z a t i o n approach. As a consequence of 
the cumbersome nature of the adjustment procedure, only base o i l 
and some f i r s t - c o n t a c t C O 2 - 0 1 I data were used i n the data a d j u s t ­
ment process. The remainder of the f i r s t - c o n t a c t data ( i n c l u d i n g 
r e s u l t s f o r three-phase (L-L-V) f l u i d e q u i l i b r i a ) were used only to 
t e s t the parameters. 

The Modified Redlich-Kwong Equation of State 

Throughout the d i s c u s s i o n reference i s made to various p h y s i c a l 
p r o p e r t i e s and equation of s t a t e parameters, f o r example, c r i t i c a l 
pressure and a c e n t r i c f a c t o r . These p r o p e r t i e s are incorporated 
i n t o the Redlich-Kwong equation (Equation 1) as shown i n Equa­
t i o n s 2 and 3. 

Ρ = RT 
V - b Vf V(V + b) 

where a and b are equation parameters defined by: 

(1) 

NC NC 
Σ 

i = l j = l 
Σ x . x . U 

1 J 

2 2.3 _ 2 2.5 
Ω R Τ Ω ,RT , a i c i a j c j 

Ρ Ρ . c i c j 

1/2 

(2) 

NC NC 
b = Σ Σ 

i = l j = l 

(1 
χ. χ. 

1 J 

• D. .) Ω ,RT . b i c i 
Ω .RT . 
bj c j 
Ρ 
c j 

(3) 

The omega parameters, a r e c o r r e l a t e d w i t h reduced temper­
ature and a c e n t r i c f a c t o r : 

Ω = f ( T ,ω) Τ £ 1 a r r 
f(l,u>) T r > 1 

Qb = g(T r,uO T r £ 1 
g(l,u>) T r > 1 

The f and g f u n c t i o n s shown i n Equations 4 and 5 are d i f f e r e n t c o r ­
r e l a t i o n s based on reduced temperature and a c e n t r i c f a c t o r as 
described by Yarborough ( O . Symbols used i n these expressions are 
defined i n the Glossary at the end of the t e x t . Table I shows such 
p r o p e r t i e s and i d e n t i f i e s pseudocomponents as they appear i n com­
puter output f o r a t y p i c a l case: O i l D mixed wi t h a H 2 S / C O 2 d i s ­
p l a c i n g gas. Note that o i l s are given l e t t e r designations c o n s i s ­
tent w i t h those of Turek, et a l . ( 2 ) , whenever ap p r o p r i a t e . As 
described by Morris and Turek ( 3 ) , the Ω^ and Ω^ f o r η-butane and 
l i g h t e r components are functions of temperature f o r values of 
reduced temperature above and below the c r i t i c a l temperature. 
Those f o r pentane and heavier components are a f u n c t i o n of tempera­
ture only below the c r i t i c a l temperature as shown i n Equations 4 
and 5 above. 

(4) 

( 5 ) 
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410 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

In general the C O 2 i n t e r a c t i o n parameters are f u n c t i o n s of 
temperature. Only those C O 2 i n t e r a c t i o n parameters developed 
during the data matching e x e r c i s e are temperature independent. 
Table I I contains the u n l i k e molecular p a i r i n t e r a c t i o n parameters 
f o r t h i s example San Andres system. The parameter sets i n Tables I 
and I I apply d i r e c t l y o nly to the O i l D system. However, the pseu-
docomponent p r o p e r t i e s and r e s e r v o i r temperatures are s i m i l a r f o r 
the v arious San Andres o i l s ; hence, the parameters i n Table I and 
11 could probably be a p p l i e d to San Andres o i l s of d i f f e r e n t compo­
s i t i o n without i n c u r r i n g serious e r r o r . The appropriate C7+ pseu-
docomponent composition would have to be used f o r such cases. 

P r e p a r a t i o n of Compositional Data 

The carbon number d i s t r i b u t i o n w i t h i n the C7+ f r a c t i o n i s obtained 
v i a temperature programmed gas chromatography (simulated t r u e 
b o i l i n g p o int a n a l y s i s ) . D i s t r i b u t i o n s f o r s e v e r a l f i e l d s and an 
average used to represent the San Andres Formation are shown i n 
Figure 1. The chromatographic d i s t r i b u t i o n i s subsequently 
adjusted to match the c r y o s c o p i c a l l y determined molecular weight of 
the C7+ f r a c t i o n . F i r s t , the C40+ carbon number i s set to 50 and 
the C40+ molX to 5.0. These adjustments are made to r e f l e c t the 
i n e v i t a b l e l o s s of some heavier C7+ components during the chromato­
graphic e l u t i o n . A f i n a l adjustment i s then a p p l i e d to match the 
cryoscopic mole weight. This adjustment a p p l i e s an exponential 
c o r r e c t i o n to the d i s t r i b u t i o n which i s p r o p o r t i o n a l to carbon 
number· 

This adjusted C7+ d i s t r i b u t i o n i s mated w i t h the appropriate 
o v e r a l l composition, n i t r o g e n through hexanes, with the C 7 + f r a c ­
t i o n lumped as a s i n g l e component. The lumped C7+ f r a c t i o n i s d i s ­
t r i b u t e d among the carbon number f r a c t i o n s shown i n Figure 1. The 
development continues w i t h the s e l e c t i o n of the appropriate set or 
a r r a y of PNA ( P a r a f f i n s , Aromatics, and Naphthenes) proportions f o r 
the extended pseudocomponent a n a l y s i s . This C7+ c h a r a c t e r i z a t i o n 
method i s an extension of ideas described i n the AGA monograph by 
Bergman et a l . ( 4 ) . The subsequent adjustment of some pseudocompo­
nent p r o p e r t i e s to match experimental data i s , i n e f f e c t , a f u r t h e r 
refinement of these PNA r a t i o s . 

C o n s o l i d a t i o n of the extended C7+ d e s c r i p t i o n to 14, 7 , 3, or 
2 pseudocomponents i s c a r r i e d out next. For d e s c r i p t i o n s w i t h 14 
or 7 pseudocomponents t h i s c o n s o l i d a t i o n procedure i s designed to 
g i v e approximately equal compositions f o r a l l pseudocomponents. 
Thus, a wider range of l e s s abundant heavier carbon number f r a c ­
t i o n s i s combined to form the heavier pseudocomponents. An example 
showing these 14 pseudocomponents i s shown i n Table I . For three 
pseudocomponents c o n s o l i d a t i o n of the d i s t r i b u t i o n at carbon number 
12 and carbon number 20 i s s e l e c t e d . For two components d i v i s i o n 
at carbon number 20 and 12 was t e s t e d f o r base o i l c a l c u l a t i o n s 
o n l y . As discussed below, d i v i s i o n at carbon number 20 gave b e t t e r 
results· 

Development of Base O i l Parameters 

In a d d i t i o n to the base o i l data provided by Turek et a l . (2) and 
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2 0 . C H A B A C K A N D T U R E K Phase Behavior of San Andres Formation Oils 411 

TABLE I I . INTERACTION PARAMETERS ( C . D . . ) FOR THE GENERALIZED 
REDLICH-KWONG EQUATION OF STATE FOR OIL D, SAN ANDRES 
FORMATION, EVALUATED AT 105°F 

2 2 
ID NUMBER1 C. . D. . 

i j 
2 3 *-0.09Q0003 -0.038260 
2 4 0.005000 0.0 
2 5 0.084700 0.0 
2 6 0.010000 0.0 
2 7 0.010000 0.0 
2 8 0.010000 0.0 
2 9 0.010000 0.0 
2 10 0.010000 0.0 
2 11 0.010000 0.0 
2 (27-40) *0.010000 0.0 
3 4 0.156698 -0.033048 
3 6 0.152101 -0.029926 
3 7 0.149255 -0.027993 
3 8 0.148010 -0.027147 
3 9 0.146046 -0.025813 
3 10 0.143313 -0.023956 
3 11 0.139264 -0.021206 
3 27 *0.090000 -0.023074 
3 28 *0.090000 -0.020501 
3 29 *0.090000 -0.018062 
3 30 *0.090000 -0.015436 
3 31 *0.090000 -0.012733 
3 32 *0.090000 -0.010130 
3 33 *0.090000 -0.009777 
3 34 *0.090000 -0.007380 
3 35 *0.090000 -0.005082 
3 36 *0.090000 -0.002021 
3 37 *0.090000 0.002733 
3 38 *0.090000 0.011071 
3 39 *0.090000 0.018416 
3 40 *0.090000 0.034575 
3 5 *0.160000 0.0 
5 4 0.090500 0.0 
5 6 0.084600 0.0 
5 7 0.082000 0.0 
5 8 0.080000 0.0 
5 9 0.078000 0.0 
5 10 0.075000 0.0 
5 11 0.070539 0.0 
5 (27-40) *0.150000 0.0 

Component ID Nos. are i d e n t i f i e d with s p e c i f i c compounds i n Table I . 
2 D e f a u l t C.. and D. . f o r carbon d i o x i d e are fu n c t i o n s of temperature and 

1 J 1 J 
a c e n t r i c f a c t o r . See References (1) and ( 2 ) . 

3An * denotes g e n e r a l i z e d San Andres C.. Value. D. .'s are a l l d e f a u l t 
values. 
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412 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

Figure 1. Comparison of Heavy Hydrocarbon D i s t r i b u t i o n s . Results 
f o r F l u i d s from the San Andres Formation: Analyses f o r Several 
F i e l d s and Smoothed Average. 
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20. C H A B A C K A N D T U R E K Phase Behavior of San Andres Formation Oils 413 

Yarborough ( 5 ) , extensive r e s u l t s f o r San Andres f l u i d s have been 
accumulated from other enhanced gas d r i v e studies as w e l l as from 
h i s t o r i c a l measurements during the pressure d e p l e t i o n phase of res 
e r v o i r o p eration. Table I I I compares the f l u i d compositions used 

TABLE I I I . COMPARISON OF CANDIDATE DATABASE COMPOSITIONS 

A l l Compositions are i n Mol% 

Database Case 

Comp B3 2 DSX Β F l F A B l D B2 

N 2 0.55 1.08 1.35 0.47 0.54 2.15 0.52 0.00 0.41 
Ci 15.61 9.63 18.19 19.03 16.12 17.78 15.43 15.24 13.06 
C0 2 0.61 1.72 0.29 2.63 4.68 4.74 0.56 0.00 0.49 
C 2 7.43 4.60 5.25 7.86 13.50 8.57 7.26 3.69 7.04 
H 2S 0.00 0.41 0.00 0.00 0.00 1.66 0.00 0.00 0.04 
c 3 

6.32 5.41 4.41 7.60 10.03 7.71 6.14 4.66 7.18 
1 C 4 0.48 1.29 1.10 1.29 1.92 0.94 0.49 0.00 1.59 
nC 4 4.62 4.11 3.57 3.91 6.52 4.71 4.10 3.89 4.57 
1 C 5 1.18 1.96 1.77 1.65 1.47 1.58 1.36 1.49 2.26 
nC 5 2.93 2.66 3.34 1.71 1.95 3.21 2.69 1.80 2.72 
c 6 4.69 6.48 3.39 3.44 3.16 3.17 3.61 2.37 3.21 
C7+ 55.58 60.65 57.34 50.41 40.11 43.79 57.84 66.86 57.48 

C7+ P r o p e r t i e s 

Mol Wt 250 232 242 215 243 253 236 232 240 
Sp Gr 0.8822 0.8880 0.8861 0.8805 0.8839 0.889 0.8870 0.8874 0.8870 

d a t a b a s e cases are given l e t t e r designations c o n s i s t e n t with those 
used by Turek, et a l . (2) 
2B3 r e f e r s to an a l t e r n a t e a n a l y s i s of O i l B l obtained by an 
independent l a b o r a t o r y . 

i n these s t u d i e s . These data were screened, as described below, 
f o r i n c l u s i o n i n a San Andres Formation base o i l database by making 
f l u i d property p r e d i c t i o n s using d e f a u l t equation of s t a t e parame­
t e r s developed from previous experience with hydrocarbon mixtures. 
Phase e q u i l i b r i a were c a l c u l a t e d with the Redlich-Kwong equation of 
s t a t e ; the Standing-Katz c o r r e l a t i o n (6) was used to c a l c u l a t e the 
l i q u i d d e n s i t i e s . As such, t h i s method has been found to g e n e r a l l y 
provide accurate r e s u l t s f o r o i l bubble points and d e n s i t i e s but 
cannot be used f o r C 0 2 - o i l mixtures. I t s value here l i e s i n estab­
l i s h i n g consistency between measured f l u i d composition and f l u i d 
properties· 

In general, a case was r e j e c t e d f o r i n c l u s i o n i n the database 
i f the reported l i q u i d d e n s i t y was i n serious disagreement wi t h the 
Standing-Katz value ( t h a t i s , greater than 3%) or i f the bubble 
point pressure could not be matched with reasonable adjustment of 
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414 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

the C7+ a c e n t r i c f a c t o r s ( t h a t i s , l e s s than 20%). Only r e s e r v o i r 
o i l d e n s i t y data f o r O i l B2 were r e j e c t e d on these grounds, and, as 
a consequence, O i l B2 was not included i n the database. 

Refined C7+ d e s c r i p t i o n s f o r each of the s e l e c t e d database 
cases were then prepared. These d e s c r i p t i o n s were based upon C7+ 
d i s t r i b u t i o n , molecular weight, and PNA d i s t r i b u t i o n . Further 
adjustments by t r i a l and e r r o r were made to o p t i m a l l y match the 
measured base o i l p r o p e r t i e s . These data included s i n g l e phase 
d e n s i t i e s , u s u a l l y obtained at 1500-2000 p s i a and r e s e r v o i r temper­
ature and the bubble point pressure a l s o at r e s e r v o i r temperature. 
To b r i n g about agreement of c a l c u l a t e d and experimental r e s u l t s , 
the p s e u d o c r i t i c a l pressures and methane i n t e r a c t i o n parameters 
wi t h s e l e c t e d C7+ hydrocarbon f r a c t i o n s were adjusted. 

Changes i n the c r i t i c a l pressure a f f e c t p r i m a r i l y the d e n s i t y 
w hile changes i n the methane-heavy hydrocarbon i n t e r a c t i o n param­
e t e r a f f e c t p r i m a r i l y the bubble point pressure. These two parame­
t e r s are n e a r l y independent i n t h e i r e f f e c t ; thus, agreement of 
c a l c u l a t e d and experimental values f o r these data i s e a s i l y 
achieved. As noted above, a d j u s t i n g the c r i t i c a l pressure of a C7+ 
pseudocomponent i s tantamount to changing i t s PNA d i s t r i b u t i o n to 
r e f l e c t the s p e c i f i c c h a r a c t e r i s t i c s of the f l u i d . The r e s u l t i n g 
adjusted parameter sets f o r each database entry were a r i t h m e t i c a l l y 
averaged to provide a general San Andres Formation d e s c r i p t i o n f o r 
the base o i l . 

Table IV shows these averaged parameters f o r 7, 3 and 2 C7+ 
pseudocomponents. Those f o r 14 pseudocomponents are given i n Table 
I and i n c l u d e a c e n t r i c f a c t o r and p s e u d o c r i t i c a l pressure values 
f o r components Nos. 38, 39 and 40. To create a C7+ f r a c t i o n w i t h 

TABLE IV. ADJUSTED EQUATION OF STATE PARAMETERS FOR SAN ANDRES 
FLUIDS USING 7, 3 and 2 C7+ PSEUDOCOMPONENTS 

Ρ 's, p s i a 
C. . χ 1000 = ~ 5 

I J 7 3 2 

7 3 2 C22-27 C28+ C13-20 C21+ C7-20 C21+ 

AVE 10 12 16 156.3 103.3 257.99 125.55 334.0 127.7 
C^ . denotes i n t e r a c t i o n parameters f o r methane wi t h each of the 14 
pseudocomponents. 
P c's are c r i t i c a l pressures f o r the pseudocomponent carbon number 
grouping. 

two pseudocomponents, the C7+ d i s t r i b u t i o n was s p l i t at carbon 
number 20 or 12. Results f o r d i v i s i o n at carbon number 20 are 
shown i n Table IV. One e f f e c t of reducing the number of pseudocom­
ponents i s to increase the s i z e of the i n t e r a c t i o n parameter wit h 
methane. This increase i s a consequence of the increased s o l u ­
b i l i t y of methane i n the more severely compressed and, t h e r e f o r e , 
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l i g h t e r pseudocomponents. The change i n pseudocomponent character 
i s a l s o r e f l e c t e d by the increase i n c r i t i c a l pressure. 

Table V compares r e s u l t s f o r the various C7+ compressions. 
Note the i n s e n s i t i v i t y of the AAD (average absolute d e v i a t i o n ) to 
changes i n C7+ compression and that f o r only two pseudocomponents 
d i v i s i o n at carbon number 20 gives b e t t e r r e s u l t s . In a d d i t i o n to 
i n t e r p o l a t i o n w i t h i n the database cases themselves, the averaged 
parameter sets were a l s o t e s t e d by p r e d i c t i o n of h i s t o r i c a l meas­
urements of r e s e r v o i r o i l p r o p e r t i e s . Table VI l i s t s the 

TABLE V. COMPARISON OF EXPERIMENT WITH CALCULATIONS USING AVERAGE 
PARAMETERS FOR THE DATABASE CASES USING 14, 7, 3 AND 2 
C7+ PSEUDOCOMPONENTS 

Bubble Point Pressure, p s i a S i n g l e Phase D e n s i t i e s , gm/cc 

OIL Exp 14 7 3 2A 1 2B 1 Exp 14 7 3 2A 2B 

B l 800 801 800 804 819 810 0.811 0.817 0.817 0.820 0.829 0.818 
DSX 628 582 580 579 572 575 0.832 0.825 0.823 0.821 0.817 0.819 
Β 1064 1008 1005 1007 1013 1019 0.815 0.815 0.814 0.816 0.819 0.817 
F l 1033 1039 1036 1025 999 1003 0.788 0.785 0.784 0.779 0.762 0.768 
F 1000 990 988 989 995 989 0.776 0.777 0.777 0.778 0.781 0.779 
A 1190 1247 1244 1251 1267 1262 0.792 0.796 0.790 0.799 0.810 0.805 
B l 749 788 787 787 788 784 0.815 0.815 0.815 0.814 0.813 0.813 
D 620 669 668 667 671 663 0.827 0.830 0.830 0.828 0.827 0.825 
AAD % 4.0 4.1 4.2 5.0 4.6 0.44 0.40 0.65 1.37 0.94 

2A denotes d i v i s i o n of the C7+ d i s t r i b u t i o n i n t o pseudocomponents at 
carbon number 12; 2B r e f e r s to d i v i s i o n at carbon number 20. 

screened h i s t o r i c a l data and compares the reported compositions. 
Cases No. 558, 238, 241 and 444 were accepted as reported. Calcu­
l a t e d r e s u l t s f o r these cases are shown i n Table V I I . 

Note the e x c e l l e n t agreement between c a l c u l a t e d and e x p e r i ­
mental values. R e c a l l these data were obtained 30 to 40 years ago; 
agreement i s probably w i t h i n experimental u n c e r t a i n t y . Of s p e c i a l 
i n t e r e s t are r e s u l t s f o r o i l formation volume f a c t o r (FVF). I t i s 
w e l l represented at both the bubble point and 2000 p s i a . This 
agreement suggests that the average d e s c r i p t i o n f i t s not only f l u i d 
d e n s i t y at a point but f l u i d c o m p r e s s i b i l i t y over a range of pres­
sure as w e l l . Note f u r t h e r that the w e l l s c i t e d i n these cases 
span a range of temperatures from 94° to 114 F w h i l e the parameters 
were developed from data at 105° and 106°F. Thus, the averaged 
parameters may be ex t r a p o l a t e d without l o s s of p r e c i s i o n at l e a s t 
10 F above or below the temperature at which they were developed. 

Development of F l u i d D e s c r i p t i o n s f o r Carbon D i o x i d e - O i l Mixtures 

The preceding development of base o i l d e s c r i p t i o n s f o r the forma-
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TABLE V I I . SAN ANDRES RESULTS FOR HISTORICAL CASES: COMPARISON OF 
CALCULATED AND EXPERIMENTAL RESULTS 

AAD% 
C7+ 

Compression BPP GOR FVF(BPP) FVF(2000) DVA(resid) 

14 5.44 6.56 1.59 1.62 1.13 
7 5.31 6.56 1.59 1.63 1.17 
3 5.79 5.99 1.47 1.51 1.11 
2 6.61 6.62 1.53 1.58 1.36 

where BPP denotes bubble point pressure, p s i a , 
GOR denotes g a s / o i l r a t i o , SCF/bbl of r e s i d u a l o i l , 
FVF(BPP) denotes formation volume f a c t o r at the bubble p o i n t , 
bbl r e s e r v o i r f l u i d / b b l r e s i d u a l o i l 
F V F ( 2 0 0 0 ) denotes formation volume f a c t o r at 2 0 0 0 p s i a , 
DVA denotes DVA r e s i d u a l o i l s p e c i f i c g r a v i t y . 

t i o n s of i n t e r e s t suggests that hydrocarbon phase behavior i s w e l l 
described by the modified Redlich-Kwong equation of s t a t e . Thus, 
extension of those r e s e r v o i r o i l d e s c r i p t i o n s to carbon d i o x i d e - o i l 
mixtures ought to be brought about by changing only carbon 
d i o x i d e - r e l a t e d i n t e r a c t i o n parameters. Parameters r e l a t e d to 
hydrocarbon pseudocomponents ought to remain unchanged. 

E a r l y i n the i n v e s t i g a t i o n i t was recognized that the p h y s i c a l 
s i t u a t i o n was too complex to be represented by such an approach. 
Attempts to f i t the C O 2 - 0 1 I mixture data obtained by Turek, et a l . 
( 2 ) w i t h only C O 2 parameter adjustments proved u n s u c c e s s f u l . In 
p a r t i c u l a r , the l i q u i d - l i q u i d branch of the s a t u r a t i o n pressure-
composition (P-X) locus was poorly represented. Often s i n g l e phase 
behavior was pr e d i c t e d at compositions where two-phase behavior was 
observed. 

However, p r i o r to the present i n v e s t i g a t i o n , c a l c u l a t i o n s w i t h 
O i l B 2 - C O 2 mixtures l e d to the r e a l i z a t i o n that l a r g e a c e n t r i c f a c ­
t o r s f o r the heaviest pseudocomponents ( c h a r a c t e r i s t i c of the 
Edmister c o r r e l a t i o n (7)) used i n conjunction with the c h a r a c t e r i ­
z a t i o n procedure described by Yarborough (_1) could b r i n g the 
l i q u i d - l i q u i d branch of the P-X locus i n t o b e t t e r agreement wit h 
experiment. See Figure 2 . For t h i s i n v e s t i g a t i o n the d e c i s i o n was 
made to adjust the C7+ a c e n t r i c f a c t o r s assigned through the char­
a c t e r i z a t i o n procedure discussed e a r l i e r and give up some p r e c i s i o n 
i n the c a l c u l a t i o n of base o i l d e n s i t y i n order to enhance the 
p r e d i c t i o n of phase behavior. Note that E d m i s t e r - l i k e a c e n t r i c 
f a c t o r s are t y p i c a l l y l a r g e r by some 5 - 1 0 % than those provided by 
our C7+ c h a r a c t e r i z a t i o n procedure u t i l i z i n g PNA d i s t r i b u t i o n s . 

The phase e q u i l i b r i u m data f o r O i l s B l , B 2 , D, F and A form 
the f i r s t - c o n t a c t data set f o r matching. The compositions of the 
base o i l s used i n these carbon d i o x i d e mixture studies are reported 
i n Table VI. The matching procedure was s t a r t e d w i t h O i l B 2 - C Û 2 

mixtures because of e a r l i e r success i n matching c a l c u l a t e d and 
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Figure 2. C O 2 - O 1 I B2 System: Comparison of S a t u r a t i o n L o c i at 
106°F. Experimental Values Versus C a l c u l a t i o n s f o r 14 and 3 C 7 + 
Pseudocomponents· 
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experimental r e s u l t s f o r that system. An o v e r a l l compromise f i t to 
the f i r s t - c o n t a c t data f o r O i l B2 was achieved through t r i a l and 
e r r o r adjustments of the a c e n t r i c f a c t o r s f o r the C20+ pseudocompo­
nents as w e l l as through adjustments to the carbon dioxide-C7+ and 
carbon dioxide-methane i n t e r a c t i o n parameters. 

Results f o r O i l B2 are c o l l e c t e d i n Table V I I I f o r d e n s i t y , 
phase d i s t r i b u t i o n and c o e x i s t i n g phase composition. The 2.5% 
e r r o r i n base o i l d e n s i t y i n c u r r e d by the new parameters i s s t i l l 
w i t h i n acceptable l i m i t s . Moreover, they now a l l o w the carbon 
d i o x i d e - r i c h phase e q u i l i b r i a to be c a l c u l a t e d w i t h s a t i s f a c t o r y 
p r e c i s i o n as w e l l . Further r e s u l t s with these new parameters are 
given i n Figure 2 which shows a comparison of experimental s a t u r a ­
t i o n l o c i with that c a l c u l a t e d i n t h i s i n v e s t i g a t i o n and using the 
Edmister c o r r e l a t i o n . Note the e x c e l l e n t agreement f o r a l l proper­
t i e s except three-phase consolute pressure l o c i . 

Carbon d i o x i d e compositions are w e l l represented. Only f o r 
the mixture with 95 mol% carbon dioxi d e i s there serious disagree­
ment between c a l c u l a t e d and experimental K-values. However, com­
pari s o n with other o i l - r i c h f l u i d compositions from San Andres 
01I-CO2 systems shows that the reported CO2 composition of 
81.4 mol% i n the o i l - r i c h phase i s probably i n e r r o r . See 
Table V I I I . Note a l s o the s i m i l a r i t y of r e s u l t s f o r c a l c u l a t i o n s 
w i t h only 3 pseudocomponents to those with 14 which once again 
underscores the i n s e n s i t i v i t y of these r e s u l t s to C7+ breakdown. 

Tables IX and X extend the a p p l i c a t i o n of these new a c e n t r i c 
f a c t o r s to a l l of the remaining f i r s t - c o n t a c t data f o r San Andres 
f l u i d s obtained by Turek, et a l . ( 2 ) . Because these are now pred­
i c t i o n s r a t her than i n t e r p o l a t i o n s , some l o s s of accuracy i s 
expected. T y p i c a l l y , Table IX shows the base o i l d e n s i t y to be i n 
e r r o r by approximately 3%. On the other hand, the c a l c u l a t e d o i l -
r i c h phase d e n s i t i e s remain i n e x c e l l e n t agreement w i t h experiment. 
Note the trend i n c a l c u l a t e d r e s u l t s f o r o i l - r i c h and C02-rich 
l i q u i d d e n s i t y f o r the O i l D-CO2 system. There i s a s u b s t a n t i a l 
improvement i n d e n s i t y p r e d i c t i o n as the carbon d i o x i d e composition 
i s increased to values c o n s i s t e n t with the f l o o d i n g process. 
C02~rich l i q u i d d e n s i t i e s , on the other hand, are s t i l l i n e r r o r by 
5-10%. Again, the t a b l e shows the s i m i l a r i t y of r e s u l t s f o r 3 and 
14 C7+ components. 

Except f o r the O i l F case, Table X shows that the CO2 K-values 
and i n d i v i d u a l carbon d i o x i d e phase compositions are i n reasonable 
agreement with experimental values. For most cases they agree 
w i t h i n 5 or 6%. For the O i l F case the reported composition of 
60 mol% i s suspect; i t i s p o s s i b l e that the i n d i v i d u a l phase compo­
s i t i o n s are a l s o i n e r r o r . 

While Figures 3 and 4 show that the P-X locus i s w e l l r epre­
sented along two-phase boundaries, three-phase e q u i l i b r i a are 
p o o r l y represented. The three-phase region f a i l s to extend across 
the e n t i r e experimentally observed composition range. Furthermore, 
the pressure range f o r the three-phase region i s too narrow, that 
i s , the upper consolute pressure i s too near the lower consolute 
pressure. As shown i n Figure 4, f o r mixtures c o n t a i n i n g O i l A t h i s 
f a i l u r e i s e s p e c i a l l y pronounced. 

S i m i l a r l y , phase d i s t r i b u t i o n r e s u l t s are not i n good agree­
ment w i t h experiment. U s u a l l y too much o i l - r i c h l i q u i d i s pre-
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20. C H A B A C K A N D T U R E K Phase Behavior of San Andres Formation Oils 

4 0 0 0 - 1 

3 0 0 0 

0) U CL 
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Legend: 
Smoothed Expt Data 

Δ L-L-V Expt Data 
Calc: 14 C7+ Comps 

ο Calc: 3 C7+ Comps 

6 0 so 
Mole Percent C0 a 

Figure 3. C O 2 - O 1 I B l System: Comparison of S a t u r a t i o n L o c i at 
106 F, Experimental Values Versus C a l c u l a t i o n s f o r 14 and 3 C 7 + 
Pseudocomponent s. 
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20. C H A B A C K A N D T U R E K Phase Behavior of San Andres Formation Oils 425 

d i e t e d . E r r o r s are l a r g e e s p e c i a l l y at the lower carbon d i o x i d e 
compositions where the premature te r m i n a t i o n of the three phase 
region occurs. Poor phase volume p r e d i c t i o n s may be a t t r i b u t e d , at 
l e a s t i n p a r t , to t h i s f a i l u r e to c a l c u l a t e three-phase behavior 
across the e n t i r e e xperimentally observed composition range. Note 
that the p r e d i c t i o n s improve somewhat at higher carbon d i o x i d e com­
p o s i t i o n s where three-phase behavior i s p r e d i c t e d . See Table IX. 

A d d i t i o n a l i n s i g h t i n t o t h i s discrepancy i s obtained through 
comparison of the c a l c u l a t e d and measured P-X l o c i . In the 
l i q u i d - l i q u i d r e gion the q u a l i t y l i n e s are very s t e e p l y sloped and 
c l o s e l y spaced as they emanate from the upper consolute l o c u s . See 
Figure 5. Because the q u a l i t y l i n e s are so s t e e p l y sloped i n the 
l i q u i d - l i q u i d r e g i o n , small compositional e r r o r s can lead to l a r g e 
e r r o r s i n the c a l c u l a t e d P-X locus and i n the l o c a t i o n s of q u a l i t y 
l i n e s . Such e r r o r s can lead to poor r e s u l t s f o r c a l c u l a t e d phase 
d i s t r i b u t i o n s as noted i n Table IX. Moreover, the l i k e l i h o o d of 
e r r o r s i s increased f o r cases where the d i s t o r t i o n i n q u a l i t y l i n e s 
i s made worse because of a poor f i t to the experimental s a t u r a t i o n 
pressure l o c u s . The r e s u l t s f o r O i l F, shown i n Figure 5, are an 
example of t h i s behavior. 

A f u r t h e r example of t h i s behavior i s shown i n Figure 3. The 
c a l c u l a t e d s a t u r a t i o n locus i s again more g e n t l y sloped than the 
experimental locus and, so again, cuts i n t o a region that e x p e r i ­
mentally contains two c o e x i s t i n g phases. Thus, too much o i l - r i c h 
l i q u i d i s expected. Less understandable i s the same p r e d i c t i o n f o r 
O i l A. Figure 4 shows that the c a l c u l a t e d P-X locus l i e s to the 
r i g h t of the experimental one. Too l i t t l e o i l - r i c h l i q u i d i s 
expected. Hence, the e r r o r i n the slope of the q u a l i t y l i n e s 
e x i s t s even when the shape of the s a t u r a t i o n locus i s c o r r e c t . 

Extension of the San Andres D e s c r i p t i o n to A c i d Gas-Oil Mixtures 

Because of i n t e r e s t i n hydrogen s u l f i d e mixed w i t h carbon d i o x i d e 
as a d i s p l a c i n g medium, t h i s s e c t i o n explores c a l c u l a t i o n of exper­
imental data obtained from mixtures of carbon d i o x i d e and hydrogen 
s u l f i d e i n proportions of 80-20 or 70-30 mol%. Table XI reviews 
the a v a i l a b l e base o i l compositions. Yarborough (5) and Core Labo­
r a t o r i e s ( i n a p r i v a t e study f o r Amoco) have obtained data on 80-20 
C O 2 / H 2 S mixtures. The phase behavior observed by Core Laboratories 
i s s h i f t e d s l i g h t l y toward higher a c i d gas compositions due i n part 
to a s l i g h t d i f f e r e n c e i n the p r e p a r a t i o n of the a c i d gas; t h e i r 
a c i d gas was found to c o n t a i n 21 mol% H 2 S w h i l e Yarborough had 
20 mol%. In an e a r l i e r Core L a b o r a t o r i e s study data were obtained 
f o r a 70-30 p r o p o r t i o n of C O 2 and H 2 S . Because t h i s Core Labora­
t o r y study reported no composition, an o i l of composition s i m i l a r 
to O i l DS i s assumed. 

As i n the carbon d i o x i d e - o i l s t u d i e s , the philosophy of the 
present approach was that parameter adjustments f o r 0 1 I - H 2 S i n t e r ­
a c t i o n s were a l l that would be needed to b r i n g about agreement 
between experimental and c a l c u l a t e d v a l u e s . Tables I and I I show 
the recommended parameters f o r 14 pseudocomponents; a three pseudo-
component d e s c r i p t i o n was not prepared. Through t r i a l and e r r o r 
adjustments, an o v e r a l l f i t to the P-X locus was obtained f o r an 
80-20 r a t i o . Experimental and c a l c u l a t e d r e s u l t s are compared i n 
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20. C H A B A C K A N D T U R E K Phase Behavior of San Andres Formation Oils 427 

TABLE X I . COMPARISON OF SAN ANDRES OILS USED IN SOUR GAS STUDIES 

Component O i l DS O i l DSX 

N 2 
_ 1.08 

Ci 10.87 9.63 
C02 1.10 1.72 
C 2 3.66 4.60 
H 2S 0.10 0.41 
c 3 

4.35 5.41 
1C4 1.16 1.29 
nC4 4.36 4.11 
iC 5 1.82 1.96 
nC 5 2.73 2.66 
c 6 

2.77 6.48 
C7+ 67.08 60.65 

C7+ P r o p e r t i e s 

Mol Wt 223 232 
Sp Gr 0.8863 0.8880 

Figure 6. C a l c u l a t i o n s f o r Figure 6 were made using the composi­
t i o n of O i l DS shown i n Table X I . These parameters were then used 
to p r e d i c t the P-X locus f o r the 70-30 mixture. Comparison of c a l ­
c u l a t e d and experimental r e s u l t s are shown i n Figure 7, using 
O i l DS composition. 

Note that f o r the 80-20 a c i d gas the three-phase region i s 
found to extend across the e n t i r e composition range from the sat u ­
r a t i o n locus to v i r t u a l l y pure a c i d gas. This behavior c o n t r a s t s 
w i t h the very narrow region of three-phase e q u i l i b r i a observed f o r 
carbon d i o x i d e systems. For the 70-30 C02/H2S mixture three-phase 
behavior i s a l s o n e a r l y as w e l l represented w i t h the three-phase 
r e g i o n extending almost to the l i q u i d - l i q u i d branch. 

Table X I I compares two-phase e q u i l i b r i u m r e s u l t s f o r a compo­
s i t i o n near the drop l e t point of about 71 mol% added 80/20 a c i d 
gas. Note the e x c e l l e n t agreement f o r phase s p l i t and e q u i l i b r i u m 
phase compositions. The o i l - r i c h l i q u i d d e n s i t y i s i n e r r o r by 
about 2%, c h a r a c t e r i s t i c of San Andres Formation o i l - C 0 2 mixture 
c a l c u l a t i o n s g e n e r a l l y . 

Figures 8 and 9 compare constant composition volumetric expan­
s i o n (CCVE) data f o r the 80-20 and 70-30 C02/H2S mixtures. For the 
80-20 case, Figure 8 d i s p l a y s CCVE behavior f o r an a c i d gas concen­
t r a t i o n below the observed mixture c r i t i c a l p o i n t . The c a l c u l a t i o n s 
f o r 25 and 50 mol% added a c i d gas (us i n g the O i l DSX composition) 
are i n good agreement w i t h e x p e r i m e n t a l l y observed values. How­
ever, f o r compositions r i c h e r than the c r i t i c a l p oint (about 72 
mol% added a c i d gas) CCVE behavior i s not so w e l l represented. 

As shown i n Figure 6, the c a l c u l a t e d c r i t i c a l point i s too 
high by 1800 p s i a . A s i m i l a r e r r o r i s expected f o r the 70-30 case. 
This l a r g e e r r o r d i s t o r t s the p r e d i c t e d q u a l i t y l i n e s away from 
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Legend: 
Calc Oil DS: 14 C7+ Comps 

• Calc Critical Point: Oil DS 
Β Oil DS (Yarborough) Data 

Smoothed Data (DS and DSX) 
Δ Smoothed Data (DS and DSX) 
• Expt Critical Point 

I I I I 
2 0 4 0 6 0 Θ 0 

Mole Percent Added Acid Gas 

Figure 6. Acid Gas-Oil DS and DSX Systems: Comparison of Calcu­
l a t e d Versus Experimental S a t u r a t i o n Pressure L o c i at 105 F f o r 
20% H 2S/80% C0 2 i n the A c i d Gas. 
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C H A B A C K A N D T U R E K Phase Behavior of San Andres Formation Oils 

% 2 4 0 0 -1 

Legend: 
Oil DS: 14 C7+ ComDS 

• 
Δ 

Calc Critical Point: Oil DS 
Core Lab Expt Data 

Δ1 Π τ ^ · — 

i ; 
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Figure 7. Acid Gas-Oil DS System: Comparison of C a l c u l a t e d 
Versus Experimental S a t u r a t i o n Pressure L o c i at 105 F f o r 30% 
H 2S/70% C0 2 i n the A c i d Gas. 
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TABLE X I I . LIQUID-VAPOR EQUILIBRIUM COMPOSITIONS FOR OIL DS 
ACID GAS MIXTURE: COMPARISON OF EXPERIMENT1 WITH 
CALCULATIONS AT 105°F AND 1220 PSIA. 
BASIS: 71% ACID GAS: 80/20 C0 2/H 2S RATIO 

L i q u i d Vap( Dr 
Component Exp't Calc Exp't Calc 

Ci 3.26 2.94 9.54 7.14 
C02 52.20 56.04 76.90 76.05 
C 2 1.59 1.06 1.11 1.00 
H 2S 15.13 14.28 9.79 14.08 
c 3 

1.79 1.30 0.83 0.65 
1 C 4 0.41 0.35 0.17 0.12 
nC4 1.44 1.31 0.50 0.37 
c 5 

0.44 0.55 0.18 0.11 
nC 5 0.54 0.83 0.20 0.13 
c 6 

1.72 0.84 0.24 0.08 
C7+ 21.48 20.50 0.57 0.27 

C7+ P r o p e r t i e s 

Mole Wt. 223 223 
Sp. Gr. 0.8841 0.8863 

L i q u i d Phase 
Density (gm/cc) at 

1800 p s i a 0.826 0.844 
1500 p s i a 0.824 0.839 

Volume Percent 
L i q u i d 93 92.3 7 7.7 

e x p e r i m e n t a l data are taken from Yarborough ( 5 ) . 

those o c c u r r i n g experimentally because the q u a l i t y l i n e s converge 
at the c r i t i c a l p o i n t . 

For example, i n Figure 9 r e s u l t s f o r the 70-30 mixture are 
shown at 80 and 90 mol% added a c i d gas. Although no c r i t i c a l point 
was determined experimentally f o r the 70-30 case, based on the 
c r i t i c a l point l o c a t i o n f o r the 80-20 mixture these compositions 
are l i k e l y to l i e on the dew point side of the c r i t i c a l composi­
t i o n . Because the c a l c u l a t e d c r i t i c a l point occurs at a composi­
t i o n r i c h e r i n a c i d gas than expected e x p e r i m e n t a l l y , i t i s not 
s u r p r i s i n g that at 80 mol% added a c i d gas the c a l c u l a t e d r e s u l t s 
shown i n Figure 9 trend toward a bubble p o i n t , that i s , 100 volume 
percent l i q u i d , w h i l e the experimental data show a trend toward a 
dew p o i n t , that i s , zero volume percent l i q u i d . At 90 mol% added 
a c i d gas both the experimental and c a l c u l a t e d c r i t i c a l compositions 
are exceeded, and a dew point i s now c a l c u l a t e d . But the c a l c u ­
l a t e d dew point pressure remains too hig h . 
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Figure 8. Ac i d Gas-Oil DSX System: Comparison of C a l c u l a t e d 
Versus Experimental Phase D i s t r i b u t i o n s at 105°F f o r 25% and 50% 
Added Acid Gas w i t h 20% H 2S/80% C0 2 i n the Aci d Gas. 
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Figure 9. Acid Gas-Oil DS System: Comparison of C a l c u l a t e d 
Versus Experimental Phase D i s t r i b u t i o n s at 105 F f o r 80% and 90% 
Added Ac i d Gas wi t h 30% H 2S/70% C0 2 i n the Aci d Gas. 
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Conclusions 

With appropriate parameter adjustments of the type discussed here, 
the modified Redlich-Kwong equation of state i s capable of repro­
ducing the volumetric p r o p e r t i e s and complex phase e q u i l i b r i a e x h i ­
b i t e d by San Andres Formation o i l - a c i d gas systems. The adjusted 
parameters lead to p r e d i c t i o n of l i q u i d - v a p o r c r i t i c a l i t y , although 
the c a l c u l a t e d c r i t i c a l pressure i s too high by a s i g n i f i c a n t 
amount. Two-phase s a t u r a t i o n l o c i (L-L of L-V) are more a c c u r a t e l y 
reproduced than those f o r three phases (L-L-V). F i n a l l y , changing 
the r e p r e s e n t a t i o n of the C7+ f r a c t i o n from 14 to 3 pseudocompo-
nents does not s i g n i f i c a n t l y a f f e c t the p r e c i s i o n of the c a l c u l a t e d 
r e s u l t s . 

Glossary of Symbols 
C i j ' D i j = i n t e r a c t i o n parameters; 1 £ i £ NC, 1 £ j £ NC 
C. .= C . and D. . = D.. 

i J J 1 ! J J i 
NC = number of components 
R = gas constant 
Ρ = pressure of f l u i d 
P c£ = c r i t i c a l pressure of component i 
Τ = temperature of f l u i d 
T ^ = c r i t i c a l temperature of component i 
V = s p e c i f i c volume of f l u i d 
x^ = mole f r a c t i o n of component i 

Literature Cited 

1. Yarborough, L. In "Equations of State in Engineering and 
Research"; Chao, K. C.; Robinson, R. L., Eds.; ADVANCES IN 
CHEMISTRY SERIES No. 182, American Chemical Society: Washington D. 
C., 1979, pp. 385-439. 
2. Turek, Ε. Α.; Metcalfe, R. S.; Fishback, R. Ε. AIME Preprints 
1984, Society of Petroleum Engineers Paper No. 13117. 
3. Morris, R. W.; Turek, E. A. In "Equations of State Theories 
and Applications"; Chao, K. C.; Robinson, R. L., Eds.; ACS 
SYMPOSIUM SERIES, To be published, American Chemical Society: 
Washington, D. C., 1985. 
4. Bergman, D. F.; Tek, M. R.; Katz, D. L. "Retrograde Condensa­
tion in Natural Gas Pipelines"; AGA Project PR-26-69, 1975; pp. 
143-148. 
5. Yarborough, L. Internal Amoco Production Co. report. 
6. Standing, M. B.; Katz, D. L. AIME Pet. Div. Tech. 1942, 146, 
159-165. 
7. Edmister, W. C. Pet. Refiner 1958, 37, 173-178. 

RECEIVED November 8, 1985 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
02

0

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



21 

Application of Cubic Equations of State to Polar Fluids 

and Fluid Mixtures 

Gus K. Georgeton, Richard Lee Smith, Jr., and Amyn S. Teja 

School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100 

The limitations of cubic equations of state for 
phase equilibrium predictions involving polar fluids 
have been widely attributed to the inability of 
these equations to correlate the vapor pressures and 
densities of these fluids. This work examines the 
behavior of two and three constant cubic equations 
(in particular, those of Peng and Robinson, and 
Patel and Teja) in calculations of vapor-liquid 
equilibria, liquid-liquid equilibria and critical 
states of mixtures containing polar components. 

I n s p i t e of t h e i r l i m i t a t i o n s , cubic equations of st a t e are widely 
used i n phase e q u i l i b r i u m c a l c u l a t i o n s since they represent a 
s a t i s f a c t o r y compromise between accuracy and speed of 
computation. The t h e o r e t i c a l and p r a c t i c a l l i m i t a t i o n s of these 
equations have been discussed by a number of workers i n c l u d i n g 
Abbott (1) and V i d a l (2). In p a r t i c u l a r , the i n a b i l i t y of two-
constant cubic equations to a c c u r a t e l y p r e d i c t l i q u i d d e n s i t i e s 
has been documented i n some d e t a i l . V i d a l (2) has reviewed a 
number of three-cons tant cubic equations and shown that the 
a d d i t i o n of a t h i r d constant i n general leads to improved d e n s i t y 
p r e d i c t i o n s . 

I n t h i s work, we have compared r e p r e s e n t a t i v e s of two and 
three constant equations f o r t h e i r a b i l i t y to c o r r e l a t e d e n s i t i e s , 
vapor pressures, v a p o r - l i q u i d e q u i l i b r i a , l i q u i d - l i q u i d e q u i l i b r i a 
and c r i t i c a l s t a t es of mixtures c o n t a i n i n g polar components. 

Pure F l u i d C a l c u l a t i o n s 

As shown by Abbott, a general cubic equation may be w r i t t e n as 
fo l l o w s : 

"~2 
V + <5V + ε 

α (1) 

0097-6156/86/0300-0434$06.00/0 
© 1986 American Chemical Society 
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where p a r t i c u l a r choices f o r a, 3, δ and ε f o r two of the more 
popular two constant cubic equations (the Redlich-Kwong-Soave and 
the Peng-Robinson equations) are given i n Table I . Also shown i n 
Table I are these constants f o r some recent three-constant cubic 
equations, namely those proposed by Schmidt and Wenzel ( 3 ) , 
Harmens and Knapp (A), Hey en (_5) and Pa t e l and Teja (6). These 
three constant equations a f f o r d a means f o r g e n e r a l i z i n g the Soave 
and Peng-Robinson equations and of i n t e r p o l a t i n g among them. 
Thus, the Schmidt-Wenzel equation may be viewed as an 
i n t e r p o l a t i o n between the Soave equation (which gives good l i q u i d 
d ensity p r e d i c t i o n s f o r argon and methane, when ω * 0) and the 
Peng-Robinson equation (which gives good l i q u i d d e n s i t y 
p r e d i c t i o n s f o r η-heptane, when ω * 1/3). S i m i l a r l y , the P a t e l -
Teja equation reduces to the Soave equation when c = 0, to the 
Peng-Robinson equation when c = b and to the Schmidt-Wenzel 
equation when c = 3oib. Good den s i t y p r e d i c t i o n s can be obtained 
because of t h i s added f l e x i b i l i t y and, as shown below, these 
p r e d i c t i o n s a l s o extend to p o l a r components. 

As was demonstrated by Soave ( 7_), cubic equations may be used 
s u c c e s s f u l l y i n phase e q u i l i b r i u m c a l c u l a t i o n s i f the constant 'a 1 

i s made temperature dependent and i f t h i s temperature dependence 
i s obtained from the vapor pressure of the pure component. Two of 
the common temperature functions proposed f o r 'a' are discussed 
below. The f i r s t i s a q u a d r a t i c , o r i g i n a l l y proposed by Soave and 
l a t e r used s u c c e s s f u l l y i n the Peng-Robinson and other equations 
of s t a t e . This i s given by: 

α [TR] = a c { l + F ( l - T R
1 / 2 ) } 2 (2) 

Both Soave and Peng and Robinson, however, c o r r e l a t e d F w i t h the 
a c e n t r i c f a c t o r ω and t h e i r equations therefore worked best f o r 
nonpolar substances. P a t e l and Teja (6) l a t e r showed that i f F i s 
determined from the a c t u a l vapor pressures of the pure components, 
then the equation may a l s o be used f o r p o l a r substances. The 
f u n c t i o n a l form of the temperature dependence i s , however, 
i n c o r r e c t a t high reduced temperatures — since <*[TR] must 
decrease monotonously w i t h T R. Heyen suggested an exponential 
form f o r a[T R] which i s given by: 

a [T R] = a c exp {Κ (1 - T R
n ) } (3) 

This form i s u s e f u l f o r s u p e r c r i t i c a l gases such as H 2 and He and, 
indeed, because of the a d d i t i o n a l constant a v a i l a b l e f o r f i t t i n g , 
i t c o r r e l a t e s vapor pressures of many p o l a r compounds extremely 
w e l l (Table I I ) . However, as shown i n Figure 1 f o r ammonia, the 
two f u n c t i o n a l forms ( i n c l u d i n g t h e i r f i r s t , second and t h i r d 
d e r i v a t i v e s w i t h temperature) show s i m i l a r behavior over most 
p r a c t i c a l ranges of temperature. Moreover, as w i l l be shown 
below, any small improvement i n pure component vapor pressure 
r e p r e s e n t a t i o n i s not always apparent when mixture phase behavior 
i s c a l c u l a t e d . For most p r a c t i c a l purposes, t h e r e f o r e , the two 
forms are equivalent i n t h e i r a b i l i t y to p r e d i c t phase e q u i l i b r i a . 

I n order to compare the c o r r e l a t i v e and p r e d i c t i v e 
c a p a b i l i t i e s of the two and three constant cubics we show below 
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TABLE I . Choice of Constants f o r the 
General Cubic Equation 

2-constant 

SRK a[T] b b 0 

PR a[T] b 2b - b 2 

3-constant 
SW a[T] b b + 3ajb - 3u>b2 

HK a[T] b be ( c - l ) b 2 

H a[T] b[T] b[T] + c - b[T] c 

PT a[T] b b + c - be 

TABLE I I . The E f f e c t of D i f f e r e n t Forms 
of α on Vapor Pressures 

PT-1 PT-2 
Cons t a n t * Cons t a n t * * 

Compound PR-AP(AAD%) ΔΡ(ΑΑΡ%) ΔΡ(ΑΑΡ%) 

1-Bu tanol 10.81 7.13 1.33 

1-Pentanol 14.70 10.17 0.47 

1-Octanol 17.96 9.64 2.98 

A c e t i c Acid 6.69 2.36 1.32 

Buta note Acid 7.69 8.56 4.54 

Octanoic A c i d 12.71 5.87 1.33 

* P a t e l - T e j a equation w i t h Soave-type f u n c t i o n f o r 
ct[T J c o n t a i n i n g 1 constant. 

** P a t e l - T e j a equation w i t h Heyen-type f u n c t i o n f o r 
ot[T ] co n t a i n i n g 2 constants. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
02

1

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



GEORGETON ET A L . Polar Fluids and Fluid Mixtures 

Figure 1. Comparison of the Two Forms of α f o r Ammonia. 
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the r e s u l t s of our c a l c u l a t i o n s of l i q u i d d e n s i t i e s , vapor 
pressures, v a p o r - l i q u i d and l i q u i d - l i q u i d e q u i l i b r i a , and c r i t i c a l 
p o i n t s using the Peng-Robinson (PR) and P a t e l - T e j a (PT) equations. 

The P a t e l - T e j a equation may be w r i t t e n as: 

ρ = _ l î a[T] ( 4 ) 

V - b V(V + b) + c(V - b) v ' 

The equation of s t a t e constants may be obtained from the c r i t i c a l 
p o i n t by s e t t i n g : 

φτ = 0 ; = 0 ; ! p = ? c (5) 
c c e 

The t h i r d constant i n the equation of s t a t e allows ζ to be chosen 
f r e e l y , u n l i k e the case of the two constant equations. Acceptable 
p r e d i c t i o n of both low and high pressure d e n s i t i e s requires that, 
i n general, ζ be greater than the experimental c r i t i c a l 
c o m p r e s s i b i l i t y (Abbott (1)) and we have confirmed t h i s f o r a 
large number of substances. 

A p p l i c a t i o n of equation (5) leads to: 

2 2 

a - Ω (R Τ /Ρ ) (6) c a c e 

b = Qb (RT c/P c) (7) 

c - Ω (RT /Ρ ) (8) c c e 

where 

Β « 1 - 3ζ„ (9) 
c c 

Ω a 3 ζ β
2 + 3(1 - 2ζ + Ω ^ + 1 - 3ζ β (10) 

and Ω^ i s the smallest p o s i t i v e root of: 

S 3 + < 2 - 3 ç c > a b 2 + 3 ç c 2 a b - Ç c 3 = 0 

I t should be noted here that i f ζ = 0.3074, these equations 
reduce to the Peng-Robinson equation and i f ζ = 0.3333, they 
reduce to the Soave equation. The P a t e l - T e j a equation therefore 
r e t a i n s many of the u s e f u l features of the Soave and Peng-Robinson 
equations. 
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I f , f o r convenience, we choose the Soave-type f u n c t i o n f o r 
<*[T ] (equation 2) then the P a t e l - T e j a equation contains four 

s u b s t a n c e - s p e c i f i c parameters Τ ,Ρ , ζ and F ( f o r nonpolar 
substances, and F can be c o r r e l a t e d 0 w i t h ω, so that the 
equation contains only three subs t a n c e - s p e c i f i c parameters, as 
shown elsewhere (6)). In general, ζ and F are obtained from a f i t 
of vapor pressure and saturated l i q u i d d ensity data. D e t a i l s of 
the o b j e c t i v e functions and f i t t i n g procedures are given elsewhere 
( 6 ) . The constants are given i n Table I I I f o r 27 substances, 
i n c l u d i n g polar substances such as a l c o h o l s and a c i d s , along w i t h 
absolute average d e v i a t i o n s i n vapor pressures and saturated 
l i q u i d d e n s i t i e s f o r both the PT and PR equations of s t a t e . Table 
IV contains values of F and ζ f o r compounds determined p r e v i o u s l y 
(6_,8_). I t i s i n t e r e s t i n g to note that ζ i s found to be c l o s e to 
the SRK value of 0.3333 f o r small s p h e r i c a l molecules such as 
argon, methane, oxygen and nitrogen; and that i t Is c l o s e to the 
PR value of 0.3074 f o r moderately l a r g e hydrocarbons such as n-
heptane. What i s perhaps s u r p r i s i n g i s that a value c l o s e to 
0.3074 i s obtained f o r many moderately s i z e d molecules, i n c l u d i n g 
those that are p o l a r . The PR and PT equations therefore give very 
s i m i l a r p r e d i c t i o n s of l i q u i d d e n s i t i e s (and of de n s i t y - d e r i v e d 
p r o p e r t i e s such as p a r t i a l molar volumes) f o r moderately s i z e d 
molecules. A s i g n i f i c a n t improvement i n l i q u i d d e n s i t y p r e d i c t i o n 
i s seen when the PT equation i s used to c a l c u l a t e d e n s i t i e s of 
substances whose ζ i s very d i f f e r e n t from 0.3074. This i s shown 
i n Figure 2 f o r wa 8er and i n Figure 3 f o r methanol-water mixtures. 

Table I I I shows comparisons between the vapor pressures and 
l i q u i d d e n s i t i e s of polar molecules p r e d i c t e d by the PR and PT 
equations. Not unexpectedly, a l l o w i n g F to be determined from the 
a c t u a l vapor pressure, r a t h e r than the vapor pressure a t TR=0.7 
( i . e . from the a c e n t r i c f a c t o r ) and an n-alkane c o r r e l a t i o n , leads 
to s i g n i f i c a n t improvements i n p r e d i c t i o n s , e s p e c i a l l y f o r po l a r 
f l u i d s . Vapor pressure p r e d i c t i o n s can be f u r t h e r improved i f the 
exponential form ( w i t h two s u b s t a n c e - s p e c i f i c constants) i s used, 
as shown i n Table I I . However, f o r many substances over p r a c t i c a l 
ranges of reduced temperature, the two forms of a[T R] give 
e q u i v a l e n t r e s u l t s . A l l c a l c u l a t i o n s shown below therefore 
u t i l i z e the Soave-type temperature f u n c t i o n w i t h one substance-
s p e c i f i c constant F. 

One disadvantage of the PT equation i s that F (and ζ ) must 
be known f o r a l l pure f l u i d s of i n t e r e s t . For nonpolar f l u i d s , 
these constants can be r e l a t e d to the a c e n t r i c f a c t o r as f o l l o w s : 

2 
F = 0.452413 + 1.30982ω -0.295937ω (12) 

ζ - 0.329032 - 0.0767992ω + 0.0211947ω (13) c 

For these f l u i d s , the PT equation therefore uses the same input 
information as the PR equation (but i s b e t t e r able to p r e d i c t 
d e n s i t i e s of la r g e molecules f o r which ζ < 0.3074). These 
c o r r e l a t i o n s do not, however, hold f o r po l a r f l u i d s . We have 
therefore attempted to develop such c o r r e l a t i o n s f o r c l a s s e s of 
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TABLE III. Substance Dependent Constants ζ £ and F for Several Compounds 

ρ-Τ P-R 
Substance *c F ΔΡ(AAD%) ~Δρ(ΑΑΌ%) AP(AAD%) ~Δρ(ΑΑΌ%) 

Ammonia 0.283 0.642740 1.80 3.13 0.74 15.12 

Benzene 0.311 0.698911 1.70 3.30 1.97 3.45 

Toluene 0.306 0.753893 0.72 3.37 0.93 3.05 

0-Xylene 0.305 0.812845 0.70 3.40 0.76 3.66 

m-Xylene 0.301 0.816962 0.87 3.44 0.83 5.49 

p-Xylene 0.300 0.807023 0.82 3.44 0.92 5.73 

Me thanol 0.274 0.965347 1.96 3.87 5.39 21.73 

Ethanol 0.292 1.171714 1.13 3.99 1.12 10.89 

1-Propanol 0.302 1.211304 4.95 3.79 5.23 5.46 

1-Butanol 0.305 1.221182 7.13 3.41 10.81 3.98 

1-Pentanol 0.308 1.240459 10.17 3.08 14.70 2.88 

1-Hexanol 0.330 1.433586 8.42 8.29 14.64 13.02 

1-Heptanol 0.301 1.215380 13.62 3.31 22.16 5.95 

1-Octanol 0.308 1.270267 9.64 3.44 17.96 2.70 

Acetic Acid 0.258 0.762043 2.36 3.32 6.69 32.62 

Propanoic Acid 0.295 1.146553 5.64 4.80 5.25 42.81 

Butanoic Acid 0.329 1.395151 8.56 5.30 7.69 8.88 

Pentanoic Acid 0.292 1.174746 5.58 3.04 7.54 10.48 

Hexanoic Acid 0.291 1.272986 5.56 3.44 36.73 8.47 

Octanoic Acid 0.292 1.393678 5.87 2.93 12.71 10.96 

Decanoic Acid 0.290 1.496554 3.83 4.65 18.33 11.74 

Acetone 0.283 0.701112 1.34 3.23 2.66 15.73 

Diethyl Ether 0.308 0.787322 0.60 3.67 0.65 3.19 

Carbon 
Tetrachloride 0.314 0.694866 1.16 3.92 1.32 4.33 

Ethyl Acetate 0.296 0.842965 2.12 3.45 1.60 8.49 

nPropyl Acetate 0.295 0.882502 2.70 3.17 2.35 8.39 

Diethyl Ketone 0.294 0.826046 1.39 2.95 1.27 8.79 
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TABLE IV. Compilation of P r e v i o u s l y 
Determined Values of ζ and F c 

Compound Ç c F 

Argon 0.328 0.450751 
Nitrogen 0.329 0.516798 
Oxygen 0.327 0.487035 
Me thane 0.324 0.455336 
Ε thane 0.317 0.561567 
Ε thylene 0.313 0.554369 
Propane 0.317 0.648049 
Propylene 0.324 0.661305 
Acetylene 0.310 0.664179 
n- Buta ne 0.309 0.678389 
i-Bu tane 0.315 0.683133 
1-Butene 0.315 0.696423 
n-Pentane 0.308 0.746470 
i-Pentane 0.314 0.741095 
n-Hexane 0.305 0.801605 
η-Hep tane 0.305 0.868856 
n-Oc tane 0.301 0.918544 
n-Nonane 0.301 0.982750 
n-Decane 0.297 1.021919 
n-Undecane 0.297 1.080416 
n-Dodecane 0.294 1.115585 
n-Tridecane 0.295 1.179982 
n-Tetradecane 0.291 1.188785 
n-Heptadecane 0.283 1.297054 
n-Octadecane 0.276 1.276058 
n-Eicosane 0.277 1.409671 
Carbon Dioxide 0.309 0.707727 
Carbon Monoxide 0.328 0.535060 
S u l f u r Dioxide 0.310 0.797391 
Hydrogen S u l f i d e 0.320 0.583165 
Water 0.269 0.689803 
Cyclohexane 0.303 0.665434 
Quinoline 0.310 0.859036 
m-Cresol 0.300 1.000087 
Diphenyl Methane 0.305 1.082667 
1-Methyl Naphthalene 0.297 0.827417 
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Figure 3. Comparison of the Saturated L i q u i d D e n s i t i e s f o r 
Methanol-Water Mixtures a t 298.15K. 
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p o l a r f l u i d s by examining the d i f f e r e n c e s between F and ζ of 
these f l u i d s and those of n-alkanes c o n t a i n i n g the same number of 
carbon atoms. (This approach i s s i m i l a r i n p r i n c i p l e to the 
homomorph concept of Bondi and Simkin ( 9 ) ) . 

The normal alkanes show a great r e g u l a r i t y i n t h e i r behavior 
w i t h the number of carbon atoms. P r o p e r t i e s such as T C,P C,F 
and c c can therefore be c o r r e l a t e d a c c u r a t e l y w i t h the number of 
carbon atoms i n the molecule. This has been demonstrated f o r Τ 
and P c elsewhere ( 10) and i s shown f o r F and ζ i n Figures A and 
5. P r o p e r t i e s of r e l a t e d f l u i d s — such as i s o p a r a f f i n s , o l e f i n s , 
napthenic compounds — can then be determined from the n-alkane 
c o r r e l a t i o n s i f an e f f e c t i v e carbon number (ECN) i s used. The ECN 
i s the number of carbon atoms i n an n-alkane having the same 
normal b o i l i n g p o i n t as the f l u i d of i n t e r e s t . The ECN concept 
has been used s u c c e s s f u l l y by Ambrose (11) and more r e c e n t l y by 
Chase (12) and Willman and Teja (10) to p r e d i c t vapor pressures. 
I t should be added that the ECN can be, and u s u a l l y i s , non-
i n t e g r a l f o r compounds other than the n-alkanes. 

Since p o l a r f l u i d s do not f o l l o w the n-alkane c o r r e l a t i o n s , 
we have p l o t t e d F and ζ f o r c l a s s e s of these f l u i d s ( a l c o h o l s , 
c a r b o x y l i c a c i d s ) a g a i n s t carbon number and these c o r r e l a t i o n s are 
a l s o shown i n Figures A and 5. Not s u p r i s i n g l y , the n-alkane and 
p o l a r s e r i e s c o r r e l a t i o n s e x h i b i t the l a r g e s t d i f f e r e n c e s a t low 
carbon numbers. As the carbon number increases (beyond n-hexanol 
i n the case of the a l c o h o l s e r i e s and η-butyric a c i d i n the case 
of the c a r b o x y l i c a c i d s e r i e s ) , the curves approach the n-alkane 
c o r r e l a t i o n . 

I n general, the d i f f e r e n c e between F and ζ f o r p o l a r 
substances and those f o r the n-alkanes c o n t a i n i n g the same number 
of carbon atoms decreases as the hydrocarbon p a r t of a p o l a r 
molecule becomes more dominant. These d i f f e r e n c e s can a l s o be 
c o r r e l a t e d w i t h the ECN. Figures 6 and 7 show p l o t s 
of ψ and θ where these are defined by: 

* = ( F p o l a r / F H C > " 1 ( 1 4 ) 

and 

θ - Çc,HC * " «c.polar ( 1 5 ) 

As can be r e a d i l y seen from the diagrams, ψ and θ c o r r e l a t e w e l l 
w i t h the ECN. 

Therefore, f o r any pure component, the four parameters of the 
PT equation are obtained w i t h only a knowledge of the ECN, which 
i s obtained from the b o i l i n g p o i n t . T c and P c are obtained 
d i r e c t l y f o r each compound, as i n Reference 10, 
w i t h ζ and F obtained d i r e c t l y from c o r r e l a t i o n s only f o r the 
alkanes. For a l c o h o l s and a c i d s , the base values (alkanes) are 
determined along w i t h the c o r r e c t i o n s due to the p o l a r i t y 
e f f e c t s . These values are c a l c u l a t e d from c o r r e l a t i o n s w i t h ECN, 
and used to generate the ζ and F f o r the p o l a r compounds using 
equations 1A and 15. I t C i s expected that the constants f o r 
secondary and t e r t i a r y a l c o h o l s , f o r example, may be obtained from 
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COMPOUND CLASSES 
_AUCANES 
ALCOHOLS 
ACIDS 

, 
8 

ECN 

— Γ ­
Η 

Figure 4. C o r r e l a t i o n of F f o r Several Classes of Compounds. 
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COMPOUND CLASSES 
ALCOHOLS 
ACIDS 

2 4 β 8 10 12 14 
ECN 

Figure 6. C o r r e l a t i o n of the C o r r e c t i o n Parameter ψ f o r 
Alcohols and Acids . 

C D ! 

COMPOUND CLASSES 
ALCOHOLS 
ACIDS 

2 4 6 8 10 12 14 
ECN 

Figure 7. C o r r e l a t i o n of the C o r r e c t i o n Parameter θ f o r 
Alcoho l s and Acids . 
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those of the η-alcohols using the ECN concept. This approach 
therefore allows generalized constants to be developed f o r c l a s s e s 
of p o l a r f l u i d s . 

Mixture C a l c u l a t i o n s 

Equation 4 can be used f o r the c a l c u l a t i o n of mixture p r o p e r t i e s 
and phase e q u i l i b r i a i f the mixture constants a

m > b
m » c

m > a r e 

c a l c u l a t e d using the mixing r u l e s : 

a m - ΣΣ x , x . a 4 . (16) m i j i j 

b m = Σ x,b. (17) m i i 

c = Σ x.c. (18) m I i 

The choice of t h i s model i s , of course, completely a r b i t r a r y — 
p a r t i c u l a r l y i n the case of c . We have chosen a l i n e a r mixing 
r u l e f o r c m because i t i s simple and a l s o because, s e t t i n g c m = b m 

allows the equations to reduce to the PR case. This would not be 
p o s s i b l e i f a d i f f e r e n t mixing r u l e i s used f o r c . 

The c r o s s - i n t e r a c t i o n term a^j i n equation (16) i s evaluated 
using the combining r u l e : 

·« -hi ( 3 ϋ 3 ^ ) 1 / 2 ( 1 9 ) 

where ξ i s a binary i n t e r a c t i o n parameter which i s evaluated 
from experimental data. 

The PT and PR equations were used to c a l c u l a t e v a p o r - l i q u i d 
e q u i l i b r i a f o r a number of binary mixtures c o n t a i n i n g p o l a r 
components. A s i n g l e binary i n t e r a c t i o n c o e f f i c i e n t was used i n 
each case. O v e r a l l , the e r r o r s i n the c o r r e l a t i o n of bubble p o i n t 
pressures and vapor phase compositions could be reduced to s i m i l a r 
values f o r these two equations w i t h the use of binary i n t e r a c t i o n 
c o e f f i c i e n t s . However, as shown i n Figure 8, the VLE curve 
c a l c u l a t e d using the PR equation f o r a system such as toluene + 1-
pentanol i s d i s t o r t e d because of the i n a b i l i t y of the PR equation 
to p r e d i c t the vapor pressure of 1-pentanol a c c u r a t e l y . The 
d i s t o r t i o n i n the P-x-y diagram i s reduced considerably when the 
PT equation i s used and obviously depends on how w e l l the 
f u n c t i o n a[T R] represents the vapor pressure of the pure 
components. Thus the g r e a t e s t d i s t o r t i o n w i l l occur when the PR 
equation i s used to c a l c u l a t e VLE f o r systems c o n t a i n i n g 1-
hexanol, 1-heptanol, 1-octanol, hexanoic a c i d , decanoic a c i d , 
octanoic a c i d , e t c . as can r e a d i l y be determined from Table 3. 
This i s a l s o shown i n Figure 9 f o r the cyclohexane + 1-hexanol 
system. Not s u r p r i s i n g l y , improved density r e p r e s e n t a t i o n has 
l i t t l e e f f e c t on the VLE c a l c u l a t i o n s . However, a t high 
pressures, d e n s i t y e f f e c t s should become s i g n i f i c a n t although very 
few high pressure data are a v a i l a b l e f o r mixtures c o n t a i n i n g p o l a r 
components w i t h ζ « 0.3074. 
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The PT and nt equations were a l s o used to c a l c u l a t e l i q u i d -
l i q u i d e q u i l i b r i a f o r s e v e r a l binary systems c o n t a i n i n g p o l a r 
components. Again, the e f f e c t of improved d e n s i t i e s was not 
apparent i n the c a l c u l a t e d LLE curves. However, both equations 
were very poor i n t h e i r a b i l i t y to p r e d i c t LLE behavior w i t h the 
van der Waals mixing r u l e s , as can be seen i n Figure 10 f o r the 
methanol-heptane system and i t i s e n t i r e l y p o s s i b l e that 
s i g n i f i c a n t d i f f e r e n c e s would be observed w i t h , f o r example, 
density-dependent mixing r u l e s . Note that both equations of s t a t e 
p r e d i c t one l i q u i d phase which i s e s s e n t i a l l y pure methanol. 

The e f f e c t s of improved d e n s i t i e s can be r e a d i l y observed 
when c r i t i c a l l o c i are c a l c u l a t e d . This has been discussed i n 
d e t a i l elsewhere (13). We show here our c a l c u l a t i o n s f o r the 
argon + water system (Figures 11-12). Both the PR and the PT 
equation c o r r e l a t e the T c vs x^ and the P c vs T c behavior i n t h i s 
h i g h l y non-ideal system f a i r l y w e l l up to pressures of 50 MPa. 
The V c vs x^ behavior i s , however, considerably b e t t e r p r e d i c t e d 
by the PT equation, as evidenced i n Figure 11. One consequence of 
t h i s i s obvious i f the P C~V C~T C curve i s examined (Figure 12). As 
can be seen from the diagram, the P C~V C~T C curves (and hence the 
PVTx surfaces) c a l c u l a t e d using the PR and PT equations are 
d i s t o r t e d near the pure component ends of the curves due to t h e i r 
poor r e p r e s e n t a t i o n of pure-subs tance c r i t i c a l volumes. This 
d i s t o r t i o n i s greater f o r the PR equation than f o r the f cPT equation 
and cannot be overcome simply by s e t t i n g ζ = Ζ e x ^ (13) since 
t h i s d i s t o r t s the r e s t of the curve. 

Thus, high pressure phase e q u i l i b r i a — p a r t i c u l a r l y i n the 
c r i t i c a l region — must r e f l e c t t h i s d i s t o r t i o n i n the PVTx 
surface. Unfortunately, few data e x i s t i n t h i s region f o r p o l a r 
mixtures. Nevertheless, we can say w i t h some j u s t i f i c a t i o n that a 
three-cons tant cubic equation i s b e t t e r able to p r e d i c t the 
p r o p e r t i e s of mixtures a t high pressures when dens i t y e f f e c t s are 
s i g n i f i c a n t . I t may a l s o be advantageous to use three constant 
cubics w i t h density-dependent mixing r u l e s s i n c e the o v e r a l l 
r e p r e s e n t a t i o n of the PVTx behavior i s more r e a l i s t i c than i n the 
case of two-constant c u b i c s . 

Conclusions 

In t h i s work, the Peng-Robinson (PR) and P a t e l - T e j a (PT) equations 
were used as r e p r e s e n t a t i v e s of the c l a s s of cubic equations of 
s t a t e . Pure component vapor pressures and d e n s i t i e s , and VLE and 
LLE f o r mixtures of p o l a r compounds were examined along w i t h the 
a p p l i c a b i l i t y of the equations i n the c r i t i c a l region. In 
general, cubic equations of s t a t e can be extended r e a d i l y to p o l a r 
components i f a c t u a l vapor pressure data are used to 
o b t a i n a [ T R ] . However, the choice of f u n c t i o n a l form of α i s 
unimportant a t moderate c o n d i t i o n s a t which most data e x i s t . A 
s i g n i f i c a n t improvement i n d e n s i t i e s i s obtained i f the cubic 
equation uses a t h i r d constant (as i n the PT equation), which i s 
r e l a t e d to a c a l c u l a t e d c r i t i c a l c o m p r e s s i b i l i t y . Separate 
c o r r e l a t i o n s f o r determining substance dependent parameters are 
necessary f o r p o l a r compounds, but these parameters can be 
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LU Ο 
DC d 

PT EQUATION f-0.923 
PR EQUATION f-0.928 

Δ EXPERIMENTAL (16) 

0.0 0.2 0.4 0.6 O.fi 
METHANOL COMPOSITION 

Figure 1 0 . LLE i n the Methanol-Heptane System. 

• ο 
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EXPERIMENTAL (17) 

, , ! , , , , 1 
0.026 0.060 0.075 0.1O0 0.125 0.150 0.176 0.200 0.225 
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F i g u r e 1 1 . V c~x P r o j e c t i o n of the Argon-Water System i n the 
C r i t i c a l Region. 
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P e (MPa) 

Figure 12. PVT Diagram of the Argon-Water System i n the 
C r i t i c a l Region. 
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obtained w i t h only a knowledge of the b o i l i n g p o i n t . The e f f e c t 
of improved d e n s i t i e s i s not r e f l e c t e d i n low pressure VLE and LLE 
p r e d i c t i o n s i n terms of absolute d e v i a t i o n s . However, f o r VLE, 
the curves p r e d i c t e d w i t h the PT equation are l e s s skewed than 
those pr e d i c t e d w i t h the PR equation. An improvement due to 
be t t e r d e n s i t y r e p r e s e n t a t i o n might be no t i c e d i f density 
dependent mixing r u l e s are used. The c r i t i c a l l o c u s , nevertheless 
shows the dramatic e f f e c t of improved d e n s i t i e s , p a r t i c u l a r l y i f 
viewed i n three dimensions. 
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Parameters from Group Contributions Equation and 

Phase Equilibria in Light Hydrocarbon Systems 
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The Parameters From Group Contribution equation of 
state is applied to pure fluids and mixtures with 
emphasis on the representation of phase equilibria. 
Group parameters and group-interaction parameters were 
derived from published pure component data using a 
nonlinear, multiproperty fitting program. Comparisons 
of calculated and experimental vapor-liquid 
equilibrium phase compositions, volumetric properties, 
and enthalpy departures demonstrated the applicability 
of the PFGC equation to systems of hydrocarbons and 
hydrocarbons with water. Phase behavior of mixtures 
of light hydrocarbons with acid gases is also 
described over a fairly wide range of temperature and 
pressure. 

The use of equations of s t a te to desc r ibe the phase behavior and 
thermodynamic p rope r t i e s of l i g h t hydrocarbon systems i s we l l 
e s t a b l i s h e d . Among the more wide ly used c o r r e l a t i o n s are the 
Soave-Redlich-Kwong (1), Peng-Robinson (2), and S t a r l i n g - B e n e d i c t -
Webb-Rubin (3) equat ions . These equations were developed to 
desc r ibe the behavior of nonpolar or weakly po l a r substances. 
When r e s t r i c t e d to these types of systems a l l th ree equations 
y i e l d phase behavior p r e d i c t i o n s s u i t a b l e f o r many a p p l i c a t i o n s i n 
process des ign . At l e a s t two of these equat ions , the Soave-
Redlich-Kwong and the Peng-Robinson equat ions , have been extended 
t o hydrocarbon-water systems in an e f f o r t to desc r i be vapor-
l i q u i d - l i q u i d phase behav ior . 

Many problems encountered i n the gas process ing indus t ry 
i n vo l ve nonideal l i q u i d s o l u t i o n s . For example, dehydrat ion and 
hydrate i n h i b i t i o n processes may invo l ve mixtures of l i g h t 
hydrocarbons wi th aqueous methanol or g l y co l s o l u t i o n s . The 
Parameters From Group C o n t r i b u t i o n s , or PFGC, equat ion i s an 
equation of s t a t e analogy to an a c t i v i t y c o e f f i c i e n t equation 
which i s capable of de s c r i b i n g v a p o r - l i q u i d - l i q u i d e q u i l i b r i u m i n 
systems e x h i b i t i n g nonideal l i q u i d behav ior . As the name i m p l i e s , 
the parameters i n t h i s equation are der i ved from group 
c o n t r i b u t i o n techniques ra ther than c o r r e l a t i o n s w i th c r i t i c a l 
p r o p e r t i e s . This approach a l so o f f e r s p o t e n t i a l advantages i n 

0097-6156/B6/0300-0452$06.50/0 
© 1986 American Chemical Society 
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22. M A J E E D A N D WAGNER Parameters from Group Contributions Equation 453 

a p p l i c a t i o n s to systems i n v o l v i n g undefined mixtures of petroleum 
and s yn the t i c l i q u i d s . The f unc t i ona l groups in these types of 
mixtures can be i d e n t i f i e d by modern a n a l y t i c a l techniques such as 
NMR spectroscopy. Reduced r e l i a n c e on c r i t i c a l p rope r t i e s 
c o r r e l a t i o n s i n terms of s p e c i f i c g r a v i t y , average b o i l i n g p o i n t , 
c h a r a c t e r i z a t i o n parameters, e t c . , should lead to improved 
p r e d i c t i o n s of thermodynamic p rope r t i e s of s y n t h e t i c and natura l 
hydrocarbon systems. 

In t h i s paper we would l i k e t o share some of our experiences 
and r e s u l t s i n developing and eva lua t i ng the PF6C equation f o r 
l i g h t hydrocarbon systems. Our primary emphasis has been on the 
p r e d i c t i o n of phase behavior v i a equations of s t a t e f o r 
a p p l i c a t i o n s to process des ign. 

The PFGC Equation of S ta te 

The Parameters From Group Con t r i bu t i on s (PFGC) equat ion of s t a te 
was introduced by Cunningham and Wilson (4) i n 1974. The d e t a i l s 
of the model fo rmu la t ion and d e r i v a t i o n s of the equat ion are given 
by Cunningham ( 5 ) . A b r i e f summary i s inc luded here f o r 
convenience. 

The bas i s f o r the PFGC equation of s t a te l i e s in the 
assumption tha t the form of emp i r i c a l r e l a t i o n s h i p s which have 
s u c c e s s f u l l y descr ibed the excess Gibbs f ree energy of mixing can 
a l so be used as the bas i s f o r modeling the Helmholtz f ree 
energy. In a d d i t i o n , the void spaces between molecules in a 
mixture are assumed to be i d e n t i f i a b l e as an a d d i t i o n a l component 
des ignated as " h o l e s " . The volume i s evaluated as the molecular 
volume occupied by the component d i v i ded by the t o t a l volume. 
Inc lud ing an a r b i t r a r y parameter f o r one mole of ho le s , volume 
f r a c t i o n s can be converted to mole f r a c t i o n s . Using these 
r e l a t i o n s h i p s f o r mole f r a c t i o n s permits the Helmholtz f ree energy 
of mixing to be expressed as a f unc t i on of composit ion and volume. 

The Helmholtz f ree energy of mixing i s composed of two 
c o n t r i b u t i o n s : 

1. A modi f ied Flory-Huggins equation to account f o r entropy 
e f f e c t s due to d i f f e r e n c e s i n molecular s i z e , and 

2. A modi f ied Wilson equation which represents the 
i n d i v i d u a l groups i n a m ix tu re . 

Mo lecu la r a c t i v i t y c o e f f i c i e n t s co r rec ted f o r d i f f e r e n c e s i n 
molecular s i z e are c a l c u l a t e d as the sum of group a c t i v i t y 
c o e f f i c i e n t s which, i n t u r n , are determined by group composit ion 
ra ther than by molecular compos i t ion. 

The Helmholtz f ree energy i s w r i t t e n as 

A n T b T 

ΤΓΓ- J N I I n - T 1 * ^ 
1 V 

-nb (£-) I ψ. In (-
D j . ι 

nb) I In (L^.) 
nb + nb Υ λ... 

— - ) ΤλΤΤ (1) 
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454 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

where upper case s ub sc r i p t s r e f e r to molecular p r o p e r t i e s , lower 
case s ub s c r i p t s r e f e r to group p r o p e r t i e s , and 

η = t o t a l number of moles 

b = t o t a l molecular volume = ^ Xj bj 

bj = volume of one mole of molecules of type I = | mj^ b^ 

b-j = volume of one mole of groups of type i 

mj.j = number of groups of type i i n molecule I 

b^ = volume of one mole of holes 

V = t o t a l volume 

C = a un i ve r sa l constant in the modif ied Wilson equation 

s = I Xj Sj = ex te rna l degrees of freedom parameter f o r the 
I mixture 

s j = £ mj.j s.j = ex te rna l degrees of freedom parameter f o r 
ι molecules of type I 

Sj = ex te rna l degrees of freedom parameter f o r groups of 
type i 

E^j = i n t e r a c t i o n energy between groups i and j 

λΊ·,· = EXP(-Ε Ί·j/kT) = i n t e r a c t i o n parameter between groups i 
and j 

I x i m i i b i 

ψ.,· = jjj = group f r a c t i o n of type i 

The PFGC equation of s t a te fo l l ows d i r e c t l y from the 
express ion f o r the Helmholtz f r ee energy of mixing by using the 
f o l l o w i n g thermodynamic r e l a t i o n s h i p : 

7ΓΓ = " W ^ Τ , η ( 2 ) 

Thus, i n terms of c o m p r e s s i b i l i t y f a c t o r , the PFGC equation of 
s t a te can be w r i t t e n as 
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22. MAJEED AND WAGNER Parameters from Group Contributions Equation 455 

(3) 

where ν i s the molar volume. 
Taking c/b H as a " u n i v e r s a l " cons tant , there are three bas ic 

parameters i n the PFGC equat ion: 

( 1 ) Ε Ί·,·, the i n t e r a c t i o n energy between groups 
(2) b j , the volume of one mole of groups of type i 
(3) S j , a parameter p ropo r t i ona l to the externa l degrees of 

Note that three parameters must be known f o r groups ins tead of 
molecu les . The i n t e r a c t i o n energy i s evaluated as 

where a^,- i s an i n t e r a c t i o n c o e f f i c i e n t . When a^- i s u n i t y , the 
mixture p rope r t i e s are near ly i d e a l . If a-jj i s l e s s than one, 
d e v i a t i o n s from i d e a l i t y are i n the p o s i t i v e d i r e c t i o n ; f o r a^j 
g reater than one, dev i a t i on s from i d e a l i t y are i n the negat ive 
d i r e c t i o n . The group i n t e r a c t i o n energy i s s l i g h t l y temperature 
dependent. For convenience, the f o l l o w i n g form i s used (6) 

Thus, the PFGC equation of s t a te i n . i t s f i n a l form has f i v e 
ad ju s tab le parameters: S j , b j , E j j ( ° ' , E j j ' 1 ' , and E j ^ 2 ' . In 
a d d i t i o n , there i s one b inary i n t e r a c t i o n c o e f f i c i e n t f o r each 
p a i r of groups. A p p l i c a t i o n of the equation of s t a te to the 
p r e d i c t i o n of thermodynamic p rope r t i e s i s s t r a i g h t - f o r w a r d once 
appropr ia te group parameters are a v a i l a b l e . 

The PFGC equation of s t a te w r i t t e n in terms of 
c o m p r e s s i b i l i t y f a c t o r e x h i b i t s cub i c - t ype behav ior . Several 
i t e r a t i v e schemes can be app l i ed to f i n d the l i q u i d - l i k e and/or 
v a p o r - l i k e roots of Equation 3. Moshfeghian, et a l . (6) used a 
d i r e c t s u b s t i t u t i o n method. However, a t h i r d - o r d e r i t e r a t i o n 
method us ing a Richmond convergence scheme has been found to 
improve both the speed and r e l i a b i l i t y of the c a l c u l a t i o n s . The 
bas i c a l go r i thm i s given by Lapidus (7) as 

freedom per group i 

(5) 

2f(Xj ) f i x , ) 
(6) 

2 C f ( X i ) ] 2 - f ( X j ) f t x j ) 

S e t t i n g χ = b/v, Equation 3 can be w r i t t e n as 
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f (x) - (1 • S)X • {J - S 1(1 (1-X) 

• b ( f ) I *, (1 - l λ ) J i — (7) 
" H i 1 j 1 J 1 - χ + χ l + J λ.. 

J 

The f i r s t and second d e r i v a t i v e s are 

f (x) = 1 + s * — + b (£-) Σ «. [ * Ρ - 1] (8) 
b H i 1 (1 - χ + χ I * j ^ j ) 2 

J 

and 

ς r 1 ~ Σ ψ, λ. . 
f " ( x ) = 5

 7 + 2b (<L) I ψ. J - 1 J

 3 

(1 - x ) Z b H i 1 (1 - x + x ι * j 
J 

Other thermodynamic funct ions and p rope r t i e s can a l so be 
der i ved from the equation of s t a t e . For phase e q u i l i b r i u m 
c a l c u l a t i o n s , the f u gac i t y c o e f f i c i e n t f o r component I in a 
multicomponent mixture i s given by 

V l u 

Using t h i s d e f i n i t i o n with Equation 3 leads to 

In Φ ι = [̂ 1 ν - ^ b j ν - S j ] In ( 1 - ^ ) 

b 

(9) 

(10) 

+ ( f - ) ί I m n b i In (· 
H i 1 1 1 

v - b + b l * j xiU 

b. - Σ m n b, λ, . 
- b l ψ. — y _ J _ J l } (11) 

i · ν - b + b I x.. 

Express ions have a l so been der ived to the chemical p o t e n t i a l and 
the i sothermal e f f e c t of pressure on enthalpy ( 6 ,8 ,9 ) . 

To obta in values f o r the group parameters in the PFGC 
equation of s t a t e , severa l steps have been f o l l o w e d . F i r s t , 
groups were s e l e c ted t o represent the components of i n t e r e s t . 
Data f o r those components which were i d e n t i f i e d by a s i n g l e group, 
such as methane and carbon d i o x i d e , were used to obta in pure group 
parameters f o r these groups/components. Parameters f o r other 
types of groups are more d i f f i c u l t to obta in and requ i re a 
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22. M A J E E D A N D WAGNER Parameters from Group Contributions Equation 457 

cons ide rab le amount of judgement i n the f i t t i n g procedures. For 
example, p re l im ina r y est imates of the methyl and methylene group 
parameters were obtained from thermodynamic data f o r ethane and 
e thy lene , r e s p e c t i v e l y . The f i n a l methyl and methylene group 
parameters, as wel l as the group b inary i n t e r a c t i o n c o e f f i c i e n t , 
were der ived from a simultaneous regress ion using data f o r butane, 
hexane, octane, and heptadecane. Parameters were f i t to minimize 
the average abso lute e r r o r i n pure component vapor p res sure . 
However, care was exerc i sed to mainta in reasonable q u a l i t y f o r 
vo lumetr i c and enthalpy departure p r e d i c t i o n s . 

Mixtures of d i f f e r e n t components were used to obta in group 
b inary i n t e r a c t i o n c o e f f i c i e n t s . These i n t e r a c t i o n c o e f f i c i e n t s 
were se l ec ted to minimize average abso lute percentage e r ro r s i n 
e q u i l i b r i u m K-values f o r each component i n the m i x tu re . Group 
parameters are l i s t e d i n Table I. 

A p p l i c a t i o n s 

Vapor P res sure . A bas i c requirement of any equation of s t a te 
which w i l l be used f o r phase e q u i l i b r i u m c a l c u l a t i o n s i s that pure 
component vapor pressures must be p red i c ted a c c u r a t e l y . Table II 
prov ides a comparison of p red i c ted and experimental vapor 
pressures f o r severa l p a r a f f i n hydro-carbons. E r ro r s i n vapor 
pressure p r e d i c t i o n s us ing the Soave-Redlich-Kwong (SRK) equat ion 
of s t a te are inc luded f o r comparison. Percentage e r ro r s i n 
c a l c u l a t e d vapor pressure of isopentane as a f unc t i on of reduced 
temperature are shown i n F igure 1. This type of e r r o r 
d i s t r i b u t i o n i s t y p i c a l of the PFGC equation of s t a te and i s very 
s i m i l a r to that of the cub ic SRK equat ion . However, average 
abso lute percentage e r ro r s i n pure component vapor pressure are on 
the order of two to ten times g reater us ing the PFGC equat ion. 

One l i m i t a t i o n of the PFGC equation with the cur rent set of 
groups i s the i n a b i l i t y of t h i s group c o n t r i b u t i o n method to 
d i s t i n g u i s h the e f f e c t of molecular s t r u c t u r e on phy s i ca l 
p r o p e r t i e s . This i s ev ident i n the average abso lute e r ro r s in 
p red i c ted vapor pressures f o r 2-methylpentane and 3 -methy l -
pentane. In terms of group compos i t ion, these two components are 
i d e n t i c a l . 

The PFGC equation does p r ed i c t pure component vapor pressures 
f a i r l y w e l l , e s p e c i a l l y con s ide r i ng the number of parameters 
a v a i l a b l e . For example, only eleven parameters are used to 
desc r ibe the pure component p rope r t i e s of a l l the normal alkanes 
- - two sets of f i v e group parameters plus one b inary i n t e r a c t i o n 
c o e f f i c i e n t . In c o n t r a s t , the SRK equation of s t a t e i nc ludes 
th ree parameters f o r each pure component. 

Molar Volumes. A bas i c problem wi th cub ic equations of s t a t e 
i s the a b i l i t y to p red i c t both phase behavior and vo lumetr ic 
p r ope r t i e s we l l (17) . The PFGC equation e x h i b i t s t h i s same 
behav ior . Abso lute average percentage e r ro r s i n c a l c u l a t e d l i q u i d 
and vapor volumes are summarized in Table II I f o r t y p i c a l 
p a r a f f i n s , o l e f i n s , a romat ic s , and nonhydrocarbons. E r ror s i n 
c a l c u l a t e d volumes using the SRK equation of s t a t e are inc luded 
f o r comparison. 
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460 E Q U A T I O N S O F S T A T E : T H E O R I E S A N D A P P L I C A T I O N S 

TABLE I I . COMPARISON OF VAPOR PRESSURE PREDICTIONS 

Average Absolute Percent E r ro r 
No. of 

Component PFGC SRK Po ints Ref, 

Methane 2.38 1.50 21 10 
Ethane 3.60 1.59 38 10 
Propane 5.32 1.06 45 10 
i -Butane 1.89 .86 25 11 
n-Butane 5.66 1.62 52 10 
i -Pentane 1.16 1.13 38 12 
n-Pentane 6.46 1.55 55 10 
n-Hexane 1.95 1.33 44 11 
n-Heptane 4.47 1.05 61 10 
n-Octane 3.45 1.22 62 10 
n-Nonane 3.72 1.16 27 13 
n-Decane 2.15 1.15 27 13 
n-Tetradecane 5.78 2.31 27 13 
n-Pentadecane 7.86 2.94 27 13 
n-Hexadecane 9.90 2.29 27 13 
n-Heptadecane 13.16 4.07 27 
2-Methylpentane 14.80 1.07 58 10 
3-Methylpentane 6.43 1.40 58 10 
2,3-Dimethylbutane 13.10 1.13 59 13 

Ni t rogen 1.86 0.78 60 14 
Carbon D iox ide 6.94 .47 48 15 
Hydrogen S u l f i d e 0.94 .91 30 16  P
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F igu re 1 Dev ia t ions i n vapor pressure p r e d i c t i o n s f o r i s o -
pentane (16) . 

TABLE I I I . AVERAGE ABSOLUTE PERCENT ERRORS IN MOLAR VOLUMES 

L i q u i d Vapor 
Component PFGC SRK No. P t s . PFGC SRK No. P t s . Ref. 

Methane 7.11 4.51 62 3.79 2.19 95 18 
Ethane 3.25 6.59 58 4.94 3.01 77 19 
i so-Pentane 14.14 12.42 38 6.19 7.48 83 12 
n-Hexane 2.86 19.44 44 8.40 3.02 69 11 
Ethylene 3.81 8.11 63 9.50 3.22 108 20 
Propylene 1.76 8.60 63 4.72 2.56 64 21 
1-Butene 2.48 12.96 27 27.50 3.19 27 11 
Benzene 6.55 14.16 48 12.33 1.85 48 11 
Toluene 16.05 16.98 61 5.04 1.74 61 10 
Ni t rogen 1.77 3.91 81 9.32 1.30 116 14 
Carbon Monoxide 17.40 4.67 25 6.31 2.36 67 11 
Carbon D iox ide 12.20 15.08 60 13.30 4.05 71 15 
Hydrogen S u l f i d e 4.86 6.85 27 4.95 5.24 66 16 
S u l f u r D iox ide 7.83 19.54 34 14.2 7.61 64 11 
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462 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

F igu re 2 i l l u s t r a t e s the performance of the two equations f o r 
p r e d i c t i n g the molar volumes of saturated i sopentane. The SRK 
equat ion p r ed i c t s l i q u i d volumes that are too h i gh , e s p e c i a l l y 
near the c r i t i c a l p o i n t . In c o n t r a s t , the PFGC equation p r e d i c t s 
molar l i q u i d volumes that are too low. In gene ra l , abso lute 
e r r o r s i n l i q u i d volumes are about the same f o r the two equat ions . 

E r ro r s i n p red i c ted vapor volumes are of the same order of 
magnitude f o r the two equat ions . P r ed i c t i o n s of molar volumes can 
be improved somewhat, but only at the expense of vapor pressure or 
phase behavior p r e d i c t i o n s . In f i t t i n g group parameters we have 
t r i e d to minimize e r ro r s i n vapor pressure p r e d i c t i o n s wh i le 
ma in ta in ing reasonable accuracy of vo lumetr i c p r e d i c t i o n s . 

Vapor -L iqu id E q u i l i b r i u m . The c a p a b i l i t i e s of the PFGC 
equation of s t a t e i n p r e d i c t i n g the phase behavior and phase 
composit ions has been eva luated f o r a v a r i e t y of systems, 
i n c l u d i n g those conta in ing both hydrocarbon and nonhydrocarbon 
components. Examples of e r ro r s in p red i c ted K-values and l i q u i d 
volume f r a c t i o n s are presented in Tables IV and V. Inspect ion of 
these t ab l e s shows a f a i r l y good agreement between experimental 
and c a l c u l a t e d phase behavior f o r both hydrocarbon-hydrocarbon and 
hydrocarbon-non-hydrocarbon b inary systems. 

One of the d i f f i c u l t i e s i n us ing the group c o n t r i b u t i o n 
techn ique i nvo l ve s the use of the same group b inary i n t e r a c t i o n 
c o e f f i c i e n t s f o r both pure components and mix tu re s . For example, 
the b inary i n t e r a c t i o n c o e f f i c i e n t between the -CH3 and =CH2 
groups in to luene was opt imized using vapor pressure data f o r 
t o l uene . However, the same i n t e r a c t i o n c o e f f i c i e n t i s a key 
v a r i a b l e i n ob ta in i ng good p r e d i c t i o n s of to luene K-values i n 
mixtures of p a r a f f i n s . This problem i s c h a r a c t e r i s t i c of a group 
c o n t r i b u t i o n technique where the number of groups are much sma l l e r 
than the number of components. The group parameters and the 
b inary i n t e r a c t i o n c o e f f i c i e n t s represent a d e l i c a t e balance 
between the a b i l i t y to p r ed i c t pure component thermodynamic 
p rope r t i e s and the representa t ion of multicomponent v a p o r - l i q u i d 
e q u i l i b r i a . 

The performance of the PFGC equation i n p r e d i c t i n g the phase 
behavior and vo lumetr i c of multicomponent natura l gas and 
ret rograde condensate types of systems has been d iscussed by 
Wagner et a l . (59). For heav ier m ix tu re s , the phase behavior of a 
s y n t h e t i c o i l w i th high carbon d i ox i de contents represents an 
extreme t e s t of the PFGC equat ion . Using group i n t e r a c t i o n 
c o e f f i c i e n t s der i ved from carbon d i ox i de - hydrocarbon b inary 
systems, the PFGC equation p red i c ted reasonably we l l the 
s a t u r a t i o n pressures of the mixture with carbon d i ox i de contents 
up to 97 mole percent (69) as shown i n F i gure 3. 

Aqueous L i gh t Hydrocarbon Systems 

For a p p l i c a t i o n s of the PFGC equation to aqueous systems, two 
group i n t e r a c t i o n c o e f f i c i e n t s were def ined f o r the var ious phases 
p resent . One b inary group i n t e r a c t i o n c o e f f i c i e n t i s used f o r 
both the vapor and hydrocarbon-r ich l i q u i d phases; a second group 
i n t e r a c t i o n c o e f f i c i e n t i s used f o r the aqueous l i q u i d phase. 
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i so-pentane (16) 
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468 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

F igure 3 Experimental and p red i c ted bubble po int pressures f o r 
a s y n t h e t i c o i l w i th vary ing carbon d i ox i de content (140) 
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22. M A J E E D A N D WAGNER Parameters from Group Contributions Equation 4 6 9 

Data f o r mixtures of water wi th l i g h t hydrocarbons, carbon 
d i o x i d e , hydrogen s u l f i d e , n i t r o gen , and carbon monoxide were used 
to de r i ve b inary group i n t e r a c t i o n c o e f f i c i e n t s f o r the aqueous 
phase. These i n t e r a c t i o n c o e f f i c i e n t s were f i t to minimize the 
average abso lute e r ro r s in the composit ion of each phase. Some of 
the nonhydrocarbon-water group i n t e r a c t i o n c o e f f i c i e n t s were found 
to be l i n e a r l y dependent on abso lute temperature. 

Table VI summarizes the e r ro r s i n p red i c ted phase 
composit ions f o r severa l b inary water-hydrocarbon and water-
nonhydrocarbon systems. For p a r a f f i n s and o l e f i n s , the PFGC 
equat ion g ives e x c e l l e n t p r e d i c t i o n s of the vapor, hydrocarbon 
l i q u i d , and aqueous l i q u i d phases up to approximately 9000 p s i a . 
V a p o r - l i q u i d - l i q u i d p r e d i c t i o n s f o r the b inary systems of water 
wi th carbon d i o x i de and hydrogen s u l f i d e are good up to 3000 
p s i a . The a b i l i t y of the PFGC equation to handle these nonideal 
aqueous mixtures i s a r e s u l t of using an a c t i v i t y c o e f f i c i e n t 
model as a t h e o r e t i c a l bas i s f o r the equat ion of s t a t e . 

Other A p p l i c a t i o n s 

We have r ecen t l y l i n ked the PFGC equation of s t a te w i th Pa r r i s h 
and P rau sn i t z (68) hydrate model as modi f ied by Menton, P a r r i s h 
and Sloan (69). The p re l im ina r y r e s u l t s of t h i s e f f o r t are very 
promis ing (59), and we are cont inu ing our eva lua t i on of the 
p r e d i c t i o n of hydrate format ion cond i t i on s below the i c e po i n t . 
Procedures are a l so being developed to extend the PFGC equation t o 
mixtures of undefined components in natura l gas condensates and 
crude o i l s . 

Summary 

The PFGC equation of s t a te has the c a p a b i l i t y to p r e d i c t vapor-
l i q u i d e q u i l i b r i u m and vo lumetr i c p rope r t i e s f o r a v a r i e t y of 
l i g h t hydrocarbon and hydrocarbon-water systems. In gene ra l , the 
q u a l i t y of the p r e d i c t i o n s i s qu i t e good cons ide r ing the small 
number of group parameters a v a i l a b l e to desc r ibe a l a rge number of 
components. In more p r a c t i c a l terms, the PFGC equation i s 
s u i t a b l e f o r process des i gn/s imu la t ion c a l c u l a t i o n s f o r many l i g h t 
hydrocarbon systems. Although the Soave-Redlich-Kwong and Peng-
Robinson equations of s t a te are more r e l i a b l e f o r "normal " 
hydrocarbon systems, the PFGC equation has an advantage in aqueous 
systems with both hydrocarbons and nonhydrocarbons. 
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23 
Convergence Behavior of Single-Stage Flash 

Calculations 

Marinus P. W. Rijkers1 and Robert A. Heidemann 

Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, 
Alberta T2C 1R4, Canada 

Flash calculation procedures have been 
investigated to determine when a flash routine (1) 
converges to the trivial solution or (2) converges 
very slowly or not at all . The two mixtures used as 
the basis for the study are a CO2 containing natural 
gas and a CO2-H2S-CH4 mixture that shows liquid-liquid 
separations. The Peng-Robinson equation was used to 
describe all the equilibrium phases. The computation 
method is the successive substitution procedure with 
four different approaches for updating the Κ values. 

When a s i n g l e equation of s t a t e i s used to model a l l the e q u i l i b r i u m 
phases i n a f l a s h c a l c u l a t i o n , a t r i v i a l s o l u t i o n can be reached i n 
which the c a l c u l a t e d phases are i d e n t i c a l and have a l l the p r o p e r t i e s 
of the feed stream. The necessary c o n d i t i o n s f o r e q u i l i b r i u m , i . e . , 

g± = In f ±
V - in f . L = 0 ; i=l , . . . , N (1) 

are obviously s a t i s f i e d by such a s o l u t i o n . 
Most of the p r a c t i c a l equations of s t a t e have at most three-

volume roots at any pressure and temperature. Whenever three volume 
roots are obtained f o r the feed mixture i t i s p o s s i b l e to avoid the 
t r i v i a l s o l u t i o n s ince a " l i q u i d " feed and "vapor" feed can be 
assigned d i f f e r e n t volumes at the f l a s h c o n d i t i o n s and the 
f u g a c i t i e s i n the l i q u i d - l i k e and v a p o r - l i k e phases w i l l s u r e l y be 
d i f f e r e n t . The problems w i t h t r i v i a l s o l u t i o n s can occur only at Τ 
and Ρ c o n d i t i o n s where the equation of s t a t e f o r the feed mixture 
has only one p o s i t i v e r e a l volume roo t . 

There have been s e v e r a l suggestions made f o r o b t a i n i n g from an 
equation of s t a t e a " l i q u i d - l i k e " or " v a p o r - l i k e " volume, as needed, 
i n regions where there i s only one volume root (1-4). These ideas 
are reported to be h e l p f u l i n avoiding t r i v i a l s o l u t i o n s i n 

7Current address: Technische Hogeschool Delft, The Netherlands. 

0097-6156/ 86/ 0300-0476506.00/ 0 
© 1986 American Chemical Society 
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23. RIJKERS A N D H E I D E M A N N Single-Stage Flash Calculations All 

s i m u l a t i o n s where many e q u i l i b r i u m c a l c u l a t i o n s are performed i n 
sequence. 

An a l t e r n a t i v e approach i n d e a l i n g w i t h successive e q u i l i b r i u m 
computations has been to use converged s o l u t i o n s at one or more 
po i n t s to i n i t i a t e a new computation (5-7). I t i s assumed that 
i n i t i a t i n g near the s o l u t i o n has the advantage of reducing the number 
of i t e r a t i o n s r e q uired to reach convergence and of i n c r e a s i n g the 
p r o b a b i l i t y of convergence to the c o r r e c t , n o n - t r i v i a l , s o l u t i o n . 

I t has a l s o been reported t h a t , i n general, f l a s h r o u t i n e s can 
converge very slowly i n some parts of the P-T co-existence region. 
Michelsen (8,9) has presented an a n a l y s i s of the conventional 
successive s u b s t i t u t i o n method and has shown very c l e a r l y that 
r a p i d convergence could not be expected at c o n d i t i o n s c l o s e to the 
c r i t i c a l point of the mixture being f l a s h e d . 

In t h i s paper, a study has been performed to determine the 
e f f e c t of the i n i t i a t i o n procedure on whether or not the t r i v i a l 
s o l u t i o n i s reached. A l s o , s e v e r a l a l t e r n a t i v e f l a s h c a l c u l a t i o n 
algorithms have been examined to see what convergence behavior can 
be expected i n a l l p a r t s of the phase diagram. 

I n i t i a t i o n 

The c a l c u l a t i o n s performed here are a l l based on use of Κ 
values. For substance i , present i n the l i q u i d and vapor phases w i t h 
mole f r a c t i o n s x̂ , and y^, r e s p e c t i v e l y , the phase d i s t r i b u t i o n coef­
f i c i e n t s are defined by 

The K. are e v e n t u a l l y to be found from the Peng-Robinson equation of 
s t a t e 1 ( 1 0 ) . 

The t r i v i a l s o l u t i o n i s c h a r a c t e r i z e d by K_ = l f o r a l l i . I n i ­
t i a t i n g computations w i t h values near u n i t y would appear to r i s k 
convergence to the t r i v i a l s o l u t i o n . 

A widely used procedure i s to i n i t i a t e from Raoult's law, 
K^=P^S/P where P_^S i s the vapor pressure of substance i at the e q u i ­
l i b r i u m temperature. A proposal a s c r i b e d to G.M. Wilson permits 
e s t i m a t i o n of these Raoult's Law Κ values from the pure component 
c r i t i c a l p r o p e r t i e s and a c e n t r i c f a c t o r s , i . e . 

I t would be impossible to examine a l l p o s s i b l e ways f o r i n i ­
t i a t i n g the K^. We have chosen to vary the i n i t i a l Κ values from 
u n i t y through the Wilson values according to 

K. = y./x. (2) 

in Κ :. = in(? /P) + 5.37 (1 + ω.)(1-Τ /Τ) 
^ C i 1 i 

(3) 

in Κ = α £n 

where α i s a s c a l a r . The o v e r l i n e s are meant to show that in Κ and 
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478 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

in are vector q u a n t i t i e s . The Κ values obtained from (4) are 
u n i t y when α = 0 and are the Wilson R a o u l t f s law values when α= 1. 
We have found i t u s e f u l to vary α i n the i n t e r v a l 0 < α £ 1.5 and to 
observe the converged f l a s h c a l c u l a t i o n s to see f o r what values of α 
the t r i v i a l s o l u t i o n i s obtained. 

F l a s h C a l c u l a t i o n s 

Given the Κ values i t i s p o s s i b l e to compute how a given feed 
mixture separates i n t o two phases. The mass balance equations are 
organized as described, f o r in s t a n c e , by N u l l (11), i . e . , f o r one 
mole of feed w i t h mole f r a c t i o n s z^, 

(1-ν)χ± + V K ± x ± = z±9 (5) 

hence, x± « z±/[l + (K -1)V] (6) 

and y - Κ ζ / [ l + (K -1)V] (7) 

The l i q u i d and vapor mole f r a c t i o n s must sum to u n i t y , or 

h(v) - I (y.-χ,.) - I ( K r i ) Z j / [ i + ( K r i ) v ] = o (8) 

F i n a l l y , equation (8) i s an equation i n one unknown, V, which can be 
solved by the Newton-Raphson procedure. The r e s u l t i n g value of V, 
when s u b s t i t u t e d i n t o equations (6) and ( 7 ) , gives the e q u i l i b r i u m 
phase compositions. 

The behavior of equation (8) has been analyzed by Nghiem et a l . 
(12). They point out that h(V) = 0 has one and only one meaningful 
r o o t , 0 < V < 1, i f and only i f h(0) £ 0 and h ( l ) < 0. I f e i t h e r of 
these i n e q u a l i t i e s i s v i o l a t e d , the mixture w i l l be i n only one 
phase. 

In p a r t i c u l a r , i f h(0) < 0, then V=0 and the mixture i s a l l i n 
the l i q u i d phase w i t h mole f r a c t i o n s x^ = ζ . The c a l c u l a t e d mole 
f r a c t i o n s i n the vapor phase, y^ = K^x^, w i l l not sum to u n i t y . I f 
f u r t h e r c a l c u l a t i o n s are r e q u i r e d , i t i s necessary to normalize; 
i . e . to set 

y, = K.x./ I K.x. i i ι J j J 
(9) 

S i m i l a r l y , i f h ( l ) > 0, then V=l, y = z^ and meaningful l i q u i d 
mole f r a c t i o n s are found from 

x i = <νν7Σ (y^V <10> 
j 

In a l l the f l a s h c a l c u l a t i o n s performed i n t h i s study the above 
procedures were followed each time the were s p e c i f i e d . A f t e r ob­
t a i n i n g the phase mole f r a c t i o n s from equations (6) and (7) (or (9) 
or (10) i f necessary) i t remained to update the K^. In equation of 
s t a t e computations the are c e r t a i n l y composition dependent. 
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23. RIJKERS A N D H E I D E M A N N Single-Stage Flash Calculations 479 

Updating the Κ Values 

Having obtained the phase mole f r a c t i o n s from the Κ values and mass 
balance equations, the f u g a c i t i e s are c a l c u l a t e d from the 
Peng-Robinson equation, and the e q u i l i b r i u m c o n d i t i o n s of equation 
(]) are checked. I f they are not s a t i s f i e d w i t h s u f f i c i e n t 
p r e c i s i o n the must be cor r e c t e d . 

In the conventional successive s u b s t i t u t i o n procedure, as 
described, f o r instance by Anderson and P r a u s n i t z (13), the new Κ 
values are obtained from 

κ. - <j>.L/<i>.v 

This equation i s derived from 
c o e f f i c i e n t s 
i . e . , 

V V 
Φ ί = f i / ( y i P ) 

and <j>.L - f . L / ( X i P ) 

(11) 

the d e f i n i t i o n of the f u g a c i t y 

(12) 

(13) 

and by equating f ^ w and f ^ ~ . 
At intermediate stages i n the c a l c u l a t i o n s , however, the 

f u g a c i t i e s are not equal. The values obtained f o r f ^ and f ^ L f o l l o w 
from phase mole f r a c t i o n s t h a t , i n t u r n , are c a l c u l a t e d from the Κ 
values used i n the preceding i t e r a t i o n . Mehra, et a l . (14) observed 
that equation (11) can be r e w r i t t e n i n forms that emphasize i t s 
i t e r a t i v e c h a r a c t e r , p a r t i c u l a r l y 

κ < η + 1 ) = [ ( y ^ H f J / f J ) ] 0 0 (14) 

Or, since y./x. = K. and, since from equation (1) g. = & n ( f , ^ / f , L ) , 
then i i i ι ι ι 

Ι Ϊ Γ κ ( η + 1 > - Τ Γ κ ^ - I ( N ) ( 1 5 ) 

where s u p e r s c r i p t s (n) and (n+1) i n d i c a t e the i t e r a t i o n l e v e l . 
The convergence p r o p e r t i e s of four Κ value updating algorithms 

were i n v e s t i g a t e d . 

1. Conventional Successive S u b s t i t u t i o n (COSS) 

Equation (15) i s the most wide l y used i n equation of s t a t e 
c a l c u l a t i o n s to up-date the Κ values. This procedure i s r e f e r r e d to 
here as the "Conventional Successive S u b s t i t u t i o n Algorithm" (COSS). 
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2. 

EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

A c c e l e r a t e d Successive S u b s t i t u t i o n 1. (ACSS1) 

Mebra et a l (14) and Nghiem and Heidemann (15) have proposed that 
equation (15) be modified by i n t r o d u c i n g a s c a l a r m u l t i p l i e r at each 
i t e r a t i o n , λ^η^, as f o l l o w s ; 

( n + l ) (n) _ ( n ) ( 1 6 ) 

£n Κ = An Κ - λ ν"' g v 

Mehra viewed λ as a v a r i a b l e step length i n a steep descent method 
f o r minimizing the Gibbs f r e e energy. Nghiem showed that the formu­
lae proposed by Mehra f o r e v a l u a t i n g λ were d e r i v a b l e from a c l a s s 
of Quasi-Newton algorithms described by Z e l e z n i k (16) as a p p l i e d to 
s o l v i n g the simultaneous equations g = 0 w i t h £n Κ as the vector of 
independent v a r i a b l e s . 

The simplest procedure proposed by Mehra y i e l d s 
λ(η +1) _ λ(η) | 5<η)Τ£(η) / 5(η)Τ (£(η +1) _ , ( l y ) 

which i s to be i n i t i a t e d w i t h 

λ ( 0 ) = λ ( 1 ) = 1.0 (18) 

This i s the procedure r e f e r r e d to here as Accelerated Successive 
S u b s t i t u t i o n 1 (ACSS1). 

3. Accelerated Successive S u b s t i t u t i o n 2. (ACSS2) 

R i j k e r s (17) has proposed an a l t e r n a t i v e to equation (17) f o r 
a c c e l e r a t i n g the successive s u b s t i t u t i o n procedure. His a n a l y s i s 
f o l l o w s Mehra 1s (14) approach but t r e a t s the min i m i z a t i o n problem i n 
a somewhat d i f f e r e n t manner. R i j k e r s 1 algorithm i s 

χ(η +1) = χ(η) | K ( n ) T - ( n ) / K ( n ) T ( { ; ( n + l ) _ ^n))} ( H > ) 

w i t h 

λ ( 0 ) = λ ( 1 > = 1.0 (20) 

The v e c t o r h i n R i j k e r s 1 a l g o r i t h m i s defined by 

h = U" 1 i (21) 

where the matrix IJ * has elements 

= V ( l - V)(xjyi/zi)[6ij + x.y./(z.S)] (22) 

where 6 . i s the kroneker d e l t a and where S i s defined by 

S = 1 " I Y k / \ (23) 
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23. RIJKERS A N D H E I D E M A N N Single-Stage Flash Calculations 481 

This algorithm i s r e f e r r e d to here as "Accelerated Successive 
S u b s t i t u t i o n 2" (ACSS2). 

4. Newton-Raphson Updating. (NR) 

A f o u r t h a l t e r n a t i v e f o r up-dating the Κ values i s the Newton-
Raphson procedure. The two ac c e l e r a t e d successive s u b s t i t u t i o n 
procedures are Quasi-Newton algorithms f o r s o l v i n g 

iflSTK) = δ ( 2 4 ) 

The Newton-Raphson procedure i s 

J_ ΔΪη~Κ = - g ( 2 5 ) 

where J_ i s the Jacobian matrix. I t i s most convenient to express J_ 
as the product 

J = W U" 1 (26) 

where W has elements 
w.. = (3Jlnf L/3n L) + (3£nfY/3nV) (27) 

^ J i J î J 

and U * i s as defined i n equation (22). 

The T r i v i a l S o l u t i o n and S t a b i l i t y 

Reference was made e a r l i e r to Michelsen's (8,9) a n a l y s i s of the 
successive s u b s t i t u t i o n procedure. One co n c l u s i o n to be drawn from 
h i s a n a l y s i s i s that successive s u b s t i t u t i o n cannot converge to the 
t r i v i a l s o l u t i o n at any point where the homogeneous phase i s 
thermodynamically unstable. 

There are many equivalent ways to s t a t e the c r i t e r i a f o r 
s t a b i l i t y i n a homogeneous phase. Mechanical s t a b i l i t y r e q u i r e s 
that 

O P / 3 v ) T < 0 (28) 

D i f f u s i o n a l s t a b i l i t y r e q u i r e s that matrix _B w i t h elements 

b.. - ( n n f . / a n . ) ^ ^ (29) 
should be p o s i t i v e d e f i n i t e . 

The l i m i t of s t a b i l i t y i s lo c a t e d where the determinant of _B i s 
zero and whenever det(B) < 0 the mixture i s unstable. However, f o r 
15 to be p o s i t i v e d e f i n i t e r e q u i r e s that the determinant of a l l the 
p r i n c i p a l minors of Β should a l s o be p o s i t i v e (Amundson (18)). 

Figures 1 and 2 show the phase envelopes f o r two mixtures. The 
f i r s t mixture i s a CO^-containing n a t u r a l gas. The second i s a CH^ 
-H^S-CO^ ternary mixture that shows l i q u i d - l i q u i d s eparations. Also 
drawn i n Figures 1 and 2 are the curves corresponding to (3P/3v) T =0 
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23. RIJKERS A N D H E I D E M A N N Single-Stage Flash Calculations 483 

and det(B) = 0. Inside these curves the mixtures are unstable and, 
according to Michelsen's a n a l y s i s , i t would be impossible f o r 
successive s u b s t i t u t i o n f l a s h algorithms to converge to t r i v i a l 
s o l u t i o n s . 

The region where (3P/3v> T > 0 corresponds to the region where 
the equation of s t a t e has three volume r o o t s . The boundary curve of 
the r e g i o n has been constructed by f i x i n g the volume, c a l c u l a t i n g 
the temperature that makes (3Ρ/3ν)^ = 0 and then c a l c u l a t i n g the 
pressure from the equations of s t a t e evaluated at the volume and 
temperature. The cusp i s the "mechanical c r i t i c a l p o i n t " f o r the 
mixture and i s w e l l i n s i d e the two phase region. 

The d i f f u s i o n a l s t a b i l i t y l i m i t , det(B) = 0, was evaluated i n 
the same manner as the l i m i t of mechanical s t a b i l i t y and as 
described by Heidemann and K h a l i l (19). The c r i t i c a l p oint of the 
mixture l i e s on t h i s curve. 

For the n a t u r a l gas mixture, the two boundaries f o r the 
unstable region enclose only a small p a r t of the two-phase reg i o n . 
The unstable region f o r the CH^ - l ^ S - CO^ mixture i n c l u d e s most of 
the phase diagram. Inside these unstable regions the t r i v i a l 
s o l u t i o n i s impossible w i t h successive s u b s t i t u t i o n . 

I n i t i a t i o n and the T r i v i a l S o l u t i o n 

For the two mixtures of Figures 1 and 2 a l a r g e number of f l a s h 
c a l c u l a t i o n s have been performed. For the mixture of Figure 1, the 
two-phase region was i n t e r s e c t e d at pressures of 20, 65 and 70 bar 
and f l a s h c a l c u l a t i o n s were performed w i t h v a r y i n g i n i t i a l Κ values 
over the whole temperature range w i t h i n the two-phase reg i o n . For 
the mixture of Figure 2, equivalent c a l c u l a t i o n s were performed at 
40 and 100 bar. 

Figures 3 through 6 and Figures 7 and 8 contain the r e s u l t s f o r 
the two mixtures at the v a r i o u s pressures. The i n i t i a l Κ values 
were v a r i e d , as described e a r l i e r , by l e t t i n g the "Phase 
D i s t r i b u t i o n C o e f f i c i e n t I n i t i a t i o n Parameter", a, take on values 
between zero and 1.5. The value of α i s shown on the ordinate of 
the Figures and the temperature i s shown on the a b s c i s s a . The areas 
of the Τ - α plane are l a b e l l e d to show the s o l u t i o n reached. 

For the f i r s t mixture at 20 bar, the two-phase region extends 
from 170 to 254 K. Between 170 and 194 Κ the mixture i s e i t h e r 
mechanically or d i f f u s i o n a l l y unstable or both. 

As expected, the conventional successive s u b s t i t u t i o n a l g o r i t h m 
d i d not converge to the t r i v i a l s o l u t i o n w i t h i n t h i s temperature 
i n t e r v a l f o r any α value. This i s i n d i c a t e d by the corresponding 
cross-hatched r e g i o n of Figure 3. 

A l s o shown i n Figure 3 i s the region of low α v a l u e s , outside 
the unstable temperature i n t e r v a l , where COSS converged to the 
t r i v i a l s o l u t i o n . To avoid the t r i v i a l s o l u t i o n i t i s only 
necessary to have α lar g e enough. Near the phase boundary, 254 K, 
l a r g e r α values are r e q u i r e d . However, no t r i v i a l s o l u t i o n s were 
found at any temperature so long as α was greater than about 0.45. 
In p a r t i c u l a r , i f the Wilson Κ values are used (a = 1), the t r i v i a l 
s o l u t i o n would never be reached at 20 bar and any temperature. 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
02

3

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



484 E Q U A T I O N S O F S T A T E : T H E O R I E S A N D A P P L I C A T I O N S 

Figure 4 shows convergence behavior w i t h COSS ap p l i e d to the 
f i r s t mixture at 65 bar. The two-phase region i s contained between 
215 and 248 K. (The pressure i s above the "mechanical c r i t i c a l 
p ressure", hence the mixture i s not mechanically unstable at any 
temperature.) Figure 4 i n d i c a t e s that t r i v i a l s o l u t i o n s were 
reached at temperatures between the phase boundary and the s t a b i l i t y 
l i m i t when the Κ values were i n i t i a t e d too near u n i t y (a below about 
0.6). At temperatures greater than 218 K, the t r i v i a l s o l u t i o n was 
avoided f o r α > 0.35. C e r t a i n l y , no t r i v i a l s o l u t i o n s were 
encountered when COSS was i n i t i a t e d at the Wilson Κ values (a = 1). 

Although convergence to the t r i v i a l s o l u t i o n i s impossible i n 
the unstable r e g i o n , the number of i t e r a t i o n s r e q u i r e d could become 
l a r g e . In Figure 4, open boxes are used to i n d i c a t e p o i n t s where 
convergence was not achieved. Convergence f a i l u r e i s discussed i n 
more d e t a i l l a t e r . 

The c a l c u l a t i o n s f o r mixture I at 65 bar were repeated using 
the f i r s t a c c e l e r a t e d successive s u b s t i t u t i o n procedure (ACSS1). 
The convergence behavior i s shown i n Figure 5. I t w i l l be seen that 
ACSSl and COSS behave s i m i l a r l y as regards the tendency to converge 
to the t r i v i a l s o l u t i o n . Since both procedures can be regarded as 
steep descent alg o r i t h m s , n e i t h e r can reach the t r i v i a l s o l u t i o n i n 
the unstable temperature i n t e r v a l . Aside from some i s o l a t e d p o i n t s , 
ACSSl and COSS converge to the c o r r e c t s o l u t i o n at the same values 
of a. 

Figure 6 shows the r e s u l t s of ACSSl f l a s h c a l c u l a t i o n s f o r 
mixture I at 70 bar. The isobar at t h i s pressure does not i n t e r s e c t 
the unstable r e g i o n . P o t e n t i a l l y , t h e r e f o r e , the t r i v i a l s o l u t i o n 
could be reached at any temperature w i t h i n the two-phase region 
between about 221 and 244 K. The f i g u r e shows, however, that i f α 
i s l a r g e enough, ( i . e . , α > 0.6) the t r i v i a l s o l u t i o n i s never 
reached. The r e s u l t s are of the same type as seen i n Figures 3-5 
and demonstrate that i n i t i a t i n g w i t h the Wilson Κ values i s 
s u f f i c i e n t to avoid t r i v i a l s o l u t i o n s even along a d i f f i c u l t 
retrograde i s o b a r . 

Convergence r e s u l t s f o r the mixture of Figure 2 at 40 and 100 
bar, using COSS, are shown i n Figures 7 and 8. The isobar at 40 bar 
extends from a low-temperature l i q u i d - l i q u i d r e g i o n , through a 
v a p o r - l i q u i d r e g i o n , to the phase boundary at about 287 K. The 
mixture i s thermodynamically unstable at temperatures below 259 K, 
t h e r e f o r e i t i s impossible f o r COSS to converge to the t r i v i a l 
s o l u t i o n at any temperature below 259 K, regardless of the i n i t i a l Κ 
values used. The p l o t i n Figure 7 contains only a very small region 
(which i s not cross-hatched) bounded by 259 < Τ < 287 Κ and α < 0.3 
i n which t r i v i a l s o l u t i o n s were found. 

As shown i n Figure 7, two d i f f e r e n t two-phase s o l u t i o n s were 
p o s s i b l e i n the temperature i n t e r v a l 188 < Τ < 202 Κ. Depending on 
the i n i t i a l Κ v a l u e s , i t was p o s s i b l e to reach e i t h e r a v a p o r - l i q u i d 
s o l u t i o n or a l i q u i d - l i q u i d s o l u t i o n . There i s obviously a 
three-phase region i n t h i s v i c i n i t y and i t s existence complicates 
f l a s h c a l c u l a t i o n s when the number of phases s p e c i f i e d i s l e s s than 
the number of phases which should a c t u a l l y e x i s t at e q u i l i b r i u m 
(according to the model). No attempt was made to l o c a t e the 
three-phase region. I t should be noted, however, that convergence 
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! ! I I 1 » 
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TEMPERATURE (K) 

F igure 3. Region of S o l u t i on f o r Mixture I a t 20 Bar 

TEMPERATURE (K) 

F igure 4. Region of S o l u t i on f o r M ixture I a t 65 Bar Using COSS 
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Figure 5. Region of S o l u t i on f o r Mixture I a t 65 Bar Using ACSS1 
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Figure 7. Region of S o l u t i on f o r Mixture II a t 40 Bar 
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Figure 8. Region of S o l u t i on f o r M ixture II a t 100 Bar 
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to a n o n - t r i v i a l s o l u t i o n was obtained at a l l temperatures and at 
a l l α values i n the v i c i n i t y of the three phase re g i o n . 

Figure 8 shows convergence p r o p e r t i e s of the mixture of Figure 
2 at 100 bar. The pressure i s j u s t below the dip i n the phase 
boundary curve at about 235 Κ so that the mixture remains i n two 
phases from very low temperatures to about 309 K. There i s a 
temperature i n t e r v a l from about 228 to 249 Κ where the mixture i s 
outside the l i m i t of d i f f u s i o n a l s t a b i l i t y . L i k e w i s e , from about 
297 to 309 Κ the mixture i s outside the l i m i t of s t a b i l i t y . Only i n 
these two separate i n t e r v a l s are t r i v i a l s o l u t i o n s p o s s i b l e when 
f l a s h c a l c u l a t i o n s are performed using COSS. These t r i v i a l 
s o l u t i o n s are avoided i f α i s greater than about 0.45, as shown i n 
Figure 8. 

Also i n d i c a t e d i n Figure 8 are a few po i n t s where convergence 
was not achieved. These p o i n t s are a l l i n the intermediate s t a b l e 
temperature i n t e r v a l w i t h very low α values. 

Slow Convergence Problems 

In some regions of the phase diagrams the successive s u b s t i t u t i o n 
algorithms converged very s l o w l y . In order to reduce computation 
time a dual a l g o r i t h m was used. The computations were begun w i t h 
the successive s u b s t i t u t i o n procedure, but i f convergence was not 
achieved w i t h i n a reasonable number of i t e r a t i o n s the Newton-Raphson 
algorithm f o r updating the Κ values was begun. 

This procedure d i d not change the conclusions as to whether or 
not the t r i v i a l s o l u t i o n was u l t i m a t e l y to be reached so long as the 
f l a s h c a l c u l a t i o n was w e l l on i t s way to convergence and so long as 
there was to be a s p l i t i n t o two phases of f i n i t e amount. 

The second c o n d i t i o n i s necessary because the Jacobian matrix 
of equation (26) i s undefined when V = 0 or V = 1. The problem a r i ­
ses w i t h matrix IJ * given by equation (22) . 

The dual algorithm improved convergence behavior c o n s i d e r a b l y . 
In preparing Figure 4, 3283 independent f l a s h c a l c u l a t i o n s were 
r e q u i r e d . With COSS alone, 238 of these c a l c u l a t i o n s d i d not 
converge w i t h i n 100 i t e r a t i o n s . With the dual algorithm only 27 
poorl y i n i t i a t e d c a l c u l a t i o n s were l e f t unconverged. Figure 7 
required 3179 f l a s h c a l c u l a t i o n s , 382 of which d i d not converge w i t h 
COSS alone. A l l c a l c u l a t i o n s converged w i t h the dual algorithm. 

The reason f o r convergence f a i l u r e even of the Newton-Raphson 
procedure r e q u i r e s some d i s c u s s i o n . What was achieved i n these 
cases was an o s c i l l a t o r y behavior between a s o l u t i o n l i k e the 
t r i v i a l s o l u t i o n and one l i k e the c o r r e c t s o l u t i o n . These f a i l u r e s 
were g e n e r a l l y a s s o c i a t e d w i t h i n i t i a l guesses f o r the Κ values near 
u n i t y (a near z e r o ) . 

Speed of Convergence 

The speeds of convergence of four d i f f e r e n t algorithms f o r updating 
the Κ values are compared i n Figures 10 through 13. The mixture of 
Figure 1 i s the b a s i s f o r the comparison. F l a s h c a l c u l a t i o n s were 
performed at 930 p o i n t s throughout the two-phase region f o r t h i s 
mixture and at each p o i n t the c a l c u l a t i o n was i n i t i a t e d w i t h the 
Wilson Κ values (a = 1). 
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F i g u r e 9 shows t h e COSS r e s u l t s . A t e a c h o f t h e 930 p o i n t s t h e 
number o f i t e r a t i o n s t o c o n v e r g e n c e h a s b e e n i n s e r t e d i n t h e 
d i a g r a m . T h r o u g h most o f t h e t w o - p h a s e r e g i o n , c o n v e r g e n c e was 
o b t a i n e d i n 25 i t e r a t i o n s o r f ewe r and t h e a v e r a g e i t e r a t i o n c o u n t 
t o c o n v e r g e n c e was j u s t o v e r 1 5 . A t o n l y t h r e e p o i n t s o f t h e 930 
was c o n v e r g e n c e u n a t t a i n a b l e i n 100 i t e r a t i o n s and t h e s e p o i n t s a r e 
v e r y c l o s e t o t h e c r i t i c a l p o i n t o f t h e m i x t u r e . 

F i g u r e s 10 and 11 show i t e r a t i o n c o u n t s f o r t h e ACSS1 and ACSS2 
a l g o r i t h m s , r e s p e c t i v e l y . These two a l g o r i t h m s p e r f o r m q u i t e 
c o m p a r a b l y , w i t h a v e r a g e i t e r a t i o n s t o c o n v e r g e n c e o f 9 . 8 4 and 9 . 8 5 . 
ACSS1 i s a p p a r e n t l y s u p e r i o r t o ACSS2 on t h e g r o u n d s t h a t 
c o n v e r g e n c e was o b t a i n e d w i t h i n 100 i t e r a t i o n s a t a l l 930 p o i n t s 
w i t h ACSS1 and ACSS2 f a i l e d t o c o n v e r g e a t one p o i n t . 

The t o t a l e x e c u t i o n t i m e a t 930 p o i n t s was 1 8 1 . 8 , 1 4 1 . 6 , and 
1 6 6 . 3 s e c o n d s f o r COSS , ACSS1 and A C S S 2 , r e s p e c t i v e l y . On t h i s 
a c c o u n t ACSS1 a p p e a r s a l s o t o be s u p e r i o r t o ACSS2 and t o s u c c e s s i v e 
s u b s t i t u t i o n w i t h o u t a c c e l e r a t i o n ( C O S S ) . 

F i g u r e 12 shows t h e r e s u l t s o b t a i n e d when t h e N e w t o n - R a p h s o n 
a l g o r i t h m was emp loyed t o u p d a t e Κ v a l u e s . As b e f o r e , t h e s e 
c a l c u l a t i o n s we r e a l l i n i t i a t e d w i t h t h e W i l s o n Κ v a l u e s . A 
s t r i k i n g r e s u l t i s t h a t t h e a v e r a g e number o f i t e r a t i o n s p e r c o r r e c t 
s o l u t i o n i s o n l y 4 . 7 1 , l e s s t h a n h a l f t h e a v e r a g e o f t h e o t h e r t h r e e 
p r o c e d u r e s . H o w e v e r , t h e i t e r a t i o n c o u n t g i v e s o n l y a p a r t i a l 
p i c t u r e o f t h e e f f i c i e n c y o f t h e a l g o r i t h m and two n e g a t i v e f a c t o r s 
must be c o n s i d e r e d . 

The f i r s t n e g a t i v e f e a t u r e i s t h a t t h e N-R u p d a t i n g p r o c e d u r e 
f o r t h e Κ v a l u e s f a i l e d t o r e a c h t h e c o r r e c t s o l u t i o n a t 40 o f 930 
p o i n t s . T h i s p o o r c o n v e r g e n c e b e h a v i o r was a r e s u l t o f an u n d e f i n e d 
J a c o b i a n a t t h e p h a s e b o u n d a r i e s . I f e q u a t i o n s (6) and (7) d i d n o t 
y i e l d a two p h a s e s o l u t i o n , s m a l l q u a n t i t i e s o f L o r V we r e i n t r o ­
d u c e d . C o n s e q u e n t l y t h e x ^ and y ^ we r e e v a l u a t e d f r o m e q u a t i o n s (6 ) 

o r (7) and we r e n o r m a l i z e d by a p p l y i n g e q u a t i o n s (9 ) o r ( 1 0 ) . T h i s 
a p p r o a c h c l e a r l y d i d n o t s o l v e t h e p r o b l e m : A t 25 p o i n t s t h e 
t r i v i a l s o l u t i o n was r e a c h e d and a t t h e r e m a i n i n g 15 p o i n t s t h e 
p r o c e d u r e d i d n o t c o n v e r g e . 

The s e c o n d p o i n t t o c o n s i d e r i s t h a t e a c h N-R i t e r a t i o n 
r e q u i r e s c o n s i d e r a b l e m a t r i x m a n i p u l a t i o n and i s much more c o n s u m i n g 
o f c o m p u t e r t i m e t h a n a s u c c e s s i v e s u b s t i t u t i o n i t e r a t i o n . The 
t o t a l t i m e r e q u i r e d f o r t h e 930 p o i n t s o f F i g u r e 12 i s 4 2 4 . 3 
s e c o n d s ; more t h a n t w i c e t h e t i m e r e q u i r e d f o r t h e COSS p r o c e d u r e . 

The f a i l u r e t o c o n v e r g e i s no d o u b t a more s e r i o u s c o n c e r n t h a n 
t h e c o m p u t e r t i m e consumed i n t h e N-R p r o c e d u r e . C o m p u t i n g t i m e 
c e r t a i n l y d epends o n t h e s k i l l o f t h e p rog rammer and no d o u b t a N-R 
r o u t i n e c a n be w r i t t e n w h i c h w i l l be more e f f i c i e n t t h a n o u r s . 

D i s c u s s i o n 

A l l e x a m p l e s p r e s e n t e d h e r e s u p p o r t t h e c o n c l u s i o n t h a t t h e 
s u c c e s s i v e s u b s t i t u t i o n a l g o r i t h m c a n n o t c o n v e r g e t o t h e t r i v i a l 
s o l u t i o n , howeve r i n i t i a t e d , a t p o i n t s where t h e homogeneous p h a s e 
i s u n s t a b l e . T h i s p r o p e r t y i s due t o t h e n a t u r e o f s u c c e s s i v e 
s u b s t i t u t i o n as a s t e e p d e s c e n t p r o c e d u r e f o r m i n i m i z i n g t h e G i b b s 
f r e e e n e r g y . 
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ALGORITHM USED : COSS 
MO. Of CALC. EXEC: 930 
NO. Of CALC CONV.: 927 
N O . or com. soot: 927 
TOT. NO. ITERS. : 14.705 
m. ΙΤ/CORftSOLM. : 15.5394 
EXEC TIC s : «1787 
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TEMPERATURE (Κ) 
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Figure 9. I t e r a t i on Counts f o r Mixture I. 
Wilson Κ Values 

COSS I n i t i a t e d with 

8 0 . 0 

7 0 . 0 Η 

5 0 . 0 4 

4 0 . 0 

3 0 . 0 

2 0 . 0 -I 

0 . 0 

cokrosmoN 
C02 - O.ttOO 

CI - 0.8606 
C2 - 0.0247 
C3 - 0.0067 

nC4 - 0.0045 
nC5 - 0.0024 
nC8 - 0.0009 

ALGORITHM USED : ACSS1 
NO. Or CALC EXEC: 930 
NO. Or CALC CONV.: 930 
NO. ( Τ COfM. SOUL: 930 
TOT. NO. ITERS. : 9.«2 
Mf. IT/C0RR.SOLR : 9.8409 
EXEC TIC · : 141596 

. C O E X I S T E N C E C U R V E 

• D E T (B ) = 0 

• (dP/dv) = 0 
. n a n e n ctn n β » 9 β β β 
9 t t » 1 2 1 t 1 3 1 3 1 1 » » 9 8 8 8 8 

.. _ 8 1 1 1 3 1 2 1 3 1 3 1 1 1 1 » » 9 8 8 8 8 
« 1 2 » 9 1 3 H 1 2 1 2 1 1 » » » 9 8 8 8 8 8 
* 2 » 1 1 1 1 1 2 » 1 1 1 1 » t t 9 9 8 8 8 8 8 7 
» « 911 H » tt tt » 9 8 8 8 8 8 8 7 7 

_ . 911 tf JO » 9 1 1 1 1 1 1 1 1 1 1 » » 9 8 8 8 8 8 7 7 7 
9 9 9 H J D / 9 » » H H 1 2 1 I » » » 9 8 8 8 8 7 7 7 7 
9 9 » » / M 0 » » H 1 2 1 1 t t t t t t 9 9 8 8 8 7 7 7 7 7 , ~ . . . » » » .V· 9 » 11 12 11 » « » 9 9 8 8 8 7 7 7 7 6 6 

"9 9H tt » 9 9/fTi 1 t H 1 2 » 1 1 » t t 9 9 8 8 8 7 7 7 7 6 6 6 
9 9 9«/l» 11 11 12 H 11 tt tt 9 9 8 8 7 7 7 7 6 6 6 6 6 

I 9 911 W « H « « « β » 9 9 8 8 7 7 7 6 6 6 6 6 6 6 
8 » 9 9 911 13 flAl 12 11 « « " * " 

^ 8̂11 » » 9 » 9 911 13 14/13/12 » 9 » 9 
6 l l » « « 1 1 1 2 » 912 14 14 I f f 11 9 9 9 9 

«1312121211 H » 1 2 « « M 1 2 1 1 
1 2 M 1 3 1 3 1 3 » 1 4 12 WT7M1211 ~ 

H 1 3 1 2 » H It II 1 2 H » « M 1 2 » 8 8 
n n n n n « e i 3 i i 9 9 8 8 7 6 6 

2 H W I 1 7 7 7 7 

8 1/7 7 6 6 6 6 6 
6/6/« 6 6 5 9 5 9 

9 9 8 7 7 7 6 6 6 6 6 6 6 9 5 
8 7 7 7 7 7 6 6 6 6 6 6 9 9 9 9 
7 7 7 6 6 6 6 6 6 6 5 5 S S 5 S 
7 6 6 6 6 6 6 6 9 9 9 9 9 9 " 
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6 9 9 9 9 9 9 4 4 4 
9 4 4 4 4 4 4 

160.0 180.0 2 0 0 . 0 2 2 0 . 0 

TEMPERATURE (K) 

I 
2 4 0 . 0 2 6 0 . 0 

Figure 10. I t e r a t i on Counts f o r Mixture I. ACSS1 I n i t i a t e d with 
Wilson Κ Values 
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70.0 J 

40.OJ 

20.0 

0.0 

C O M P O S mow 
C 0 2 - o.ttoo 

C I - αββΟβ 
C 2 - 0 0247 
C 3 - C 0067 

nC4 - 30045 
nC3 - 0 0024 
nC6 - 00009 

ALCORfTHM USED : ACSS2 
MO. OF CALC. EXEC: 930 
NO OF CALC. CONV.. 929 
NO. UT CORR. SOLK.: 929 
TOT. NO. ITERS. : 9.255 
M. IT/CORK.SOLK : 9.8547 
EXEC. TIC > : «6.336 

C O E X I S T E N C E C U R V E 

• DET (B)-0 

{dP/dv)--o 

tu H « « jf « 
β Η η « 9yn m 

' 914 9«Î1 tt/« 9 
' 8 8tt η τι tt » » tt 

^9 9 9 « T1 tt « Λ » 8 
9 9 9 T i n « 9 « 8 9 

913 910 « 9 « « '910 9 
9 913 12 910 9 « « /9A3 « « 

r -̂ 8 913 13 12 8W 9 9 9T1/iZtt 9 9 
„ 8 913 1 3 Π 8 9 9 9 912 12V 9 9 9 

^9 810 12 12 tt 8 9 910 13 13 12 tt / 9 9 8 8 
913 U 10 10 9 9 910 913 H 12 10 fett 9 8 8 

ilO 9tt 10 8 β 9 913 13 10 H tt ' ' 
9 9TC tt 8 8 8tt14Ul3T1T1tttt 
5 9 9T0 1 3 « 1 4 T 1 1 2 « 1 0 9 9 8 

160 

\ n 12 tt « y « 9 8 8 
I Π tt tt'tt 9 8 8 7 
• 10 10 A/8 7 7 6 6 
8 7 7/β/β 6 6 5 5 

n 1012 9 1 0 » 
12 10 tt tt tt 
12 9 9 9 9 

tttt 

180.0 200.0 
TEMPERATURE (K) 

220.0 240.0 260.0 

Figure 11. I t e r a t i on Counts f o r Mixture I. ACSS2 I n i t i a t e d with 
Wilson Κ Values 

COMPOSITION C02 - 0.1000 C1 - 0.8606 C2 - 0.0247 C3 - 0.0067 nC4 - 0.0045 nC5 - 0.0024 nC8 — 0.0009 

ALGORITHM USED : NR 
NO. Or CALC. EXEC: 930 
NO. Or CALC CONV.: 9B 
NO. Or CORK. SOLK: 890 

TOT. NO. ITERS. : 4,661 
m. IT/CORR.SOLN. : 4.7135 
EXEC TME · : 424.301 

C O E X I S T E N C E C U R V E 

DET(B)=0 
(dp/dv) = o 

1—Ι C A L C U L A T I O N N O T 
l — 1 C O N V E R G E D 

C>3 C A L C . G I V E S T R I V I A L SOL'N 

Λ 5 
Χ 5>f 

4 4 4 4 -4 4 4 4 4 4 4 5 5 5 5 4 4 5 5 4 4 4 4 5 5 5 7 

\x\w\fi\ 

\\\m\\ 
S 5 5 S 5 fil 5 5 5 
5 5 5 5 5̂ 5 535 
6 6 5 5 f i 555 
5 5 5 5 A fi 5 5 4 
5 5 5 4/4/• • • • 

180.0 200.0 
TEMPERATURE (K) 

220.0 240.0 260.0 

Figure 12. I t e r a t i on Counts f o r Mixture I.Newton-Raphson I n i t i a t e d 
with Wilson Κ Values 
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Resorting to Newton-Raphson updating of Κ values, however, 
amounts to giving up the minimization character of the algorithm in 
favor of using an equation solving technique. The N-R scheme can 
(it has been demonstrated) converge to the trivial solution even at 
unstable points. 

In the examples it appears that convergence to trivial 
solutions is unlikely if the Κ values are initiated appropriately. 
For the mixture of Figure 1, initiating with the Wilson Κ values was 
adequate to avoid convergence to the trivial solution anywhere 
inside the two-phase region. This is true even though the region of 
instability is a very small part of the two-phase region. 

Initiating ^ith Κ values near unity can result in convergence 
to trivial solutions. This implies that there may be some risks 
involved in using Κ values at a converged solution to initiate a 
flash calculation at a nearby point, particularly near the critical. 

The results regarding speed of convergence indicate a definite 
advantage in accelerating the successive substitution algorithm. 
The first procedure, ACSS1, appears sufficient. The Newton-Raphson 
procedure used here certainly reduces the iteration count 
dramatically but has associated with it an increased risk that the 
trivial solution or non-convergence will be reached. Also, it is 
not certain that a reduced number of iterations implies a reduction 
in computer time. 

Other types of flash calculations than the constant Τ and Ρ 
flash examined in this manuscript are important. The occurrence of 
trivial solutions in isenthalpic flash routines, for instance, 
requires further study. 
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24 
Four-Phase Flash Equilibrium Calculations 
for Multicomponent Systems Containing Water 

R. M . Enick, G. D. Holder, J . A. Grenko, and A. J . Brainard 

Chemical and Petroleum Engineering Department, University of Pittsburgh, Pittsburgh, 
PA 15261 

A technique for predicting one- to four-phase 
flash equilibrium is presented for multicomponent 
systems containing water, such as CO2/crude oi l/ 
water mixtures which characterize the carbon dioxide 
miscible flooding of petroleum reservoirs. The 
Peng-Robinson equation of state is used to describe 
the aqueous and hydrocarbon phases. An accelerated 
and stabilized successive substitution method is 
used to obtain convergence, even in the near 
critical region. Additional hydrocarbon phases are 
introduced by using a fugacity based testing 
scheme. Water-free flash calculations are first 
performed, yielding one, two or three phase 
equilibrium. A comprehensive search strategy is 
then used to consider eleven general classifications 
of systems which may result, including water-rich 
liquid/hydrocarbon-rich liquid/CO2-rich liquid/vapor 
equilibrium. Improved methods for obtaining in it ia l 
estimates of additional phases are presented and a 
reliable scheme of searching for additional 
hydrocarbon-rich phases is introduced which 
considers all three possible phase identities. 

General Objectives. Multiple phase behavior is often 
encountered in the gas miscible flooding of petroleum 
reservoirs. In water-free carbon dioxide/crude o i l systems, 
for example, three phases often exist in equilibrium at low 
temperatures. (1) However, water is almost universally 
present, either interstitially or because it is injected for 
mobility control;(2) hence its presence should also be 
considered in phase behavior studies. Because of the 
relatively low miscibility of water with both carbon dioxide 
and hydrocarbons at reservoir conditions, an aqueous phase 
will almost always exist, resulting in the possible presence 

0097-6156/86/0300-0494$07.50/0 
© 1986 American Chemical Society 
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24. ENICK ET AL. Four-Phase Flash Equilibrium Calculations 

o f a s many a s f o u r p h a s e s . I n a s p h a l t 1 c c r u d e s y s t e m s , a 
f i f t h p h a s e , a s o l i d p r e c i p i t a t e , may a l s o f o r m , ( 3 ) b u t 
p r e d i c t i n g i t s p r e s e n c e o r c o m p o s i t i o n i s beyond t h e s c o p e o f 
t h i s s t u d y . 

G e n e r a l l y , w a t e r - f r e e f l a s h c a l c u l a t i o n s a r e made when 
t h e s e s y s t e m s a r e mode led , ( _4 ) a n d a n e q u a t i o n o f s t a t e i s 
u s e d t o c a l c u l a t e component f u g a c i t i e s . T e m p e r a t u r e , 
p r e s s u r e a n d o v e r a l l c o m p o s i t i o n a r e t y p i c a l l y s p e c i f i e d i n 
t h e f l a s h c a l c u l a t i o n t e c h n i q u e i n o r d e r t o d e t e r m i n e t h e 
amoun t s a n d c o m p o s i t i o n s o f e a c h p o s s i b l e p h a s e . 

The o b j e c t i v e o f t h i s s t u d y i s t o d e v e l o p a n e f f i c i e n t 
a l g o r i t h m f o r C C ^ / h y d r o c a r b o n / w a t e r s y s t e m s i n w h i c h t h e 
number o f p h a s e s , one t o f o u r , i s d e t e r m i n e d a n d i n w h i c h t h e 
c o m p o s i t i o n a n d amount o f e a c h p h a s e , i n c l u d i n g t h e a q u e o u s 
p h a s e , i s a c c u r a t e l y d e s c r i b e d . E m p h a s i s i s p l a c e d o n f o u r -
p h a s e e q u i l i b r i u m a n d t h e e f f e c t s o f t h e p r e s e n c e o f w a t e r o n 
t h e p h a s e b e h a v i o r o f a C C ^ / h y d r o c a r b o n m i x t u r e . 

R e v i e w o f t h e L i t e r a t u r e : M u l t i p h a s e F l a s h C a l c u l a t i o n s . 
The m o d e l f o r t h e two p h a s e f l a s h p r o b l e m was p r e s e n t e d i n 
1952 by R a c h f o r d a n d R ice (5_ ) a n d many i m p r o v e m e n t s we re 
i n t r o d u c e d i n s u b s e q u e n t s t u d i e s , ( 6 - 8 ) b u t m u l t i p h a s e f l a s h 
c a l c u l a t i o n s we re n o t a d d r e s s e d u n t i l 1969 when Deam a n d 
Maddox (^ ) p r e s e n t e d t h e t h r e e - p h a s e f l a s h e q u i l i b r i u m 
p r o b l e m . 

S i n c e t h a t t i m e many i m p r o v e m e n t s i n t h e a l g o r i t h m s u s e d 
have l e d t o more r a p i d c o n v e r g e n c e r a t e s a n d t o t h e c o r r e c t 
i d e n t i f i c a t i o n o f t h e number a n d c o m p o s i t i o n o f t h e s t a b l e 
e q u i l i b r i u m p h a s e s . These i m p r o v e m e n t s h a v e a d d r e s s e d t h e 
two d i s t i n c t p r o b l e m s w h i c h c h a r a c t e r i z e f l a s h 
c a l c u l a t i o n s . The f i r s t i s d e f i n i n g a t h e r m o d y n a m i c m o d e l , 
s u c h a s a n e q u a t i o n o f s t a t e , w h i c h g i v e s r e s u l t s i n 
a g r e e m e n t w i t h e x p e r i m e n t a l m e a s u r e m e n t s . The s e c o n d p r o b l e m 
i s f i n d i n g a n u m e r i c a l s o l u t i o n t o t h e f l a s h c a l c u l a t i o n w i t h 
t h e g i v e n t h e r m o d y n a m i c m o d e l . The ma j o r c o n t r i b u t i o n s t o 
t h e s e i m p r o v e m e n t s i n c l u d e e f f i c i e n t n u m e r i c a l t e c h n i q u e s 
s u c h a s t h e o v e r - r e l a x â t i o n m e t h o d , a c c e l e r a t e d s u c c e s s i v e 
s u b s t i t u t i o n , a n d t h e m u l t i - v a r i a n t N e w t o n - R a p h s o n t e c h n i q u e , 
t h e d e v e l o p m e n t o f e q u a t i o n s o f s t a t e , a l g o r i t h m s f o r 
o b t a i n i n g i n i t i a l e s t i m a t e s f o r t h e c o m p o s i t i o n o f e a c h 
p h a s e , a n d t h e a p p l i c a t i o n o f G i b b s f r e e e n e r g y m i n i m i z a t i o n 
p r i n c i p l e s f o r e v a l u a t i n g t h e s t a b i l i t y o f a n y e q u i l i b r i u m 
p h a s e . ( 1 0 - 2 5 ) 

The s o l u t i o n scheme p r e s e n t e d by R i s n e s a n d D a l e n ( 2 5 ) 
s e r v e s a s a f o u n d a t i o n f o r t h i s w o r k . Improved a l g o r i t h m s 
have been d e v e l o p e d f o r d e t e r m i n a t i o n o f t h e number o f 
p h a s e s , t h e i n i t i a l e s t i m a t i o n o f p h a s e c o m p o s i t i o n s , a n d t h e 
s e a r c h s t r a t e g y f o r d e t e r m i n i n g i f a n a d d i t i o n a l p h a s e s h o u l d 
e x i s t o r i f a n e x i s t i n g p h a s e s h o u l d be e l i m i n a t e d . E m p h a s i s 
i s p l a c e d on q u a n t i t a t i v e l y d e s c r i b i n g how t h e a d d i t i o n o f 
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EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

w a t e r t o a h y d r o c a r b o n b a s e d m i x t u r e a f f e c t s t h e number a n d 
c o m p o s i t i o n s o f e q u i l i b r i u m p h a s e s . 

Two Phase And M u l t i p h a s e F l a s h C a l c u l a t i o n s 

G o v e r n i n g E q u a t i o n s a n d C o m p u t a t i o n a l A l g o r i t h m s . The 
e q u a t i o n s e m p l o y e d t o d e s c r i b e t h e p h a s e s , d e f i n e 
t h e r m o d y n a m i c e q u i l i b r i u m , f a c i l i t a t e t h e s o l u t i o n o f two 
p h a s e a n d m u l t i p h a s e s o l u t i o n s , i n i t i a t e e s t i m a t e s o f a n y 
p h a s e ' s c o m p o s i t i o n , a n d e f f i c i e n t l y a d j u s t t h e s e i n i t i a l 
e s t i m a t e s a r e p r e s e n t e d i n t h i s s e c t i o n . I n a d d i t i o n t o t h e 
s y s t e m t e m p e r a t u r e , p r e s s u r e a n d o v e r a l l c o m p o s i t i o n , t h e 
i n p u t d a t a r e q u i r e d f o r t h e s o l u t i o n o f t h e s e f l a s h 
e q u i l i b r i u m p r o b l e m s c o n s i s t o f t h e c r i t i c a l t e m p e r a t u r e , 
c r i t i c a l p r e s s u r e a n d a c e n t r i c f a c t o r o f e a c h c o m p o n e n t , a s 
w e l l a s a b i n a r y i n t e r a c t i o n p a r a m e t e r f o r e a c h p a i r o f 
c o m p o n e n t s . 

A l l p h a s e s a r e d e s c r i b e d by a n e q u a t i o n o f s t a t e . The 
P e n g - R o b i n s o n e q u a t i o n o f s t a t e i s p r e s e n t e d i n T a b l e l a 
a l o n g w i t h i t s c o r r e s p o n d i n g e x p r e s s i o n s f o r c o m p r e s s i b i l i t y 
f a c t o r , f u g a c i t y c o e f f i c i e n t a n d m i x i n g r u l e s , i n T a b l e l b , 
E q u a t i o n s 1 -13 . 

T a b l e l a . P e n g - R o b i n s o n E q u a t i o n o f S t a t e ( 15) 

Ρ - RT _ a m 

v - b v ( v+b ) + b ( v - b ) V A ' 

b = 0 . 0 7 7 8 0 RT /P (2 ) 
c c 

a ( T ) - 0 . 4 5 7 2 4 R 2 T 2<x/P (3 ) 
c c 

α 0 · 5 = 1 + i n ( l - T r 0 e 5 ) ( 4 ) 

m - 0 . 3 7 4 6 4 + 1.54226ω - 0 .26992ω 2 ( 5 ) 

T a b l e l b . C o m p r e s s i b i l i t y F a c t o r a n d F u g a c i t y C o e f f i c i e n t 

Z 3 - ( l - B ) Z 2 + ( A - 3 B 2 - 2 B ) Z - ( A B - B 2 - B 3 ) - 0 (6 ) 

whe r e Ζ » Pv/RT (7 ) 

A - a P / R 2 T 2 ( 8 ) 

Β » bP/RT (9 ) 

I n Ψk - ( Z - l ) - l n ( Z - B ) -
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24. ENICK ET AL. Four-Phase Flash Equilibrium Calculations 497 

T a b l e l b . C o n t i n u e d 

2Σχ a b, Ζ + (/2+1)Β 
( 1 1 t k - J i ) i n ( ) ( 10 ) 

2 / 2 B " a b Ζ - ( / 2 - l ) B 

b = | x i b i ( 11 ) 

a = f j ^ i j ( 12 ) 

a . . = ( l - σ . . ) a , 0 e 5 a . 0 * 5 ( 13 ) 
i j i j i J 

The g o v e r n i n g e q u a t i o n s f o r two p h a s e w a t e r - f r e e 
e q u i l i b r i u m i n c l u d e o v e r a l l a n d component m a t e r i a l b a l a n c e s , 
m o l e - f r a c t i o n c o n s t r a i n t s , a n d t h e t h e r m o d y n a m i c e q u i l i b r i u m 
c r i t e r i a , ( E q u a t i o n s 1 4 - 1 7 ) . These 2n+2 i n d e p e n d e n t 
e x p r e s s i o n s d e f i n e t h e two p h a s e e q u i l i b r i u m p r o b l e m o f 2n+2 
u n k n o w n s , L , V , x^ a n d y ^ . The o v e r a l l m a t e r i a l b a l a n c e , 

L + V = Ν = 1 ( 14 ) 

component m a t e r i a l b a l a n c e s , 

L x t + vy± = Uz± ( 15 ) 

mo l e f r a c t i o n c o n t r a i n t s , 

Σχ± = Σγ± = 1 ( 16 ) 

a n d t h e r m o d y n a m i c e q u i l i b r i u m c r i t e r i a 

( a ) f i L = f i v ( 17 ) 
(b ) s y s t e m o f p r e d i c t e d p h a s e s must 

m i n i m i z e G i b b s e n e r g y o f s y s t e m 
d e f i n e t h e f l a s h c a l c u l a t i o n p r o b l e m . 

Two phase f l a s h c a l c u l a t i o n s may be p e r f o r m e d f o l l o w i n g 
t h e p r o c e d u r e . The e q u i l i b r i u m c o n s t a n t s a r e d e f i n e d a s 

K i = y i / x i ( 1 8 ) 

E l i m i n a t i n g L f r o m (15 ) a n d summing o v e r a l l c omponen t s g i v e s 

Σχ± + V Σ(γ±-χ±) - Σζ± - 1 (N= l ) ( 19 ) 

The g (V ) f u n c t i o n , u s e d t o s o l v e ( 1 4 ) , ( 1 5 ) , ( 1 6 ) , a n d ( 1 8 ) , 
i s d e f i n e d a s 

( K . - l ) z 
g ( V ) - Σ ^ - χ ρ . Σ 1 + ( R i . 1 ) v ( 20 ) 

whe re V i s t h e r o o t o f g ( V ) = 0 . 
I n t h e s i n g l e phase s t a t e , 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
02

4

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



498 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

a . i f V < 0 t h e n V = 0, x i = z±, y± « Κ 1 χ 1 / Σ Κ 1 χ 1 ( 21 ) 

b . i f V > 1 t h e n V - 1, y± = z±, x± = (y±/K±)/Σ(γ±/Κ±)(22) 
The b r i n g - b a c k p r o c e d u r e i s d e f i n e d by t h e f o l l o w i n g 
e x p r e s s i o n s , 

i f V = 0 t h e n l(yKi-l)zi = 0 (23) 

K i n e w = γ κ . . (24) 

γ * 1 / E K i Z i (25) 

i f V = 1 t h e n Σ ( 1 - 1 / γ Κ ί ) ζ ί = 0 (26) 

K±
new = γκ ί = i q / Z z ^ i q (27) 

γ = Σζ±/Κ± (28) 

V a l u e s a r e a s sumed f o r t h e e q u i l i b r i u m c o n s t a n t s d e f i n e d 
by E q u a t i o n 1 8 . The η f u g a c i t y e q u a t i o n s a r e t h e n r e p l a c e d 
by t h e e q u i l i b r i u m c o n s t a n t e q u a t i o n s , e n a b l i n g t h e 
s t r a i g h t f o r w a r d s o l u t i o n f o r t h e u n k n o w n s . The m o l e s o f 
v a p o r , V , a r e f i r s t d e t e r m i n e d by u s i n g N e w t o n ' s method t o 
f i n d t h e r o o t o f g (V ) = 0. T h i s f u n c t i o n i s a m a t h e m a t i c a l 
c o m b i n a t i o n o f t h e 2n+2 d e f i n i n g e q u a t i o n s a n d a t g (V ) = 0 
t h e amount o f f l a s h e d v a p o r a n d l i q u i d a r e known ( L = l - V f o r 
s y s t e m o f one t o t a l m o l e ) . C o m p o s i t i o n s a r e t h e n c a l c u l a t e d 
by s i m u l t a n e o u s l y s o l v i n g E q u a t i o n s 1 4 , 15 a n d 16. I f t h e 
r o o t f a l l s o u t s i d e o f t h e t w o - p h a s e i n t e r v a l , V < 0 o r V > 1, 
t h e s y s t e m i s i n a s i n g l e p h a s e s t a t e . The c o m p o s i t i o n o f 
t h e n o n - e x i s t i n g p h a s e i s t h e n c a l c u l a t e d a s i f t h e s y s t e m i s 
a t t h e s a t u r a t i o n p r e s s u r e . I n o r d e r t o h a s t e n t h e r e - e n t r y 
o f a p h a s e l o s t i n t h e c o r r e c t i o n p r o c e s s i n t o t h e s o l u t i o n 
a l g o r i t h m where i t may e v e n t u a l l y a p p e a r i n t h e f i n a l a n s w e r , 
t h e " b r i n g - b a c k " p r o c e d u r e may be u s e d ( E q u a t i o n s 2 3 - 2 8 ) . 
S i n c e a common m u l t i p l e , γ , a p p l i e d t o e a c h o f t h e K ^ ' s d o e s 
n o t e f f e c t t h e c o m p o s i t i o n o f t h e t h e c o r r e s p o n d i n g p h a s e s 
( i t d o e s a f f e c t t h e amoun t s o f e a c h p h a s e ) , t h i s f a c t o r may 
be i n t r o d u c e d t o f o r c e t h e g (V ) f u n c t i o n t o z e r o . T h i s 
a d j u s t m e n t k e e p s t h e n o n - e x i s t i n g p h a s e a t t h e edge o f t h e 
t w o - p h a s e b o u n d a r y , where i t s e x i s t e n c e w i l l s u b s e q u e n t l y be 
t e s t e d . 

Two p r o c e d u r e s f o r i n i t i a l i z i n g K - v a l u e e s t i m a t e s may be 
u s e d . I d e a l l y , t h e s e e s t i m a t e s s h o u l d a s s u r e t h a t 
c a l c u l a t i o n s s t a r t i n t h e two p h a s e r e g i o n , a r e a s c l o s e a s 
p o s s i b l e t o t h e a c t u a l v a l u e s , a n d d i s p l a y s u f f i c i e n t 
c o n t r a s t t o a v o i d a t r i v i a l s o l u t i o n where a l l K ^ ' s e q u a l 
u n i t y . The W i l s o n f o r m u l a ( 1 4 ) , i s a n e m p i r i c a l e x p r e s s i o n 
w h i c h p r o v i d e s K - v a l u e e s t i m a t e s w h i c h meet t h e s e c r i t e r i a 
u n d e r most c o n d i t i o n s . 

K± - P r i ' 1 e x p [ 5 . 3 7 2 7 ( l + u > ) ( l - T r i " " 1 ) ] (29) 
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24. ENICK ET AL. Four-Phase Flash Equilibrium Calculations 

I n t h e n e a r - c r i t i c a l r e g i o n , h o w e v e r , t h e e v a p o r a t i o n 
t e c h n i q u e c o n s i s t e n t l y y i e l d s b e t t e r e s t i m a t e s . T h i s may be 
a t t r i b u t e d t o t h e t e c h n i q u e b e i n g b a s e d upon t h e same 
e q u a t i o n o f s t a t e u s e d t o d e f i n e t w o - p h a s e e q u i l i b r i u m . 
The e v a p o r a t i o n t e c h n i q u e c o n s i s t s o f t h e f o l l o w i n g s e q u e n c e 
o f c a l c u l a t i o n s : 

1. Assume L = 1.0 

2 . C a l c u l a t e f i ' s 

3 . E v a p o r a t e . 01 m o l e ; c o m p o s i t i o n p r o p o r t i o n a l t o f j / s 

4 . C o n t i n u e u n t i l L = 0 . 5 0 

5 . P e r f o r m m a t e r i a l b a l a n c e , K| = y ^ / x ^ 

Improved K - v a l u e s may be o b t a i n e d by t h e me thods b a s e d 
o n f u g a c i t y e x p r e s s i o n s 

f 1 L = x ^ P ( 30 ) 

f i v = y ^ v P ( 3 D 

a n I t e r a t i v e c o r r e c t i o n o f K - v a l u e s , by s u c c e s s i v e 
s u b s t i t u t i o n i s d e f i n e d a s 

K , t + 1 - l T / l „ - K. t R . * " where t * i t e r a t i o n number (32 ) 
i i L i V i i 

R i " f i L / f i V ( 3 3 ) 

I n o r d e r t o r e d u c e t h e number o f i t e r a t i o n s i n t h e n e a r -
c r i t i c a l r e g i o n , where c o n v e r g e n c e may r e q u i r e h u n d r e d s o f 
i t e r a t i o n s , t h e b a s i c s u c c e s s i v e - s u b s t i t u t i o n method must be 
a c c é l é r a t e d ( 2 5 ) . T h i s a c c e l e r a t e d s u c c e s s i v e s u b s t i t u t i o n i s 
d e f i n e d a s 

( 1 - Ι ^ Γ 1 

K t
t + 1 - ( 34 ) 

where k± = ( R ^ - D / i R ^ ' 1 - ! ) ( 35 ) 

T h i s a c c e l e r a t i o n t e c h n i q u e may be i m p l e m e n t e d o n l y a f t e r t h e 
b a s i c s u c c e s s i v e - s u b s t i t u t i o n method i s raonotonically 
a p p r o a c h i n g a s o l u t i o n , a s i n d i c a t e d by a n e r r o r n o r m , p , o f 
a p p r o x i m a t e l y 10 . F u r t h e r m o r e , t h e a c c e l e r a t i o n must be 
p e r f o r m e d a l t e r n a t e l y w i t h t h e c o n v e n t i o n a l t e c h n i q u e , a n d 
a n y a c c e l e r a t e d K - v a l u e w h i c h c a u s e t h e e r r o r no rm t o 
i n c r e a s e must be r e j e c t e d . The c r i t e r i o n f o r s o l u t i o n 
a c c e p t a n c e i s b a s e d o n t h e t h e r m o d y n a m i c e q u i l i b r i u m 
c r i t e r i o n , E q u a t i o n 17 , w h i c h r e q u i r e s t h a t t h e l i q u i d a n d 
v a p o r p h a s e f u g a c i t i e s o f e a c h component be e q u a l . The 
s o l u t i o n a c c e p t a n c e i s e x p r e s s e d a s 
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500 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

Ρ = Σ ^ - 1 ) 2 < ε (36 ) 

A f u g a c i t y r e s i d u a l e r r o r no rm, E q u a t i o n 3 6 , o f 1 0 " " ^ i s 
a t t a i n a b l e f o r many s y s t e m s , i n c l u d i n g t h e e x a m p l e p r o b l e m s 
p r e s e n t e d i n a s u b s e q u e n t s e c t i o n . 

The e q u a t i o n s w h i c h g o v e r n m u l t i p h a s e e q u i l i b r i u m a r e 
d i f f e r e n t f r o m t h e t w o - p h a s e e q u a t i o n s o n l y i n t h a t two 
a d d i t i o n a l p h a s e s a r e i n t r o d u c e d . F o r a f o u r - p h a s e s y s t e m , 
t h e s e 4n+4 i n d e p e n d e n t e q u a t i o n s d e f i n e t h e e q u i l i b r i u m 
p r o b l e m o f 4n+4 u n k n o w n s . These e q u a t i o n s i n c l u d e t h e 
o v e r a l l m a t e r i a l b a l a n c e , 

hx + L 2 + L 3 + V = Ν = 1 (37 ) 

component m a t e r i a l b a l a n c e s , 

L l x l i + L 2 x 2 i + L 3 x 3 i + ν η " N z i < 3 8> 

mole f r a c t i o n c o n s t r a i n t s , 

Σχ 1 ; ί = Z x 2 i » Ζχ$ι β Σ y i = 1 ( 39 ) 

a n d t h e r m o d y n a m i c e q u i l i b r i u m c r i t e r i a 

<a> f i L l = f i L 2 = f i L 3 = f i V < 4 0> 

(b ) s y s t e m o f p r e d i c t e d p h a s e s must m i n i m i z e G i b b s e n e r g y 

The m u l t i p h a s e f l a s h c a l c u l a t i o n p r o c e d u r e i s a l s o q u i t e 
s i m i l a r t o t h a t o f t h e two p h a s e s y s t e m . 
The e q u i l i b r i u m c o n s t a n t s a r e d e f i n e d i n r e f e r e n c e t o t h e 
v a p o r p h a s e a s 

K l i - ? ΐ / χ 1 1 K 2 i - y i / x 2 i K 3 i - * ΐ / * 3 1 ( 4 1 ) 

The g a s p h a s e c o m p o s i t i o n , f o r Ν = 1, i s g i v e n by 

V Z i / [ 1 + L l " 1 } + L2 ( 4 " X ) + L 3 (^T ' ( 4 2 ) 

E l i m i n a t i n g V f r o m E q u a t i o n 38 a n d summing o v e r a l l 
c o m p o n e n t s , g i v e s 

Ey.+ L 1 Z ( x u - y i ) + L ^ x ^ - y ^ + L ^ x ^ - y . ) = Σζ. = 1 (43 ) 

D e f i n i n g t h e g j f u n c t i o n s , u s e d t o d e t e r m i n e t h e p h a s e 
d i s t r i b u t i o n , 

g j ( L r L 2 , L 3 ) = « x - y ^ (44 ) 

C o m b i n i n g E q u a t i o n s 4 1 , 4 2 , 43 a n d 44 
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24. ENICK ET AL. Four-Phase Flash Equilibrium Calculations 

( - b " 1 ) ζ ι 
g s i l (45) 

J 1 + L l < l j ^ - » + VlÇ" " » + L 3 ( K ^ - - 1) 

The g j f u n c t i o n s a r e u s e d t o s o l v e E q u a t i o n s 3 7 , 3 8 , 3 9 , 4 1 , 
where L j , L 2 a n d L3 a r e t h e r o o t s o f g j ( L j , L 2 , L3) - 0. 
T h i s i s v a l i d o n l y i f t h e g a s p h a s e i s p r e s e n t a n d t h e y±'s 
a r e n o r m a l i z e d . I f t h e ga s phase i s no t p r e s e n t , assume t h e 
o i l - r i c h L j p h a s e e x i s t s . The o i l r i c h p h a s e c o m p o s i t i o n i s 
t h e n g i v e n by 

x n = + - » + - » + v ( K i r 1 ) ] ( 4 6 ) 

E l i m i n a t i n g f r o m E q u a t i o n 38 a n d summing o v e r a l l 
c o m p o n e n t s , y i e l d s 

Σχ u + L 2 E ( x 2 i - x u ) + L 3 Z ( x 3 i - x u ) + VZ(yi-xl±) « Σ ζ .=1 (47 ) 

One may now d e f i n e h j f u n c t i o n s , a n a l a g o u s t o t h e g j 
f u n c t i o n s 

h j ( L 2 , L 3 , V) = Σ ( χ - μ - * η ) ( 48 ) 

C o m b i n i n g E q u a t i o n s 4 1 , 4 6 , 47 a n d 48 

( Ï C 7 " 1 ) z i 
h. = Σ - J i _ ( 49 ) 

1 + ^ " 1 } + ^ " X ) + V ( K l i " 1 } 

The h j f u n c t i o n s a r e u s e d t o s o l v e E q u a t i o n s 3 7 , 3 8 , 3 9 , 4 1 , 
where L 2 , L3 a n d V a r e t h e r o o t s o f h j ( L 2 , L3 , V) = 0. T h i s 
i s v a l i d o n l y i f t h e h y d r o c a r b o n r i c h l i q u i d p h a s e i s p r e s e n t 
a n d t h e X j / s a r e n o r m a l i z e d . 

The e m p i r i c a l e q u a t i o n s u s e d t o p r o v i d e i n i t i a l 
e s t i m a t e s f o r a n a d d i t i o n a l h y d r o c a r b o n phase a r e l i s t e d 
b e l o w . 

X 2 i " [ ( x l i T r i 2 / P r i ) / i l l ( x l i T r i 2 / P r i ) ] L 2 p h â S Q ( 5 0 ) 

y i = [ ( x ^ T r ^ / P r ^ / g i x ^ T r ^ / P r . ) ] V phase ( 51 ) 

X l i = [ ( x
2 i P r

i / T r
i

2 ) / i l J ( x 2 1 P r i / T r i
2 ) ] L l P h a s e (52 ) 

T h e s e e s t i m a t e s n o r m a l l y meet t h e t h r e e p r e v i o u s l y 
d e s c r i b e d c r i t e r i a f o r i n i t i a l K - v a l u e e s t i m a t e s . These 
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e x p r e s s i o n s i n d i c a t e t h a t t h e c o n c e n t r a t i o n o f a component i n 
a g i v e n p h a s e i s p r o p o r t i o n a l t o t h e amount o f t h a t component 
p r e s e n t i n t h e m i x t u r e , a s measu r ed by i t s c o n c e n t r a t i o n i n 
a n o t h e r p h a s e , a n d by i t s t e n d e n c y t o be i n a l e s s o r more 
d e n s e p h a s e , a s e s t i m a t e d by i t s r e d u c e d p r o p e r t i e s . F o r 
e x a m p l e , i f a two p h a s e f l a s h y i e l d s l » j - L 2

 e i I u " t l i b r i a > 
componen ts w i t h a h i g h r e d u c e d t e m p e r a t u r e a n d a l o w r e d u c e d 
p r e s s u r e a r e l i k e l y t o a p p e a r i n a v a p o r p h a s e whose 
e x i s t e n c e i s b e i n g e v a l u a t e d . These i n i t i a l e s t i m a t e s may be 
a d j u s t e d by u s i n g t h e f o l l o w i n g p r o c e d u r e . I f , f o r e x a m p l e , 
t h e 1*2 phase i s b e i n g t e s t e d f o r , n e g l e c t v a r i a t i o n o f 
f u g a c i t y c o e f f i c i e n t w i t h c o m p o s i t i o n . Then c o r r e c t t h e 
c o m p o s i t i o n o f t h e L 2 p h a s e 

X 2 i « X2Ï < f l L / f I I / ( 5 3 ) 

a n d n o r m a l i z e c o n c e n t r a t i o n s . 

x 2 i t + 1 " Χ21 / Σ χ21 ( 5 4> 
Because o f t h e l ow m i s c i b i l i t y o f h y d r o c a r b o n s a n d 

w a t e r , t h e i n i t i a l e s t i m a t e o f K j n v a l u e s a n d ^ v a l u e s ( n 
r e f e r s t o w a t e r ) may be o b t a i n e d by i m p l e m e n t i n g ^ two s t e p 
p r o c e d u r e . T r a c e amounts o f ( . 001 m o l e ) w a t e r a r e a d d e d t o 
L j , L 2 , a n d V p h a s e s , a n d t h e f n v a l u e s a d j u s t e d u n t i l 

f _ - f _ = f T - f w ( 55 ) 
nL^ n L 1 n L 2 nV 

T h e n , a s m a l l amount o f C 0 2 a n d e a c h h y d r o c a r b o n 

x l S - ^ / [ ( T r t / T r / i P r . / P r / ] ( 56 ) 

i s i n t r o d u c e d i n t o t h e a q u e o u s p h a s e , L3 , u n t i l 

Use χ . |^ 2 l n e q u a t i o n 56 i f L j n o t p r e s e n t ; a n d u s e y i i f 
b o t h L | , a n d L 2 n o t p r e s e n t . I n i t i a l K - v a l u e s a r e t h e n g i v e n 
by K j i - yt/xi± 

S i n c e many h y d r o c a r b o n s have a n e x t r e m e l y s m a l l 
s o l u b i l i t y i n w a t e r , c o m p u t a t i o n a l d i f f i c u l t i e s may o c c u r a s 
v a l u e s o f x ^ 3 i a p p r o a c h z e r o a n d a s v a l u e s o f K L 3 ^ a s 
a p p r o a c h i n f i n i t y . To p r e v e n t a n y d i v e r g e n c e p r o b l e m s , a n 
a r b i t r a r y b u t r e a s o n a b l e maximum v a l u e o f 1 0 1 2 i s s e t f o r K -
v a l u e s o f h y d r o c a r b o n s i n w a t e r . A q u e o u s - p h a s e 
c o n c e n t r a t i o n s a r e a u t o m a t i c a l l y s e t e q u a l t o z e r o i f t h e 
K j - ^ i - v a l u e e x c e e d s t h i s l i m i t . 

The a c c e l e r a t e d s u c c e s s i v e s u b s t i t u t i o n t e c h n i q u e f o r 
m u l i t p h a s e p r o b l e m s may be d e r i v e d i n a s i m i l a r maneuver a s 
t h e two phase p r o b l e m , E q u a t i o n s 3 0 - 3 6 . 
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ENICK E T A L . Four-Phase Flash Equilibrium Calculations 

The i t e r a t i v e c o r r e c t i o n o f K - v a l u e s by s u c c e s s i v e 
s u b s t i t u t i o n i s 

K . . t + 1 = K . / f . . /£. « K . ^ R , .l;t » i t e r a t i o n number ( 58 ) 
J l J i i L j 1 V J 1 Î J R - f 1 L / f i v ( 5 9 ) 

J i 
B r i n g - b a c k f a c t o r s f o r g j f u n c t i o n s a r e 

Y
g
 = E y i / K j i ( 6 0 ) 

a n d t h e b r i n g - b a c k f o r h j f u n c t i o n s a r e 

\ = ^ K l i ^ K j i ^ x l i f o r d i s a p p e a r i n g l i q u i d p h a s e (61 ) 

= ^ ^ l i x l i ^ o r d i s a p p e a r i n g S a s p h a s e , ( 62 ) 
2 w h i c h must be m u l t i p l i e d t o 

t h e o t h e r s e t s o f K . . c o n s t a n t s 

The r e l a t i o n b e t w e e n t h e γ f a c t o r a n d f u g a c i t y i s g i v e n by 

f f 
v t i v i V / £ 0 v Ύ = Σχ = - — (63 ) 

g J i f i L . f i L . 
J J 

h l h 2 f i L . 
J 

By c o m b i n i n g t h e c o r r e c t i o n a n d b r i n g b a c k p r o c e d u r e s , one 
o b t a i n s 

f i L f i L 

K u t + 1 = κμ* (τ—^-τ^ ( 6 5 ) 

J 1 i V i V 

T h e r e f o r e , a c c e l e r a t e d s u c c e s s i v e s u b s t i t u t i o n may be 
e x p r e s s e d a s 

( ι - ν ~ ι 

K.± - * i ± \ * ( 66 ) 

R . Z - l 
whe re k . . = ^ ( 67 ) 

J 1 R. . - I 
The s o l u t i o n a c c e p t a n c e c r i t e r i o n f o r t h e m u l t i p h a s e s y s t e m 
i s 

Ρ « ^ ( R j . - l ) 2 < ε ( 68 ) 
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504 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

R e l a t i o n s h i p s f o r i t e r a t i v e c o r r e c t i o n u s i n g t h e c o n v e n t i o n a l 
a n d a c c e l e r a t e d s u c c e s s i v e - s u b s t i t u t i o n t e c h n i q u e s , E q u a t i o n s 
53 a n d 6 4 , a r e s i m i l a r t o t h e two p h a s e s y s t e m e x p r e s s i o n s , 
E q u a t i o n s 32 a n d 3 4 . The b r i n g - b a c k c o r r e c t i o n f a c t o r s a r e 
p r e s e n t e d f o r b o t h t h e gj a n d h j f u n c t i o n s , E q u a t i o n s 5 8 - 6 2 , 
s e r v e t h e same p u r p o s e a s t h e b r i n g b a c k f a c t o r f o r t w o - p h a s e 
c a l c u l a t i o n s , f a c i l i t a t i n g t h e r e - e n t r y o f a phase t h a t i s 
l o s t i n t h e c o r r e c t i o n p r o c e s s e v e n t h o u g h i t a p p e a r s i n t h e 
f i n a l s o l u t i o n . 

S e a r c h S t r a t e g y f o r M u l t i p h a s e S o l u t i o n s . The b a s i c 
s u c c e s s i v e - s u b s t i t u t i o n a l g o r i t h m f o r s o l v i n g m u l t i p h a s e 
p r o b l e m s i n v o l v e s a s e q u e n c e o f c o m p u t a t i o n s . The e x i s t e n c e 
o f a n y a d d i t i o n a l h y d r o c a r b o n p h a s e i s e v a l u a t e d a f t e r 
p e r f o r m i n g a w a t e r - f r e e t w o - p h a s e f l a s h c a l c u l a t i o n . 
S u b s e q u e n t l y , w a t e r i s i n t r o d u c e d i n t o t h e s y s t e m a n d t h e 
r e s u l t a n t e f f e c t on t h e p h a s e d i s t r i b u t i o n i s d e t e r m i n e d . 
T h i s s t e p w i s e a d d i t i o n o f p h a s e s a n d s e a r c h f o r a d d i t i o n a l o r 
d i s a p p e a r i n g p h a s e s i s b e s t d e s c r i b e d by F i g u r e I . T h i s f l o w 
c h a r t r e p r e s e n t s a s e a r c h s t r a t e g y f o r m u l t i p h a s e s o l u t i o n s , 
w h i c h s y s t e m a t i c a l l y e v a l u a t e s t h e number o f p h a s e s p r e s e n t 
a t t h e s p e c i f i e d c o n d i t i o n s . 

W a t e r - F r e e F l a s h E q u i l i b r i u m . The i n i t i a l s t e p i n t h e 
m u l t i p h a s e f l a s h e q u i l i b r i u m c a l c u l a t i o n I s t h e p r e d i c t i o n o f 
t h e t w o - p h a s e w a t e r - f r e e e q u i l i b r i u m . The r e s u l t s o f t h i s 
c a l c u l a t i o n f e l l i n t o t h r e e c a t e g o r i e s : d i v e r g e n c e , o n e -
p h a s e e q u i l i b r i u m a n d t w o - p h a s e e q u i l i b r i u m . 

I f d i v e r g e n c e o c c u r s , t h e o t h e r method o f o b t a i n i n g 
i n i t i a l e s t i m a t e s o f K - v a l u e s s h o u l d be e m p l o y e d . I n 
g e n e r a l , b o t h t h e W i l s o n f o r m u l a a n d t h e e v a p o r a t i o n 
t e c h n i q u e y i e l d c o n v e r g e n t s o l u t i o n s t h r o u g h o u t t h e two phase 
r e g i o n . The u s e o f t h e W i l s o n f o r m u l a , h o w e v e r , p r o v e s 
a d v a n t a g e o u s i n many s y s t e m s n e a r t h e s a t u r t i o n c u r v e s , 
whe r ea s t h e e v a p o r a t i o n t e c h n i q u e c o n s i s t e n t l y y i e l d s b e t t e r 
i n i t i a l e s t i m a t e s i n t h e n e a r c r i t i c a l r e g i o n . S i n c e t h e 
W i l s o n f o r m u l a i s much s i m p l e r i n f o r m , i t i s u s e d f i r s t i n 
a l l c a l c u l a t i o n s . I f d i v e r g e n c e o c c u r s o r i f f a l s e s o l u t i o n s 
a p p e a r , t h e e v a p o r a t i o n t e c h n i q u e may a l s o be e m p l o y e d . 

The f l a s h c a l c u l a t i o n may a l s o y i e l d a s i n g l e phase 
h y d r o c a r b o n - r i c h l i q u i d , L j , o r v a p o r , V . T h i s s i n g l e p h a s e 
s o l u t i o n may a l s o be t h e c a r b o n d i o x i d e - r i c h u p p e r l i q u i d 
p h a s e , L 2 » I n a n y c a s e , a s e a r c h f o r a n a d d i t i o n a l 
h y d r o c a r b o n phase i s r e q u i r e d i n o r d e r t o e s t a b l i s h w h e t h e r 
t h e G i b b s e n e r g y o f t h e s y s t e m i s a t i t l o w e s t v a l u e . I n 
t h i s s t u d y , t h e a l t e r n a t i v e method o f i n i t i a l i z i n g K - v a l u e s 
i s e m p l o y e d i f a s i n g l e p h a s e s o l u t i o n a r i s e s , a n d t h e t w o -
p h a s e r e s u l t i s c o n s i s t e n t l y o b t a i n e d i f i t does e x i s t . I f 
no a d d i t i o n a l p h a s e i s p r e d i c t e d o r i f a l e s s s t a b l e two 
p h a s e s o l u t i o n i s o b t a i n e d , t h e s y s t e m may s a f e l y be 
c a t e g o r i z e d a s s i n g l e p h a s e . 
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Two phase e q u i l i b r i u m may a l s o be p r e d i c t e d by t h e 
i n i t i a l f l a s h c a l c u l a t i o n . A l t h o u g h r e f e r r e d t o a s l i q u i d 
a n d v a p o r , t h e s e s y s t e m s may be L ^ - L 2 , 1>2"~V o r L l ~ V e 

A l t h o u g h two p h a s e e q u i l i b r i u m may be e s t a b l i s h e d a t t h i s 
p o i n t , t h e s y s t e m c a n n o t be c l a s s i f i e d a s s u c h u n t i l i t h a s 
b e e n a s c e r t a i n e d t h a t a t h i r d h y d r o c a r b o n p h a s e c a n n o t e x i s t 
a t t h e s p e c i f i e d c o n d i t i o n s . 

I t s h o u l d be e m p h a s i z e d t h a t a l t h o u g h t h e p r e s e n c e o f 
a d d i t i o n a l p h a s e s u s u a l l y m i n i m i z e s t h e G i b b s e n e r g y o f t h e 
s y s t e m , t h e r e a r e i n s t a n c e s where t h e s y s t e m i s more s t a b l e 
i n a s i n g l e p h a s e s o l u t i o n a s o p p o s e d t o t h e two p h a s e 
s o l u t i o n . ( 1 9 ) S p e c i f i c a l l y , t h i s may o c c u r w i t h a s i n g l e 
p h a s e L 2 s y s t e m w h i c h may s a t i s f y a l l o f t h e two p h a s e L j - V 
w a t e r - f r e e e q u i l i b r i u m c o n d i t i o n s e x c e p t f o r t h e G i b b s e n e r g y 
m i n i m i z a t i o n . F u r t h e r m o r e , n e a r t h e t h r e e p h a s e r e g i o n , 
f a l s e two phase s o l u t i o n s may a l s o a p p e a r . F o r e x a m p l e , a t 
p r e s s u r e s j u s t b e l o w t h e t h r e e p h a s e r e g i o n i n m u l t i c o m p o n e n t 
s y s t e m s , L j - V s y s t e m s may a l s o s a t i s f y a l l e q u i l i b r i u m 
c o n d i t i o n s ( w i t h t h e e x c e p t i o n o f G i b b s e n e r g y m i n i m i z a t i o n ) 
f o r L 2 - V o r l q - L 2 s y s t e m s . Two d i f f e r e n t s o l u t i o n s may o f t e n 
be o b t a i n e d n e a r t h e m u l t i p h a s e phase r e g i o n u s i n g t h e two Ri­
va l u e i n i t a t i o n t e c h n i q u e s . The s y s t e m w h i c h m i n i m i z e s t h e 
G i b b s e n e r g y w i l l be t h e s t a b l e s o l u t i o n . 

An a d d i t i o n a l h y d r o c a r b o n phase may be t e s t e d f o r by 
f o r m i n g a s m a l l amount ( . 01 m o l ) o f f l u i d w i t h a c o m p o s i t i o n 
c h a r a c t e r i s t i c o f t h e phase b e i n g s e a r c h e d f o r , y e t 
d i s p l a y i n g s u f f i c i e n t c o n t r a s t w i t h t h e e x i s t i n g p h a s e s t o 
p r e v e n t t r i v a l s o l u t i o n s . Component f u g a c i t i e s may t h e n be 
c a l c u l a t e d a n d a d j u s t e d u s i n g t h e p r e v i o u s l y d e s c r i b e d 
p r o c e d u r e s . T h i s c o m p o s i t i o n c o r r e c t i o n f o r t h e a d d i t i o n a l 
p h a s e s y i e l d s t h r e e p o s s i b l e r e s u l t s : ( a ) t h e c o m p o s i t i o n o f 
t h e a d d i t i o n a l p h a s e b e i n g i d e n t i c a l t o one o f t h e two 
o r i g i n a l p h a s e s (b ) a d i s t i n c t p h a s e w i t h a n a v e r a g e f u g a c i t y 
r a t i o ( component f u g a c i t y i n a n e x i s t i n g phase d i v i d e d by 
component f u g a c i t y i n t h e a d d i t i o n a l p h a s e ) l e s s t h a n u n i t y , 
o r ( c ) a d i s t i n c t phase whose a v e r a g e f u g a c i t y r a t i o i s 
g r e a t e r t h a n u n i t y . O n l y i n t h e t h i r d c a s e w i l l t h e new 
phase g row a n d m u l t i p h a s e e q u i l i b r i u m be e s t a b l i s h e d , 
r e f l e c t i n g a d e c r e a s e i n t h e G i b b s e n e r g y o f t h e s y s t e m . 

The s e a r c h f o r a n a d d i t i o n a l h y d r o c a r b o n p h a s e may be 
s i m p l i f i e d i f t h e i d e n t i t y o f t h e p h a s e , i . e . L p L 2 o r V , 
c a n be a s c e r t a i n e d . T h i s may be a c c o m p l i s h e d i f t h e 
i d e n t i t i e s o f t h e two i n i t i a l p h a s e s c a n be e s t a b l i s h e d . 
A l t h o u g h c a l c u l a t i o n s o f t h e m i x t u r e c r i t i c a l p o i n t o r p h a s e 
c l a s s i f i c a t i o n schemes b a s e d o n t h e m i x t u r e c r i t i c a l v o l u m e 
a n d c r i c o n d e n t h e r r a a r e u s e f u l f o r t h i s p u r p o s e , t h e y a r e 
somewhat l e n g t h y i n n a t u r e . T h e r e f o r e , i n t h i s s t u d y a l l 
t h r e e p o s s i b l e i d e n t i t i e s , L 2 , V , a n d a r e c o n s i d e r e d 
s e q u e n t i a l l y by a s s u m i n g t h e two p h a s e s y s t e m t o be L j - V , L | -
L 2 , a n d L 2 - V , r e s p e c t i v e l y . I f t h e a d d i t i o n a l p h a s e b e i n g 
t e s t e d f o r does n o t e x i s t a t t h e g i v e n c o n d i t i o n s , t h e 
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24. ENICK ET A L . Four-Phase Flash Equilibrium Calculations 

i n i t i a l estimate of i t s composition w i l l be q u i c k l y a djusted 
to the composition of one of the o r i g i n a l phases. Should a l l 
three assumptions y i e l d no a d d i t i o n a l hydrocarbon phase, two-
phase e q u i l i b r i u m i s ensured. I f an a d d i t i o n a l hydrocarbon 
phase i s found to e x i s t i n any of the three t e s t s , three 
phase e q u i l i b r i a i s e s t a b l i s h e d and the search ended. 

At t h i s p o i n t , the water-free multiphase f l a s h 
c a l c u l a t i o n s a r e complete and the system may be i n one- , 
two- , or three-phase e q u i l i b r i u m . I f water i s present, i t 
i s now added to the system. 

I n t r o d u c t i o n of Water to System. The i n t r o d u c t i o n of water 
i n t o the hydrocarbon system w i l l not simply r e s u l t i n the 
formation of an aqueous phase accompanied by i n s i g n i f i c a n t 
changes i n the hydrocarbon phase behavior. Water-free 
e q u i l i b r i u m may be s h i f t e d to the extent that hydrocarbon 
phases may disappear or appear, and i n some cases the aqueous 
phase i t s e l f may not form. These e f f e c t s are d e t a i l e d i n 
t h i s s e c t i o n and o u t l i n e d by the search s t r a t e g y i l l u s t r a t e d 
i n Figure 1 and the g e n e r a l i z e d flow diagram of computations, 
Figure 2. 

The e f f e c t s of water w i l l be discussed as they r e l a t e to 
the three general c l a s s i f i c a t i o n s of water-free e q u i l i b r i a : 
one- , two- and three-phase systems. In each case, the moles 
of water introduced i n t o the system may be used as the 
i n i t i a l estimate of L 3 . The i n i t i a l i z a t i o n of L 1 , L 2 , and V 
simply r e q u i r e s the n o r m a l i z a t i o n of the water-free phase 
d i s t r i b u t i o n such that the sum of the mole f r a c t i o n s i s 
u n i t y . 

The a d d i t i o n of water to a s i n g l e phase system u s u a l l y 
r e s u l t s i n the formation of an aqueous phase, L 3 , i n 
e q u i l i b r i u m w i t h the hydrocarbon phase. However, s e v e r a l 
other l e s s obvious p o s s i b i l i t i e s a l s o e x i s t . When a small 
amount of water i s introduced i n t o a high-temperature 
hydrocarbon phase, the aqueous phase may not appear due to 
the r e l a t i v e l y high s o l u b i l i t y of water i n the hydrocarbon 
phase under such c o n d i t i o n s . Furthermore, a second 
hydrocarbon phase may appear i f the s i n g l e phase mixture i s 
near the two phase r e g i o n , y i e l d i n g two hydrocarbon phases i n 
e q u i l i b r i u m . Another p o s s i b l e t r a n s i t i o n i n phase 
d i s t r i b u t i o n a r i s e s when water i s added to a s i n g l e phase 
mixture near i t s s a t u r a t i o n p o i n t . For example, the 
i n t r o d u c t i o n of water to a s i n g l e phase L j mixture may s h i f t 
the water-free e q u i l i b r i u m to the extent that the L j phase 
becomes saturated and a V phase appears. Therefore, when L j -
L 3 e q u i l i b r i u m e x i s t s , a bubble of the V phase must be formed 
and i t s e x i s t e n c e t e s t e d . There i s even a p o s s i b i l i t y of two 
a d d i t i o n a l hydrocarbon phases appearing, i n which case four 
phases would c o e x i s t . 
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Calculate vofume%s 
phase densities 

Ï 

J Output 1 

Add another phase7 

Stop 

Input: Nocomp. T. P.cs. moles of feed, 
displaced fluid ratio, flags, comp properties 

Calculate compositions 
and reduced properties 

Echo print input and 
start-up calculations 

Calculate pure component 
parameters for EOS 

Estimate K-values 
for new phase V 
K-values found? 

Find roots of function 
by Newton's method 

Calculate compositions 
and correction factors 

* — 
1 

[ 
Repeat for 
all phases 1 

<*> Γ 

lter«lter*l|-

1 Apply Ύ-correctionT—aj 
1 K-values found7 ho t Single phase region?}**-' 

I 
, s I ( f i /Vi) < c3 β π ΰ 

conventional used 
last iteration? 

Apply conventional 
correction 

yes 

I Iter-Iter-1| 

Did Accel \γά 
improve K-values7 

Apply acceleration correct ion 

Figure 2. Generalized flow diagram of computational a l g o r i t h m . 
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ENICK ET A L . Four-Phase Flash Equilibrium Calculations 

When water i s added to a two phase system, the most 
obvious r e s u l t i s that an aqueous phase w i l l be i n 
e q u i l i b r i u m w i t h two hydrocarbon phases. However, i f the 
two-phase system i s near the three phase boundary, the 
i n t r o d u c t i o n of a w a t e r - r i c h l i q u i d phase may cause an 
a d d i t i o n a l hydrocarbon phase to appear, r e s u l t i n g i n four 
phase e q u i l i b r i u m . Therefore, the existence of an a d d i t i o n a l 
hydrocarbon phase must be evaluated whenever two hydrocarbon 
phases are i n e q u i l i b r i u m w i t h an aqueous phase. At elevated 
temperatures the aqueous phase may not form s i n c e the water 
may be completely d i s t r i b u t e d between the two hydrocarbon 
phases. Two phase e q u i l i b r i u m may a l s o r e s u l t when water i s 
added to a two phase mixture near the dew p o i n t , causing a 
hydrocarbon phase to disappear. L a s t l y , i n systems near 
s a t u r a t i o n c o n d i t i o n s the two phase e q u i l i b r i u m may be 
s h i f t e d such that one of the hydrocarbon phases disappears, 
l e a v i n g a s i n g l e hydrocarbon phase. 

Three c l a s s i f i c a t i o n s of r e s u l t s occur when water i s 
introduced to a three phase system, the f i r s t being the 
a d d i t i o n of an aqueous phase, y i e l d i n g four phase 
e q u i l i b r i u m . The second i s c h a r a c t e r i z e d by a disappearing 
hydrocarbon phase, l e a v i n g two hydrocarbon phases i n 
e q u i l i b r i u m w i t h the aqueous phase. T h i r d l y , near the edge 
of the multiphase r e g i o n , two hydrocarbon phases may 
disappear, l e a v i n g one hydrocarbon and one aqueous phase i n 
e q u i l i b r i u m . 

R e s u l t s of Example C a l c u l a t i o n s A s e r i e s of c a l c u l a t i o n s f o r 
two systems w i l l i l l u s t r a t e the nine most common cases which 
may r e s u l t upon the i n t r o d u c t i o n of water to one- , two- or 
three-phase systems, Figure 1. Table I I describes the 
con d i t i o n s f o r which each of these cases occurs. 

Table I I . C l a s s i f i c a t i o n of Example Computations 

Figure Range(K) Case 

3 400.0-404.5 1 
3 404.5-416.2 3 
3 416.2-440.0 5 
3 440.0-450.0 7 
3 450.0-469.0 8 
3 469.0-480.0 2 
4 298.0-299.2 5 
4 299.2-299.5 10 
4 299.5-300.9 9 
4 300.9-301.3 6 
4 301.3-303.0 5 
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510 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

The f i r s t system i s a multicoraponent hydrocarbon/water 
system described by Peng and Roblnson(14) and 
Heidemann( 13). The second i s a CC^/CH^/nCj^^/H^ system 
which serves as a model f o r raulticomponent crude o i l 
systems. The Peng-Robinson equation of s t a t e was used to 
descr i b e a l l phases. Any carbon dioxide/water chemical 
r e a c t i o n was ignored. The f u g a c i t y r a t i o e r r o r norm was set 
a t 10""^ f o r a l l computations. Approximately 20 i n t e r a t i o n s 
( F i gure 2) were required f o r low to moderate pressure three-
phase (2 hydrocarbon and 1 aqueous) systems. Four phase 
computations requted 25-35 i t e r a t i o n s . High pressure 
c a l c u l a t i o n s , e s p e c i a l l y near the c r i t i c a l point and 
s a t u r a t i o n curves, converged i n 35-50 i t e r a t i o n s . 

It has been e s t a b l i s h e d that when the Peng-Robinson 
equation of s t a t e i s used i n conjunction w i t h the mixing r o l e 
given i n Equation 13 of Table I, i t i s not p o s s i b l e t o 
p r e d i c t both the s o l u b i l i t y of hydrocarbons or C0 2 i n the 
aqueous phase and the s o l u b i l i t y of water i n the hydrocarbon-
or carbon d i o x i d e - r i c h phase. Therefore, " o p t i m a l " 
i n t e r a c t i o n parameters a v a i l a b l e i n l i t e r a t u r e f o r such 
systems are u s u a l l y obtained by matching aqueous phase 
compositions, s i n c e such data are more r e l i a b l e than vapor 
phase measurements. No attempt was made, t h e r e f o r e , to 
optimize these values, which l i s t e d i n Table I I I . 

Table I I I . Non-Zero I n t e r a c t i o n Parameters 

Figure 3 
Water/Hydrocarbons 0.48 

Figures 4,5 

C 0 2 C H 4 C16 H34 H 20 

C0 2 - 0.100 0.125 

CH 4 - 0.040 

C16 H34 
H 20 

Recent progress has been made, however, i n the 
development of new, simple mixing r u l e f o r asymétrie systems 
(27). When i t i s used i n conjunction w i t h the modified "a" 
and "b" equation of s t a t e parameters, accurate p r e d i c t i o n s of 
mutual s o l u b i l i t i e s and aqueous phase d e n s i t i e s may be 
a t t a i n e d . Such improvements may e a s i l y be in c o r p o r a t e d i n t o 
the f l a s h c a l c u l a t i o n technique presented i n t h i s study, 
g r e a t l y enhancing i t s c a p a b i l i t y to a c c u r a t e l y d e s c r i b e the 
phase d e n s i t i e s and compositions of multicoraponent, 
multiphase asymétrie systems.(28) 

0.100 

0.300 

0.500 
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ENICK E T A L . Four-Phase Flash Equilibrium Calculations 

Phase d i s t r i b u t i o n r e s u l t s are presented i n Figures 3, 4 
and 5. Water-free r e s u l t s a r e i n d i c a t e d by the dashed l i n e s 
and e q u i l i b r i u m e s t a b l i s h e d a f t e r the i n t r o d u c t i o n of water 
i s represented by the s o l i d l i n e s . P l o t s of d e n s i t y and 
composition, although not presented, are a l s o continuous over 
phase boundaries, v e r i f y i n g the consistency of t h i s 
multicoraponent, multiphase, f l a s h e q u i l i b r i u m technique. 

Multlcomponent Hydrocarbon/Water System. Although t h i s 
system i s not c h a r a c t e r i s t i c of r e s e r v o i r c o n d i t i o n s , i t 
c l e a r l y i l l u s t r a t e s s e v e r a l of the e f f e c t s of water on phi se 
e q u i l i b r i u m and a l s o demonstrates that the computation scheme 
i s general i n nature; i t i s not l i m i t e d to carbon 
d i o x i d e / o i l / w a t e r systems. 

The r e s u l t s , Figure 3, not only d u p l i c a t e those 
presented by Peng and Robinson(14) between 404.5 Κ and 450 K, 
but a l s o extend to lower and higher temperatures. At 400 Κ 
the water-free mixture i s a s i n g l e phase, hydrocarbon r i c h 
mixture ( L j ) . The system remains a t s i n g l e phase L j as 
temperature i s increased up to 416.2 K, a t which point a 
vapor phase, V, forms. As temperature i s elevated above t h i s 
bubble point temperature, the amount of the vapor phase 
increases s t e a d i l y as the L j phase diminishes u n t i l , a t 469 
K, the dew point i s reached. Above t h i s temperature, only a 
s i n g l e V phase remains. 

When water i s introduced i n t o the system, s i g n i f i c a n t 
changes i n phase behavior occur. At 400 K, a hydrocarbon 
r i c h l i q u i d , L j , i s i n e q u i l i b r i u m w i t h an aqueous phase, 
hy These two phases remain i n e q u i l i b r i u m w i t h only s l i g h t 
changes i n t h e i r d i s t r i b u t i o n as temperature i s increased. 
At 404.5 K, however a vapor phase appears. As the 
temperature i s elevated above t h i s bubble point temperature, 
the vapor phase s t e a d i l y enlarges as both the L| and L 3 phase 
become sm a l l e r . At 440 K, the aqueous phase, L 3 , disappears, 
l e a v i n g the two hydrocarbon phases i n e q u i l i b r i u m . The dew 
point i s reached a t 450 Κ and only a s i n g l e phase vapor 
remains w i t h f u r t h e r increases i n temperature. 

In t h i s example, the a d d i t i o n of water to the system 
causes the formation of an aqueous phase which disappears a t 
440 K, a 12 Κ r e d u c t i o n of the bubble point temperature and a 
19 Κ r e d u c t i o n of the dew point temperature. 

(^/CH^/nC^B^/I^O System. The r e s u l t s of the multiphase 
f l a s h c a l c u l a t i o n s f o r t h i s system a r e presented i n Figure 
4. At 298 K, the water-free system c o n s i s t s of a 
hydrocarbon-rich l i q u i d phase, L j , and a carbon d i o x i d e - r i c h 
l i q u i d phase, l ^ . Only minor changes i n the l ^ - i ^ phase 
d i s t r i b u t i o n a r e evidenced as temperature i n c r e a s e s . At 
299.2 K, however, a vapor phase foras and three phase L^-l^-V 
e q u i l i b r i u m i s e s t a b l i s h e d . Further increases i n temperature 
cause the vapor phase to grow and the L 2 phase to d i m i n i s h by 
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512 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

Pressure: 2.413 M Pa ζ -Composition 
Dashed lines: water-free system solid dashed Dashed lines: water-free system 

Propane 0.1667 0.2273 
Phase Symbols n-Butane 0.1667 0.2273 

n-Pentane 0.2000 0.2728 
0 L1-hydrocarbon rich n-Hexane 0.0666 0.0908 
Δ L3-water rich η-Octane 0.1333 0.1818 
+ V Water 0.2667 0.0000 

480 

Figure 3. E f f e c t of water on phase d i s t r i b u t i o n ; Peng-Robinson 
p r e d i c t i o n .  P
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24. ENICK ET A L . Four-Phase Flash Equilibrium Calculations 513 

Pressure: 7.239 MPa 
Dashed l i n e s : water-free system 

Phase Symbols 

0 L1-hydrocarbon r i c h 
X L2-carbon d i o x i d e r i c h 
Δ L3-water r i c h 
+ V 

z-Composition 
s o l i d dashed 

Carbon d i o x i d e 0.750 0.93750 
Methane 0.025 0.03125 
n-Hexadecane 0.025 0.03125 
Water 0.200 0.00000 

Figure 4. E f f e c t of water on phase d i s t r i b u t i o n ; Peng-Robinson 
p r e d i c t i o n ; i s o b a r i c system, m u l t i p l e phase region.  P
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514 EQUATIONS O F STATE: THEORIES A N D APPLICATIONS 

Temperature: 299.7 Κ 
Dashed l i n e s : water-free system 

Phase Symbols 

0 L1-hydrocarbon r i c h 
X L2-carbon d i o x i d e r i c h 
Δ L3-water r i c h 
+ V 

z-Composition 

Carbon d i o x i d e 
Methane 
n-Hexadecane 
Water 

s o l i d 
0.750 
0.025 
0.025 
0.200 

dashed 
0.93750 
0.03125 
0.03125 
0.00000 

co 

ω 
ο 

C D 

ω 
__> 
ο 

c 
ο 

-_J 
-Ρ 
D 

CO 

α 
ω 
CO 
Ο 

_c 
ci-

Figure 5. E f f e c t of water on phase d i s t r i b u t i o n ; Peng-Robinson 
p r e d i c t i o n ; isothermal system, m u l t i p l e phase region. 
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ENICK E T A L . Four-Phase Flash Equilibrium Calculations 

a p p r o K i u v i r e l y the same amount since only i n s i g n i f i c a n t 
changes occur i n the phase. The three phase r e g i o n ends 
a t 300.9 Κ as the \>2 phase disappears and only the L| and V 
phases remain. Further increases i n temperature caase o n l y 
i n s i g n i f i c a n t changes i n the L p V phase d i s t r i b u t i o n . 

The a d d i t i o n of water to t h i s model system causes 
d i s t i n c t changes i n the phase d i s t r i b u t i o n . From 298 Κ to 
299.5 K, the Lj_ and L£ phases a r e i n e q u i l i b r i u i r a w i t h an 
aqueous phase, L 3 . Only minor changes i n the phase 
d i s t r i b u t i o n occur over t h i s range. At 299.5 K, a vapor 
phase forms and four-phase l ^ - I ^ - l ^ - V e q u i l i b r i u m i s 
e s t a b l i s h e d . As temperature i n c r e a s e s , the V phase becomes 
l a r g e r and the L 2 phase reduces a t about the same r a t e since 
only very small changes occur i n the and L 3 phase 
d i s t r i b u t i o n . The four-phase region ends as the l»2 phase 
e v e n t u a l l y disappears a t 301.3 K. Three-phase L 1 - L 3 - V 
e q u i l i b r i u m occurs a t higher temperatures w i t h only s l i g h t 
changes apparent i n the phase d i s t r i b u t i o n . 

The i n t r o d u c t i o n of water to t h i s p a r t i c u l a r system 
causes the formation of an aqueous phase, a .3 Κ i n c r e a s e i n 
the temperature a t which the V phase appears and a .4 Κ 
increase i n the temperature a t which the L 2 phase 
disappears. In e f f e c t , the m u l t i p l e hydrocarbon phase region 
becomes s l i g h t l y wider and i s s h i f t e d toward e l e v a t e d 
temperatures i n the presence of an aqueous phase. 

In Figure 5 the same system i s evaluated a t a constant 
temperature over a range of pressure. In t h i s f i g u r e , the 
a d d i t i o n of water not o n l y r e s u l t s i n the formation of an 
aqueous phase, but a l s o increases the width of the m u l t i p l e -
hydrocarbon-phase r e g i o n and s h i f t s i t toward lower 
pressures. 

Conclusions 
A multiphase equation of s t a t e f l a s h e q u i l i b r i u m c a l c u l a t i o n 
technique has been developed i n which: 
1. The number of phases (one, two, three, or four) i s 

determined, not assumed. 
2. An improved method of searching f o r a t h i r d hydrocarbon 

phase i s introduced which considers a l l three p o s s i b l e 
i d e n t i t i e s of the a d d i t i o n a l phase. 

3. An e f f i c i e n t means of e s t i m a t i n g the composition of the 
a d d i t i o n a l phase i s presented which considers the 
r e l a t i v e amount of the component present i n the mixture 
as w e l l as i t s reduced p r o p e r t i e s . 

4. A comprehensive search s t r a t e g y which checks f o r 
a d d i t i o n a l or disappearing hydrocarbon and aqueous 
phases i s used to consider eleven general 
c l a s s i f i c a t i o n s of systems which may r e s u l t from the 
i n t r o d u c t i o n of water i n t o one, two and three phase 
water-free systems. 
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516 EQUATIONS O F STATE: THEORIES A N D APPLICATIONS 

5. Example c a l c u l a t i o n s not only i l l u s t r a t e the numerical 
e f f i c i e n c y of the s o l u t i o n technique, but a l s o d i s p l a y 
c o n t i n u i t y over phase region boundaries. 

Legend of Symbols 

a equation of s t a t e c o e f f i c i e n t 
A equation of s t a t e c o e f f i c i e n t 
b equation of s t a t e c o e f f i c i e n t 
Β equation of s t a t e c o e f f i c i e n t 
f f u g a c i t y 
g f u n c t i o n of l i q u i d f r a c t i o n s 
G Gibbs f r e e energy 
h f u n c t i o n of vapor f r a c t i o n and ext r a l i q u i d f r a c t i o n s 
HC hydrocarbon phase, L^, L 2 or V 
k a c c e l e r a t i o n parameter 
Κ e q u i l i b r i u m constant 
L l i q u i d moles 
m equation of s t a t e c o e f f i c i e n t 
η number of components 
Ν t o t a l number of moles 
Ρ pressure 
R gas constant or (when subscripted) f u g a c i t y r a t i o 
Τ temperature 
ν molar volume 
V vapor moles 
y mole f r a c t i o n i n vapor phase 
ζ mole f r a c t i o n i n feed 
Ζ c o m p r e s s i b i l i t y f a c t o r 
α e q u a t i o n - o f - s t a t e c o e f f i c i e n t 
Ύ bring-back f a c t o r 
ε t o l e r a n c e 
Ρ f u g a c i t y r e s i d u a l norm 
Φ phase 
Ψ f u g a c i t y c o e f f i c i e n t 
ω a c c e n t r i c f a c t o r 

Subscripts 

c c r i t i c a l s t a t e 
g g-function 
h h - f u n c t i o n 
i component number 
j component number or phase number 
k component number 
L l i q u i d phase 
η component n, water ( i f present) 
r reduced 
V vapor phase 
1 l i q u i d phase number, hydrocarbon-rich 
2 l i q u i d phase number, C 0 2 - r i c h 
3 l i q u i d phase number, aqueous 
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S u p e r s c r i p t s 

t i t e r a t i o n number 
i n i t i a l estimate 
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25 
Interpretations of Trouton's Law in Relation 

to Equation of State Properties 

Grant M . Wilson 

Wiltec Research Co., Inc., 488 South 500 West, Provo, UT 84601 

When corrections are made in Trouton's law for 
differences in molar volume of both liquid and vapor 
phases, then the resulting entropy deviation correlates 
with restricted motion in the liquid phase due to 
molecular size, shape, flexibility, and polarity. 
These entropy deviations also correlate with hard 
sphere equation of state properties which only depend 
on density without significant effect of temperature. 
Based on these results a new hard sphere equation of 
state is proposed which better fits the high density 
region of hard spheres based on molecular dynamics 
calculations than does the Carnahan - Starling 
equation. 

E n t r o p y d e v i a t i o n s o b t a i n e d by c o r r e c t i n g t h e e n t r o p y o f 
v a p o r i z a t i o n f o r d i f f e r e n c e s i n molar volume i n both the l i q u i d and 
vapor phases p l o t almost as a s i n g l e l i n e versus b o i l i n g p o i n t f o r a 
wide v a r i e t y of non-polar and p o l a r compounds. This provides a new 
means f o r e s t i m a t i n g heats of v a p o r i z a t i o n and vapor pressures f o r a 
wide range of compounds based on a measured b o i l i n g point and l i q u i d 
d e n s i t y . 

An e x a m i n a t i o n o f the e n t r o p y d e v i a t i o n term shows t h a t i t 
c o r r e l a t e s w i t h r e s t r i c t e d motion i n the l i q u i d phase r e s u l t i n g from 
m o l e c u l a r s i z e , shape, f l e x i b i l i t y , and p o l a r i t y . F o r p a r a f f i n 
hydrocarbons, the main e f f e c t appears to be due to r e s t r i c t e d motion 
as a r e s u l t of the length and f l e x i b i l i t y of chain molecules; w h i l e 
f o r hydrogen bonded compounds, r e s t r i c t e d motion occurs as a r e s u l t 
of hydrogen bonding. Compounds w i t h a di p o l e moment a l s o e x h i b i t 
r e s t r i c t e d motion as a r e s u l t of i n t e r a c t i o n s between the d i p o l e s . 

When d e v i a t i o n entropies are c a l c u l a t e d at other temperatures 
besides the b o i l i n g p o i n t , they appear to c o r r e l a t e w i t h hard sphere 
equation of s t a t e p r o p e r t i e s which only depend on densi t y without 
any s i g n i f i c a n t e f f e c t of temperature. As a r e s u l t a modified hard 
sphere e q u a t i o n of s t a t e i s proposed w h i c h b e t t e r f i t s t he h i g h 
d e n s i t y r e g i o n of har d spheres based on m o l e c u l a r dynamics 

0097-6156/86/0300-0520$06.00/0 
© 1986 American Chemical Society 
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25. WILSON Interpretations of Trouton's Law 521 

c a l c u l a t i o n s than does the Carnahan-Starling equation. By a l l o w i n g 
one of the p a r a m e t e r s t o v a r y , the same e q u a t i o n can be used to 
account f o r r e s t r i c t e d m o t i o n i n the l i q u i d phase r e s u l t i n g f r o m 
molecular s i z e , f l e x i b i l i t y , p o l a r i t y , etc. 

The hard sphere equation of s t a t e has not been w i d e l y used even 
though i t appears t o be more a c c u r a t e than the Van der Waals 
r e p u l s i v e term. The r e a s o n f o r t h i s i s p r o b a b l y a compensating 
e f f e c t f o r e r r o r i n the a t t r a c t i o n term when the Van der Waals term 
i s used. An e x a m i n a t i o n of d a t a on a s i m p l e f l u i d shows t h a t t h e 
a t t r a c t i v e terms of the Redlich-Kwong and Peng-Robinson e q u a t i o n s 
f i t the low d e n s i t y r e g i o n q u i t e w e l l , but they s i g n i f i c a n t l y 
d i v e r g e a t h i g h d e n s i t i e s . T h i s e x p l a n a t i o n of a compensating 
e f f e c t by the use of the Van der Waals r e p u l s i o n term seems 
reasonable i n view of these d i f f e r e n c e s at high d e n s i t i e s . 

D i s c u s s i o n 

Trouton's law s t a t e s t h a t f o r many n o n - p o l a r f l u i d s the r a t i o of 
Δ H/Tb i s about 21 cal/mole-°K. Hildebrand (4) has shown that t h i s 
r a t i o i s more n e a r l y c o n s t a n t at t e m p e r a t u r e s where the m o l a r 
volumes i n the gas phase are the same r a t h e r than when the pressures 
a r e t h e same. K i s t i a k o w s k y (5.) p r o p o s e d an e q u a t i o n w h i c h 
e s s e n t i a l l y c o r r e c t s f o r d i f f e r e n c e s i n vapor molar volumes at the 
b o i l i n g p o i n t to g i v e the f o l l o w i n g equation: 

4£ - 8.75 + RlnT v (1) 

T h i s e q u a t i o n does w e l l f o r low m o l e c u l a r w e i g h t n o n - p o l a r 
compounds, and thus i s r a t h e r r e s t r i c t e d i n i t s use. 

In co n t r a s t to these e a r l y observations which f r e q u e n t l y serve 
as the b a s i s f o r e s t i m a t i n g h e a ts of v a p o r i z a t i o n , i t proves 
i n t e r e s t i n g to c a l c u l a t e an entropy d e v i a t i o n at the b o i l i n g p o i n t 
based on the d i f f e r e n c e between the a c t u a l entropy of v a p o r i z a t i o n 
and an i d e a l e n t r o p y f o r the change i n m o l a r volume i n g o i n g f r o m 
the l i q u i d phase to the vapor phase as f o l l o w s : 

or 

At _ t h e _ b o i l i n g p o i n t , the vapor phase i s n e a r l y i d e a l ; so (S°- S )/R 
- (S°- S V ) I / R i s v i r t u a l l y z e r o . Thus, E q u a t i o n 2 reduces t o the 
f o l l o w i n g : 
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522 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

The d i f f e r e n c e , ( S V - S L)/R, i s g i v e n by ΔΗ/RT^; and ( S V - S L ) I / R i s 
given by the f o l l o w i n g equation: 

At one atmosphere V • RT/P where Ρ equals one atmosphere. Equation 
3 can the r e f o r e be w r i t t e n as f o l l o w s : 

AS D E! ΔΗ RT m 

A p l o t of AS D E V/R f o r hydrocabons and ra r e gases i s given i n F i g u r e 
1. Data i n t h i s and subsequent p l o t s are based on Antoine constants 
f o r h e a t s of v a p o r i z a t i o n ; and the R a c k e t t e q u a t i o n f o r l i q u i d 
volumes using data and constants given i n Reid et a l (7.). F i g u r e 1 
shows t h a t Δ S D E V / R v a r i e s l i n e a r l y w i t h T f e f o r p a r a f f i n 
hydrocarbons. Branched p a r a f f i n s such as neo-pentane appear to p l o t 
on the same l i n e , w h i l e c y c l i c p a r a f f i n s p l o t about one-half to one 
u n i t below the l i n e . A clu e to the reason f o r v a r i a t i o n of Δ S V/R 
v e r s u s T^ of the p a r a f f i n h y d r o c a r b o n s i s g i v e n i n F i g u r e 1 by the 
f a c t that Δ S /R of the ra r e gases i s a constant independent of T^. 
The r a r e gases are s p h e r i c a l atoms w h i l e the p a r a f f i n hydrocarbons 
are long f l e x i b l e molecules. A l s o , the d e v i a t i o n entropies of the 
aromatic hydrocarbons are c l o s e r to the ra r e gases compared to the 
p a r a f f i n hydrocarbons at the same T^. This i s c o n s i s t e n t w i t h l e s s 
f l e x i b i l i t y of the a r o m a t i c h y d r o c a r b o n s . T h i s s u g g e s t s t h a t the 
main reason f o r the v a r i a t i o n of Δ S D E V/R versus T b i s the increase 
i n m o l e c u l a r f l e x i b i l i t y as the c h a i n l e n g t h i n c r e a s e s . F i g u r e 2 
shows AS V/R of o t h e r compounds i n c l u d i n g w a t e r and ammonia. 
S u r p r i s i n g l y , water and ammonia p l o t on almost the same l i n e as the 
p a r a f f i n h y d r o c a r b o n s . I n t h i s c a s e , the i n c r e a s e i n e n t r o p y 
compared to the r a r e gases presumably i s not due to m o l e c u l a r 
f l e x i b i l i t y , b u t i n s t e a d i s due t o r e s t r i c t e d m o t i o n f r o m 
o r i e n t a t i o n o r o t h e r s i m i l a r e f f e c t s i n the l i q u i d phase due t o 
hydrogen bonding. C u r i o u s l y these e f f e c t s appear to be about equal 
i n magnitude to f l e x i b i l i t y e f f e c t s f o r n o n - p o l a r compounds w i t h 
e q u a l b o i l i n g p o i n t s . Thus whether Δ S D /R i s a r e s u l t o f 
f l e x i b i l i t y or p o l a r e f f e c t s , the net r e s u l t i s about the same f o r 
compounds w i t h the same b o i l i n g p o i n t . F i g u r e 2 a l s o shows a dashed 
l i n e f o r A s D E V / R of the d i a t o m i c h a l o g e n compounds. A g a i n , t h i s 
p l o t d e v i a t e s s i g n i f i c a n t l y f r o m the n - p a r a f f i n p l o t because t h e 
f l e x i b i l i t y does not i n c r e a s e as the b o i l i n g p o i n t i n c r e a s e s . 
However, there does appear to be some r e s t r i c t i o n of motion as the 
m o l e c u l a r w e i g h t s and s i z e s of the s e d i a t o m i c m o l e c u l e s i n c r e a s e 
because Δ S D E 7 R does i n c r e a s e s l i g h t l y v e r s u s T^. F i g u r e 3 shows 
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25. WILSON Interpretations of Trouions Law 523 

0 100 200 300 400 500 600 
T b ' ° K 

F i g u r e 1 . Entropy D e v i a t i o n from I d e a l Gas of Hydrocarbons and 
Rare Gases at t h e i r B o i l i n g P o i n t s . 
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F i g u r e 3. Entropy D e v i a t i o n from I d e a l Gas of Compounds w i t h 
Various F u n c t i o n a l Groups, 
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25. WILSON Interpretations of Trouions Law 525 

additional ΔS D E V/R data. This plot shows that the alcohols, glycol, 
and g l y c e r o l e x h i b i t AS D /R values which are higher than the 
paraffin hydrocarbons by one to two units; thus suggesting that in 
these cases the o r i e n t i n g e f f e c t s of hydrogen bonding of these 
compounds are greater than the f l e x i b i l i t y effects which r e s t r i c t 
the motion of non-polar compounds. However, even w i t h these 
differences, the error in predicting the heat of vaporization would 
be 20% or less because ΔS/R i s about 10 or more. 

The results in Figures 1, 2, and 3 provide interesting features 
p e r t a i n i n g to entropy e f f e c t s i n the l i q u i d phase. In a d d i t i o n , 
these f i g u r e s can be used d i r e c t l y f o r estimating heats of 
vaporization. The estimated heats of vaporization combined with the 
Antoine equation with a generalized value f o r "C" provides an 
ex c e l l e n t means f o r estimating vapor pressures based only on a 
measured b o i l i n g point and l i q u i d density. For t h i s purpose the 
following generalized correlation for "C" i s recommended. 

C°K *= -.002896T b
1 , 6 7 2 (6) 

When t h i s value f o r "C" i s used, the other parameters are as 
follows : 

( T b + 0 ) 2 Λ H 
Β - -M (7) 

Τ, RT, 
D D 

A = 6.633 + (8) 

ln(P,mmHg)= A - (9) 

Also from Τ^,ΔΗ/RT^, and the c r i t i c a l constants of a compound 
can be estimated. This i s almost analogous to the estimation of 
hydrocarbon c r i t i c a l constants based on density and boil i n g point, 
but with hydrocarbons the molecular weight can also be estimated, 
unfortunately, this i s not possible in general without knowing the 
class of compound involved. 

Besides the immediate u t i l i t y of Figures 1, 2, and 3 they 
provide insight into entropy effects in the l i q u i d phase that prove 
worth pursuing. I f the d e v i a t i o n entropy of a compound i s 
determined along the saturation curve with corrections made for the 
vapor phase effects in Equation 2 at high reduced temperatures, then 
curves are obtained such as the curve f o r argon shown i n Figure 4. 
Non-random entropy effects in non-polar liquids are very small as i s 
evidenced by the f a c t that the product UV L i s a constant; or 
OU/av^-U/V (2.). Thus the main e f f e c t on A s D E V / R w i l l be the 
v a r i a t i o n of l i q u i d volume w i t h temperature along the s a t u r a t i o n 
curve. In fact, the curve in Figure 4 for argon bears considerable 
resemblance to the curve predicted f o r hard spheres based on the 
equation of Carnahan and S t a r l i n g (3.). An a l t e r n a t e curve i s 
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526 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

p l o t t e d i n Figure 4 based on the f o l l o w i n g equation: 

-|Ë. - - ν In ( 1 - |) (10) 

Which i n v o l v e s two p a r a m e t e r s i n c o n t r a s t t o one used i n the 
C a r n a h a n - S t a r l i n g e q u a t i o n . E q u a t i o n 10 g i v e s a hard sphere 
c o m p r e s s i b i l i t y f a c t o r as f o l l o w s : 

Ζ = 1 + V = - ^ — (11) 
V - b 

C o m p r e s s i b i l i t y f a c t o r s from t h i s equation w i t h ν - 3.5 are p l o t t e d 
i n F i g u r e 5 where c o m p a r i s o n i s made w i t h the C a r n a h a n - S t a r l i n g 
equation: 

ζ , * + y * y 2 - y 3

 α 2 ) 
(1 - y ) J 

y 4 , b = § Ν πσ3 

4V 

Comparison i s a l s o made w i t h r e s u l t s of m o l e c u l a r dynamics 
c a l c u l a t i o n s w i t h hard spheres by A l d e r and Wainwright (1_). Figure 
5 shows that Equation 11 f o l l o w s the r e s u l t s of A l d e r and Wainwright 
at high d e n s i t i e s much more c l o s e l y than does the Carnahan-Starling 
equation. One could introduce a second parameter to the Carnahan-
S t a r l i n g equation i n order to improve agreement, but the i n c e n t i v e 
seems r a t h e r low i n view of the s i m p l i c i t y of Equation 11. Without 
a c o r r e c t i o n , the Carnahan-Starling equation corresponds to a much 
s o f t e r f l u i d at h i g h d e n s i t i e s than i s a c t u a l l y p r e d i c t e d from 
m o l e c u l a r dynamics. The r e a s o n f o r t h i s i s not c l e a r , and i t 
appears to be i n e r r o r because the minimum volume t h a t the hard 
spheres can occupy i s the c l o s e packed c r y s t a l volume shown at v/v 0= 
1.0 i n Figure 5. The formation of the c r y s t a l r e q u i r e s a t r a n s i t i o n 
from a f l u i d s t a t e to the c r y s t a l l i n e s t a t e , and the minimum volume 
i n the f l u i d s t a t e i s about 14% l a r g e r than the volume of the c l o s e 
packed c r y s t a l . Therefore, Equation 11 which represents a m o d i f i e d 
hard sphere equation i s proposed f o r the c a l c u l a t i o n of hard sphere 
p r o p e r t i e s at high d e n s i t i e s . 

E q u a t i o n 11 was f i t t e d to the d a t a p l o t t e d i n F i g u r e 4 by 
f i t t i n g two p o i n t s a l o n g the c u r v e . T h i s r e q u i r e s the a s s u m p t i o n 
t h a t t e m p e r a t u r e e f f e c t s a r e n e g l i g i b l e . A l t e r n a t i v e l y , b o t h 
p a r a m e t e r s can be f i t t e d at each t e m p e r a t u r e by assuming t h a t 
( 3 U p V ) T i s e q u a l t o -Δϋ/V. When t h i s i s done, two s i m u l t a n e o u s 
equations i n v o l v i n g A S D /R and T(8S/3v) T can be solved f o r b and 
V as f o l l o w s : 

A Q d e v κ 

Δ|_ m _ v l n ( 1 _ b } ( 1 0 - a ) 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
02

5

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



25. WILSON Interpretations of Trouton's Law 527 

τ 1 ι 1 Γ 

b = 21.8 cc/mole 

ι h 

0 2.0 2.5 3.0 

v c / v 

F i g u r e 4. D e v i a t i o n Entropy of Argon Along the L i q u i d S a t u r a t i o n 
Curve· 
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F i g u r e 5. C o m p r e s s i b i l i t y F actor of Hard Spheres from Carnahan-
S t a r l i n g Equation Versus Molecular Dynamics. 
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. _Δϋ + P V ^ e χ + V ( ^ L } ( 1 3 ) 

R KdVJ RT RT 1 Vb/y 

In Equation 13, Ρ i s the saturation pressure; so except at high 
reduced temperature, PVL/RT i s very small. Values of i n t e r n a l 
energy were determined from ΔΗ where a correction was made for Δ Ζ 
both i n c a l c u l a t i n g ΔΗ and i n converting AH to Αϋ and f o r the 
energy content of the vapor. When t h i s was done, values of b were 
obtained as are plotted in Figure 6. This figure shows that derived 
values of b i n the modified hard sphere equation correspond quite 
c l o s e l y to the minimum l i q u i d volume predicted from the Rackett 
equation at zero reduced temperature. Also the volume of the 
molecules can be estimated from the Rackett equation by taking the 
r a t i o of 0.74/1.14 from Figure 5 times the minimum l i q u i d volume 
from the Rackett equation. This r a t i o provides the lower dashed 
l i n e i n Figure 6 which i s a c t u a l l y higher than derived values of b 
in the Carnahan-Starling equation. These results strongly suggest 
that the derived values of b f o r argon i n the two equations are 
consistent with the interpretation given in Figure 5. 

Figure 6 suggests that the extrapolated l i q u i d volume based on 
the Rackett equation at zero reduced temperature corresponds closely 
to the value of b to be used i n Equations 10 and 11. I f t h i s i s 
assumed, then values of Δ S D E V/R versus b/V can be plotted for other 
materials as are shown in Figure 7. These curves appear to conform 
rather c l o s e l y except that they d i f f e r by nearly a constant 
multiplying factor depending on the compound. Curiously, even polar 
compounds such as ammonia seem to f i t the pattern. These r e s u l t s 
suggest that the only difference between these compounds and argon 
i s the value of ν used i n Equation 10. For non-polar compounds, 
this seems reasonable because the thermal pressure i s probably more 
closely related to the free volume per molecular segment than i t is 
to the free volume per molecule. Equation 11 gives the following: 

Ζ - 1 + - 1 - - ν (14) 
V V 

At high d e n s i t i e s , the only s i g n i f i c a n t term i s (l-b/V)/v which 
corresponds to the free volume per segment where ν represents a 
parameter proportional to the number of segments in the molecule. 
Thus i t appears that Equation 11 can not only be used f o r hard 
spheres but also for long or bulky molecules such as those plotted 
in Figure 15. For polar compounds V would not have the significance 
of number of segments; but i f ν i s also interpreted as a parameter 
proportional to restricted degrees of freedom in the l i q u i d phase; 
then i t s t i l l has meaning for polar compounds. 

Figure 8 shows the result of simultaneously f i t t i n g b and V for 
various compounds at T r

 s 0.6. Results at other temperatures d i f f e r 
only s l i g h t l y . This plot shows that ν i s a linear function of b for 
the paraffin hydrocarbons. Also, the aromatic hydrocarbons plot on 
v i r t u a l l y the same l i n e ; thus showing that any reduction i n degrees 
of freedom of the aromatic hydrocarbons i s also r e f l e c t e d i n a 
smaller b. The rare gases deviate s l i g h t l y from the l i n e but the 
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Rackett Eqn. a t Zero °K 

"V Minimum L i q u i d V o l : 

^ M o d i f i e d Hard Sphere Eqn. 

Rackett Eqn. . ̂ A c t u a l Vol. 
of Molecules 

Carnahan-Starling Eqn. 
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F i g u r e 6. Molecular Volume of Argon Compared w i t h Carnahan-
S t a r l i n g and Rackett Equation.  P
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0.5 0.6 0.7 0.8 0.9 1.0 

b/v 

F i g u r e 7. Entropy D e v i a t i o n from I d e a l Gas Versus b/V of Various 
Compounds· 
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10 
EtOH 

• 
n-Paraffins ^ 5 

Phenol 
• 

Q' 
JO 

H 20 
Ο 

Diphenyl 
Acetone Q-Q 

• Ο Naphthalene 
Benzene ~ ν = 2 + .04b 

Cyclohexane 
HC1 
o p' 

V Ar Xe 

P' c c l 4 Key: 
Ο n - P a r a f f i n s 

Smoothed 
n - P a r a f f i n s 

• Other Compounds 
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b, cc/mole 

200 

F i g u r e 8. Degree of Freedom Parameter Versus b of n - P a r a f f i n s 
and Other Compounds, M o d i f i e d Hard Sphere Equation. 
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25. WILSON Interpretations of Trouions Law 533 

difference i s rather small. Greater differences are shown by polar 
molecules such as water, ethanol, phenol, acetone, and HC1 which 
deviate s i g n i f i c a n t l y ; thus showing a rather large r e s t r i c t i o n i n 
molecular motion of the compounds in the l i q u i d phase compared to 
the sizes of the molecules. 

Why Van der Waals RT/(V-b)î 

Many equations of state have been proposed over the years. Some of 
these contain the RT/(V-b) term from the Van der Waals equation 
while others replace i t with another term including the hard sphere 
equation of Carnahan and S t a r l i n g . I t seems s i g n i f i c a n t that the 
two equations commonly in use today; the Soave modification of the 
Redlich-Kwong equation and the Peng-Robinson equation of state use 
the o r i g i n a l term of Van der Waals. Why should t h i s be so when a 
rep u l s i o n term based on hard spheres seems much more reasonable? 
Also, from the r e s u l t s above i t appears that r e a l f l u i d s conform 
f a i r l y c l o s e l y to a modified hard sphere equation of state. 
Molecular dynamicists also chide us f o r p e r s i s t i n g i n the use of 
what i s considered to be an obsolete form. The answer i s probably 
not because of r e s i s t a n c e to new ideas. Instead i t appears that 
both equations of state give better r e s u l t s for l i q u i d properties 
when the or i g i n a l Van der Waals term i s used compared with the use 
of the Carnahan-Starling equation. I f this is so, i t suggests that 
there i s a compensation of errors between the a t t r a c t i o n and 
r e p u l s i o n terms i n these equations of state. An examination of 
the internal energy of a simple f l u i d according to Lee-Kesler (7) i n 
Figure 9 shows that there are s i g n i f i c a n t d i f f e r e n c e s at high 
d e n s i t i e s between a l l modifications of the Redlich-Kwong equation 
and the ac t u a l curve. At lower d e n s i t i e s , the Redlich-Kwong 
equation f i t s the curve quite accurately; but i t doesn't bend back 
as the data do at high d e n s i t i e s . By contrast, a Lennard-Jones 
f l u i d (6) appears to conform with the simple f l u i d at high densities 
even though the a c e n t r i c f a c t o r of a Lennard-Jones f l u i d i s about 
-0.058; which i s not a simple f l u i d . A t h i r d curve corresponding to 
the Peng Robinson equation of state could be drawn i n Figure 9. At 
low d e n s i t i e s i t conforms as w e l l as does the Redlich-Kwong 
equation, and at high densities i t deviates less severely than the 
Redlich-Kwong equation of state. These deviations at high densities 
i n d i c a t e that both equations deviate s i g n i f i c a n t l y from the true 
energy curve at high densities. This problem i s also evident from 
anjexamination of data in Figure 10 where 0 U / 3 V ) T i s plotted versus 
U/V f o r various compounds. This f i g u r e shows that non-polar 
compounds appear to conform closely to a slope of unity while polar 
compounds deviate s i g n i f i c a n t l y from t h i s . A slope of u n i t y i s 
consistent w i t h the upper end of the curve f o r a simple f l u i d at 
high densities shown in Figure 9. The Redlich-Kwong equation gives 
a slope of about 0.65 f o r the range of d e n s i t i e s i n the l i q u i d 
region while the Peng-Robinson equation gives a slope of about 0.75; 
thus showing that both equations deviate s i g n i f i c a n t l y at high 
densities. 
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Τ 

b/v 
F i g u r e 9. I n t e r n a l Energy of a Simple F l u i d (ω=0) at T r= 1.0 
( L e e - K e s l e r ) . 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
02

5

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



25. WILSON Interpretations of Trouions Law 535 
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F i g u r e 10. V a r i a t i o n of (aU/9V)T Versus Δϋ/V at 20°C (from A. M. 
F. Barton, CRC Handbook of Soly. Parameters, 1983).  P
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Notation 

Upper Case Letters: 

B> 88 Antoine Constants 
cj 
H 88 enthalpy 
Ν 88 Avogadro's number 
Ρ 88 pressure 
R 88 gas constant 
S 88 entropy 
Τ 88 absolute temperature 
U 88 internal energy 
V 88 volume 
Ζ 88 Compressibility factor 

Lower Case Letters: 
b 88 volume analogous Van der Waals b 
y 88 b/4V in Carnahan-S tar l i n g hard sphere equation 

Superscripts: 
DEV = deviation from ideal 
I 88 ideal 
L 88 l i q u i d phase 
V 88 vapor phase 
- 88 molar property or average property 
° 88 property at a low enough pressure to behave as an ideal 

gas 
Subscripts: 

b 88 at atmospheric bo i l i n g point 
c 88 value at c r i t i c a l point 
r 88 reduced property 

Greek Letters: 
Δ • incremental change 
σ 88 hard sphere diameter 
ν = degree of freedom parameter in proposed modified hard 

sphere equation of state 
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Selection and Design of Cubic Equations of State 

J.-M. Yu, Y. Adachi, and B.C.-Y. Lu 

Department of Chemical Engineering, University of Ottawa, Ottawa, Ontario K1N 9B4, 
Canada 

Fourteen known cubic equations of the van der Waals 
type, Ρ = RT/(V-b) - a(T)/(V2 + ubV + wb2), were 
evaluated through the calculations of eight properties 
of normal alkanes. The roles of u and w in these 
calculations were demonstrated. A new design proce­
dure was developed and a new relationship between u 
and w was suggested. 

R e l i a b l e methods f o r p r e d i c t i n g phys ica l p rope r t i e s of pure compo­
nents and t h e i r mixtures (such as s i n g l e and two-phase p r o p e r t i e s , 
and v a p o r - l i q u i d e q u i l i b r i a ) are f requent l y requ i red i n process 
design and mater ia l hand l i ng . In view of the wide range of s ta te 
cond i t i on s found in p r a c t i c a l a p p l i c a t i o n s , and the frequent lack of 
experimental da ta , cons iderab le a t t e n t i o n has been paid to the 
development of these methods. In p a r t i c u l a r , a number of equations 
of s ta te have been proposed in the l i t e r a t u r e to meet t h i s demand. 

The most popular equations of s ta te are cubic in volume (or 
d e n s i t y ) . A gener ic express ion fo r the c u r r e n t l y popular cubic 
equations of s ta te may be represented in the form of an extended van 
der Waal s (VDW) equat ion , 

Ρ = K L - a (1) 
V-b V2+ubV+wb2 

The quadrat i c express ion i n volume (V2+ubV+wb2) replaces the V 2 term 
in the denominator of the a t t r a c t i v e term of the o r i g i n a l VDW 
equat i on . When the parameters u and w are assigned c e r t a i n p a r t i c u ­
l a r va lue s , Equation 1 can be reduced to the o r i g i n a l VDW equation 
(u=w=0)U), the Redlich-Kwong (RK) equation (u=l, w=0)(2) and i t s 
var ious modi f ied forms, the Peng-Robinson (PR) equation (u=2, 
w=-l)(_3), the Heyen (H) equation (u+w=l)(4), the Schmidt-Wenzel (SW) 
equat ion (u+w=l)(5), and a number of other equat ions . Some general 
features of Equation 1 or i t s equ iva lent express ion have been d i s ­
cussed by Abbott {6). 

There i s evidence in the l i t e r a t u r e (7-9) that p r a c t i c a l l y 
i d e n t i c a l v a p o r - l i q u i d e q u i l i b r i u m (VLE) values (T-P-compos i t ion) 

0097-6156/ 86/ 0300-0537$06.75/ 0 
© 1986 American Chemical Society 
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538 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

can be obtained from cub ic equations of s ta te con ta in i ng two to four 
parameters, and these r e s u l t s are f r equen t l y comparable to those 
obta ined from more complex equations of s t a t e . I t has been f u r t h e r 
demonstrated (10) that by t r e a t i n g the parameter " a " of Equation 1 
temperature dependent, the VDW equation i s as capable as other cubic 
equations f o r c a l c u l a t i n g VLE va l ue s . 

On the other hand, the c a p a b i l i t i e s of the a v a i l a b l e cub ic 
equations f o r represent ing vo lumetr ic p rope r t i e s vary from equation 
t o equat ion , e s p e c i a l l y i n the c a l c u l a t i o n of l i q u i d volumes. Kumar 
and S t a r l i n g (11) suggested that " a t a p a r t i c u l a r temperature, a 
h igher density"~3ependence leads to a more accurate equation of 
s t a t e " . They increased the complexity of Equation 1, and proposed 
a f i ve -parameter cubic equation of s t a te f o r p r e d i c t i n g l i q u i d 
d e n s i t i e s and low temperature vapor p res sures . 

One approach i s t he re fo re to separate the i s sues of VLE c a l c u ­
l a t i o n s and vo lumetr ic p r ed i c t i on s in the a p p l i c a t i o n of equations 
of s t a t e . In other words, d i f f e r e n t equations are used f o r d i f f e r ­
ent purposes. Another approach i s to f u r t he r improve the performan­
ce of the a v a i l a b l e equations or develop new equations to s a t i s f y 
the requirements of both VLE and vo lumetr ic c a l c u l a t i o n s . The task 
i s a c t u a l l y reduced to developing a s u i t a b l e equat ion , with a 
compromise between s i m p l i c i t y and accuracy fo r representat ion of 
vo lumet r i c d a t a . In both approaches, gu ide l i ne s f o r s e l e c t i n g the 
appropr ia te equations are r e q u i r e d . 

There i s s t i l l a need to f u r t h e r eva luate the a v a i l a b l e cubic 
equations i n a systemat ic manner, so that the u t i l i z a t i o n of a cub i c 
equat ion can reach i t s f u l l p o t e n t i a l . The purpose of t h i s study i s 
t he re fo re to eva luate a v a i l a b l e cubic equations of s ta te of the VDW 
type as represented by Equation 1 to i d e n t i f y the mer i t s and 
l i m i t a t i o n s of these equations f o r the purpose of s e l e c t i o n , and t o 
suggest a s u i t a b l e procedure f o r des ign ing new cubic equations of 
the same type but t a i l o r e d to s p e c i f i c purposes. 

Eva lua t i on of Cubic Equations of S ta te 

The techniques used in the improvement of the o r i g i n a l VDW equat ion 
f o r phys ica l property p r e d i c t i o n s , without changing the express ion 
of Equation 1, may be grouped i n t o the f o l l o w i n g three c a t e g o r i e s : 
1. M o d i f i c a t i o n of the express ion used in the denominator of the 

a t t r a c t i v e term. 
2. A p p l i c a t i o n of a vo lume- t ran s l a t i on technique to the o r i g i n a l 

VDW equation and the equations of the f i r s t ca tegory . 
3. I n t roduc t i on of temperature dependence to one or more parameters. 

The equations of RK, PR and SW are examples of the f i r s t 
ca tegory . The C laus ius (C) equation (12) i s an example of the 
second category . The Soave form of the RK equation (SRK)(13) and 
the m o d i f i c a t i o n of the RK equation by Hamam et a l . ( H C L ) Q T ) are 
examples of the t h i r d category . 

In a d d i t i o n to the above mentioned SRK, PR, SW, HCL and H equa­
t i o n s , we have inc luded in our con s i de ra t i on the Harmens-Knapp (HK) 
equat ion (15), the P a t e l - T e j a (PT) equation (16), the r e s u l t i n g 
equation from volume t r a n s l a t i o n of the SRK equation (TSRK) proposed 
by Peneloux et a l . (17), the four-parameter equation of Adachi et 
a l . (ALS)(9) , and the CI equation proposed by Peneloux et a l . (18 ) . 
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26. YU ET AL. Design of Cubic Equations of State 539 

The o r i g i n a l VDW, RK and C equations are not evaluated because t h e i r 
poor performance on vo lumetr ic p r ed i c t i o n s i s known. On the other 
hand, the three-parameter RK equations suggested by Adachi et a l . 
(3RK)(19) and by F u l l e r (F) (20), and the Mart in Equation (21) (a 
ve r s ion of the C laus ius equat ion) i n two modi f ied vers ions WC 
(Adachi et a l . (19)) and KMC (Kubic (22)) are cons ide red . Thus, a 
t o t a l of fourteen cubic equations are evaluated in t h i s work. 

Among these equat ions , the RK equation i s one of the most 
succes s fu l two-parameter cubic equat ions . In the SRK equat ion , 
Soave made an e f f o r t i n 1972 to c l o s e l y reproduce vapor pressures of 
pure compounds by assuming the parameter " a " of the o r i g i n a l 
equation to be temperature dependent. This m o d i f i c a t i o n enhanced 
the a p p l i c a b i l i t y of the RK equation fo r c a l c u l a t i n g VLE va lue s . 
Many of the equations which have subsequently appeared in the 
l i t e r a t u r e have adopted the same or s i m i l a r m o d i f i c a t i o n s . As f a r 
as the representat ion of vo lumetr ic data fo r pure f l u i d s i s concern­
ed, Mart in (21) concludes that the C lau s i u s - t ype equation i s the 
best of the s impler cubic equat ions . However, the c a l c u l a t i o n of 
vo lumet r i c p rope r t i e s at s a tu r a t i on cond i t i on s without cons ide r ing 
the e q u a l i t y of f u gac i t y at the same time as app l i ed by Mart in could 
in t roduce i n t e r n a l i ncons i s tency i n the c a l c u l a t e d va l ue s . As 
mentioned above, the C laus ius equation can be obtained from a volume 
t r a n s l a t i o n of the VDW equat ion . I t i s d i f f i c u l t to envisage that 
the volume t r a n s l a t e d VDW equation i s super io r to the vo lume-trans­
l a t e d RK equation (TSRK). A comparison of the c a l c u l a t e d r e s u l t s i s 
d e f i n i t e l y of i n t e r e s t . It should be mentioned that i n the two 
modi f ied vers ions of the Mart in equat ion , MMC (19) and KMC (22), the 
parameter " a " of Equation 1 was t r ea ted as temperature dependent. 

Parameters other than " a " of Equation 1 have been assumed to be 
temperature dependent i n some cub ic equat ions . For example, the H 
equation conta ins three parameters, two of which are assumed to be 
temperature dependent. It i s designated in t h i s work as a 3P2T 
equa t i on . The other equations are s i m i l a r l y des i gnated. The i n ve s ­
t i g a t e d equations of s ta te are thus grouped i n t o s i x types as shown 
i n Table I. The r e l a t i o n s h i p s between u and w fo r these equat ions , 
the parameters which are t rea ted temperature dependent as wel l as 
the p roper t i e s (other than T c and P c ) used to determine the parame­
t e r s of these equations are a l so presented in Table I. In the 
t a b l e , the two-parameter equation proposed by Harmens (HA) (23) was 
a l s o i n c l u d e d , because i t s u and w r e l a t i o n s h i p formed part o f the 
bas is in the development of the SW equat i on . 

Representat ion of Phy s i ca l P r ope r t i e s 

The p rope r t i e s of ten normal alkanes from methane to n-decane, 
obtained from genera l i zed c o r r e l a t i o n s and t abu l a t i on s a v a i l a b l e i n 
the l i t e r a t u r e were used as the bas i s f o r comparing the performance 
of the fourteen equat ions . A t o t a l of e ight p rope r t i e s were c o n s i ­
dered. The vapor pressures , p v , were obtained from the genera l i zed 
c o r r e l a t i o n proposed by Gomez-Nieto and Thodos (24) f o r nonpolar 
substances. The saturated l i q u i d volumes, V*, were obtained from a 
modi f ied Rackett equation using the input parameters suggested by 
Spencer and A lder (25). The saturated vapor volumes, V v , were 
obtained from the c o r r e l a t i o n of B a r i l e and Thodos (26) . The second 
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540 EQUATIONS OF STATE: THEORIES A N D APPLICATIONS 

Table I Features of Some Cubic Equations of State 

Ρ = RT/(Y-b) - a (T )/ (V 2 + ubV + wb 2) 

TYPE EOS u w a b F i t t e d P rope r t i e s 

VDW 0 0 
. y 

b. none 
2P1T RK 1 0 . y b c none 

SRK 1 0 a h ) P v 
PR 2 -1 a(T) p v 
HA 3 -2 a(T) b̂  p v 

3P1T HK 1-w a(T) bj P v , C r i t i c a l Isotherm 
SW 1-w a(T) b c P v , V % r = 0 . 7 ) 
PT 1-w f(co) a(T) b c P V ,V*(T.= 0.6 t o 1.0) 
3RK f U ) 0 a(T) b̂  p v j V A r 

MMC f U ) u 2/4 a(T) bj pv 
TSRK f(co) ( 2 u 2 - u - l ) / 9 a(T) b c ρ ν > ν λ 
CI f(ω) - (u 2 - 4u -4 )/8 a(T) bj P V * 

4P1T ALS f(<o) f(u>) a(T) b c P v , C r i t i c a l Isotherm 
2P2T HCL 1 0 a(T) bU) P V , V * 
3P2T Η 1-w fU,b) 

u 2/4 
a(T) b(T) P \ V * 

KMC f U ) 
fU,b) 
u 2/4 a(T) b(T) P \ B , 

3P3T F f (T ) 0 a(T) b(T) p v , V * , V v 

v i r i a l c o e f f i c i e n t s , B, were obtained from the c o r r e l a t i o n of 
Tsonopoulos (27)« For these four p r o p e r t i e s , po ints were taken at 
0.02 i n t e r v a l s in the T p range of 0.5 to 0.80 and at T r equals 0.85, 
0.90, 0.95 and 0.98 f o r a t o t a l of 20 Τ va lue s . The c o r r e l a t i o n of 
Lee and Kes le r (28) was used to obta in the values f o r l i q u i d 
c o m p r e s s i b i l i t y TFc to r ( Z x , 0.30 < T p < 0.99, 0.01 < P p < 10.0, 315 
p o i n t s ) , c o m p r e s s i b i l i t y f a c t o r of vapor ( Z v , 0.55 < T p < 0.99, 0.01 
< P r < 0.8, 56 p o i n t s ) , c o m p r e s s i b i l i t y f a c t o r of gas above the 
c r i t i c a l temperature ( Z s u p , 1.01 < T f < 4.00, 0.01 < P r < 10.0, 240 
po in t s ) and c o m p r e s s i b i l i t y f a c t o r along the c r i t i c a l isotherm ( Z c , 
T r =1.0, 0.01 < Ρ < 10.0, 15 p o i n t s ) . 

A summary of the c a l c u l a t i o n r e s u l t s , i n terms of o ve r a l l 
average absolute percent d e v i a t i o n s , i s presented in Table I I . The 
reported values may be s l i g h t l y d i f f e r e n t from s i m i l a r c a l c u l a t i o n s 
a v a i l a b l e in the l i t e r a t u r e due to the d i f f e r e n c e in the covered 
ranges of Tp and P p and in the number of data po ints se lec ted f o r 
the c a l c u l a t i o n . 

I t i s wel l known that accurate representat ion of vapor pressu­
res i s e s s en t i a l f o r v a p o r - l i q u i d e q u i l i b r i u m c a l c u l a t i o n s . For 
t h i s reason, vapor pressure values have been used to determine the 
values of parameter " a " , or Q a(= a Pc/R 2 Τ 2 ) . The genera l i zed 
express ions of the o r i g i n a l authors f o r "a were used to c a l c u l a t e 
p v and p r a c t i c a l l y a l l equations te s ted y i e l d e d acceptable r e s u l t s . 

As f a r as V* i s concerned, the modi f ied Mart in (MMC) and the 
SRK equations y i e l d the l a r ge s t d e v i a t i o n s . 

The dev i a t i on s in the c a l c u l a t e d V v values f o l l o w c l o s e l y to 
those f o r p v , and the dev i a t i on s in Z A values f o l l o w c l o s e l y to 
those f o r V^. 
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26. YU ET AL. Design of Cubic Equations of State 541 

Table II Summary of Overa l l Average Absolute Percent Dev iat ions in 
the Ca l cu l a ted Phys i ca l P rope r t i e s f o r Ten Normal 

Property NT SRK PR HK SW PT 3RK MMC 

p v 200 1.51 2.55 1.02 1.44 1.95 1.29 2.33 
200 13.4 5.47 4.37 2.78 2.56 4.00 12.4 
200 1.23 2.54 1.45 1.22 2.01 1.08 2.51 

Z* 3150 11.2 4.96 4.14 2.96 3.03 3.37 12.6 
Z v 560 0.95 0.58 0.55 0.38 0.40 0.56 0.44 
z sup 2400 2.37 1.54 1.47 1.41 1.28 1.36 1.89 
Z c 150 8.50 4.68 4.05 4.08 4.13 4.92 5.24 
B 200 17.2 15.5 L5.1 15.6 15.4 15.9 15.4 

Property TSRK CI ALS HCL Η KMC F 

p v 1.51 0.96 1.42 1.88 10.5 3.56 1.83 
V* 3.77 3.65 2.61 0.65 2.26 5.41 2.01 
V v 1.20 1.26 1.74 4.10 10.3 4.01 1.97 
Z* 3.67 3.93 3.13 2.61 5.53 13.5 5.28 
Z v 0.64 0.49 0.45 2.24 2.24 0.19 0.99 
z sup 1.35 1.30 1.30 2.98 3.72 2.09 6.16 
Z c 5.42 6.24 4.00 8.37 8.90 5.32 12.6 
Β 16.1 15.6 15.4 23.2 16.9 1.71 17.4 

The d i f f e r e n c e s in the c a l c u l a t e d Z v , Z s u p and Z c values among 
the 14 equations are not too s i g n i f i c a n t . The KMC equation g ives 
the lowest dev i a t i on s in the c a l c u l a t e d Β va lues , which were used in 
the determinat ion of the parameters of the equa t i on . 

Although some of the f i nd i n g s mentioned above could be e n v i ­
saged from the features l i s t e d in Table I, there are several i n t e r ­
e s t i n g po ints revealed by the r e s u l t s of Table I I . 
1. The c u r r e n t l y popular cubic equations of s ta te (SRK and PR) do 

not y i e l d the best r e s u l t s . 
2 . The performance of the 3P2T Η equation i s i n f e r i o r to that of 

the 3P1T PT equat i on . Indeed, the o v e r a l l performance of 
equations conta in ing more than one temperature-dependent parame­
t e r i s genera l l y i n f e r i o r , i n d i c a t i n g that these equations are 
mainly s u i t a b l e f o r represent ing the phys ica l p rope r t i e s used in 
the forced f i t t i n g procedure. 

3. The Mart in equation i s not s u i t a b l e f o r VLE and vo lumetr i c 
c a l c u l a t i o n s s imu l taneous l y . 

4 . A three-parameter cub ic equation with only the parameter " a " 
t r ea ted temperature dependent i s adequate fo r the purpose of 
t h i s s tudy. The performance of the s i x equations of t h i s type 
(HK, SW, PT, 3RK, TSRK, CI) seems to be adequate. 
Fur ther examination of the dev i a t i on s obtained f o r i n d i v i d u a l 

alkanes (as shown in Table I I I ) from the 2P1T and 3P1T equations 
revea l s t h a t : 
1. The PR equation y i e l d s l a r g e r dev i a t i on s in p v values f o r l a r g e r 

mo lecu les , and the dev i a t i on s i n V* inc rease with increase in 
molecular we ight . 
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542 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

2. For the SRK equat ion , the dev i a t i on s i n V * a l s o increase with 
increase in molecular weight, 

3. A l l 2P1T and 3P1T equations y i e l d l a r ge dev i a t i on s in B, and the 
dev i a t i on s increase with increase in molecular we ight . 

4. The TSRK equation y i e l d s dev i a t i on s in p v i d e n t i c a l to those of 
the SRK equat ion , conf i rming the f ac t that volume t r a n s l a t i o n 
does not a f f e c t the p v c a l c u l a t i o n s . 

5. As f a r as the dev i a t i on s i n V* and are concerned, the PT 
equation appears to be s l i g h t l y super io r in the fami l y of 
equations (HK SW and PT) which can be represented by the u + w = 
1 r e l a t i o n s h i p . Among the equations r e s u l t i n g from volume 
t r a n s l a t i o n (MMC, TSRK, and C I ) , the performance of the TSRK 
equation i s be t te r because the i n d i v i d u a l dev i a t i on s are about 
the same fo r the ten a lkanes . The dev ia t i on s obtained from the 
CI equation tend to increase with increase in molecular we ight . 
A comparison of the SW, PT, TSRK and CI equations reveals that 
equations with substance-dependent Q a c values y i e l d be t t e r 
representat ion of these two p r o p e r t i e s . A l l equations appear t o 
represent V* and Ζ λ to the same degree of accuracy. 

6. Although near ly a l l the equations y i e l d low dev ia t i on s in the 
c a l c u l a t e d Z v and Z s u p v a l ue s , there i s a tendency toward l a r g e r 
dev i a t i on s at l a r ge r molecular we ight s . 

7. The fami l y of equations represented by the u + w = 1 r e l a t i o n ­
ship y i e l d s lower dev i a t i on s in the c a l c u l a t i o n of Z c values 
than the equations obtained from the vo lume- t ran s l a t i on method, 
and the i n d i v i d u a l dev i a t i on s are about the same. 
Thus, the r e s u l t s reported in Tables II and I I I provide some 

guidance in the s e l e c t i o n of equations among the 14 cub ic equations 
f o r represent ing phys ica l p rope r t i e s of pure normal f l u i d s . The 
choice depends on the p rope r t i e s to be emphasized and the molecu lar 
weight of the substances to be cons idered. 

Design of Cubic Equations of S ta te 

In Equation 1, i f u and w are considered as constants fo r a l l 
substances (such as the VDW, RK, SRK, PR and HA equat i on s ) , the 
re su l t an t equation would be a two-parameter equat ion . I f u and w 
are r e l a ted by an exact mathematic r e l a t i o n s h i p (such as the HK, SW, 
PT, 3RK, MMC and TSRK equat i on s ) , Equation 1 would become a t h r e e -
parameter cubic equat i on . I f u and w are not r e l a t ed to each other 
through an exact mathematic r e l a t i o n s h i p (such as the ALS equa t i on ) , 
Equation 1 would y i e l d a four-parameter equat ion . Although the CI 
equation in i t s o r i g i n a l form (18) appears to be a four-parameter 
equa t i on , the u and w r e l a t i o n s h i p of t h i s equation can be appro­
ximated by the express ion shown in Table I. In other words, i t may 
be approximates as a vo lume-t rans lated PR equat ion . 

I f we adopt the c l a s s i c a l cond i t i ons at the c r i t i c a l point as 
two of our c o n s t r a i n t s , 

( ô P / ô V ) T c = 0 (2) 

( ô 2 P/ôV2) T c = 0 % (3) 

a two-parameter equation y i e l d s a constant c r i t i c a l c o m p r e s s i b i l i t y 
f a c t o r , ζ0; and a t h r e e - , or four-parameter equation may y i e l d 
substance-dependent ζ Γ v a l ue s . 
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546 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

Should the parameters of a two-parameter equation be t r ea ted 
temperature dependent up to the c r i t i c a l point by a forced f i t t i n g 
procedure, the s e l e c t i o n of p v and V A would be de s i r ab l e f o r t h i s 
purpose. However, such an equation can no longer s a t i s f y both 
Equations 2 and 3. In other words, the representat ion of the c r i t i ­
cal isotherm in the c r i t i c a l region cannot be s a t i s f a c t o r y . 
Although a 3P2T equation (having the f l e x i b i l i t y of ob ta in ing 
substance-dependent ζ0 va lues) might overcome t h i s d i f f i c u l t y , two 
such equations were evaluated in t h i s work, Η and KMC, and both 
equations y i e l d e d poorer o v e r a l l performance than the evaluated 3P1T 
equat ions . Hence, a f u r t h e r examination of the l i m i t a t i o n s and 
behavior of 3P1T cubic equations of s t a te would be useful i n the 
design of new cubic equat ions . 

A l l cub ic equations of s ta te s u f f e r c e r t a i n shortcomings. As 
d i scussed above, no equation evaluated could s a t i s f a c t o r i l y r ep re ­
sent a l l the e ight phys ica l p rope r t i e s s imu l taneous l y . I f one 
forces an equation to provide acceptable Β va lues , such as the KMC 
equa t i on , l a r g e r dev i a t i on s would occur i n other p r e d i c t i o n s , such 
as the V* and Z* va lue s . On the other hand, i f one ignores the 
representat ion of B, there i s a chance of obta in ing an equat ion 
which can s imultaneous ly prov ide p r e d i c t i o n s of the other seven 
phys ica l p rope r t i e s with reasonable r e s u l t s . The parameter values 
of " a " capable of p r e d i c t i n g vapor pressures of pure substances 
would in general be s u i t a b l e f o r v a p o r - l i q u i d e q u i l i b r i u m c a l c u l a ­
t i o n s . Because some approximation i s invo lved in c o r r e l a t i n g Q a by 
means of a temperature f u n c t i o n , some dev i a t i on s occur in the 
c a l c u l a t e d p v v a l ue s . This shortcoming i s not due to the form of 
the cubic equation of s t a t e , but due to the temperature f unc t i on 
i t s e l f . The dev i a t i on s i n p v due to t h i s inadequacy are shown in 
Table I I I . This inadequacy i s a l so r e f l e c t e d in the c a l c u l a t e d V v 

va l ue s . A p l o t of p v and V v dev i a t i on s as a f unc t i on of T p would 
reveal that one dev i a t i on curve i s m i r r o r image of the other along 
the z e r o - dev i a t i o n l i n e f o r the 2P1T and 3P1T equat ions . S ince the 
dev i a t i on s in the c a l c u l a t e d Z c and Z v values are p r a c t i c a l l y the 
same among the 2P1T and 3P1T equations and these dev i a t i on s are of 
the l e a s t concern of t h i s study, the f o l l o w i n g d i s cu s s i on i s mainly 
centered on the dev i a t i on s of V*, Z* and Z S U P . 

To i l l u s t r a t e the drawbacks of equations con ta in i ng two temp­
erature-dependent parameters, the dev i a t i o n curves obtained f o r the 
HCL and Η equations are p l o t t e d as a f unc t i on of T f i n F igure 1. 
The c o r r e l a t i o n equations o r i g i n a l l y proposed (4, 14) were used t o 
generate the curves f o r n-hexane. As both equations used p v and V A 

f o r determining t h e i r parameters, they y i e l d low dev i a t i on s i n these 
two p r o p e r t i e s , even though the accuracy of the representa t ion was 
l o s t somewhat i n the c o r r e l a t i o n s . However, the dev i a t i on s obtained 
i n the V v values are too l a r g e , due to the s h i f t of e r ro r s through 
the l i m i t a t i o n s of a cubic equat ion . The r e su l t s obtained from a 
mod i f ied PR equation with both parameters a and b s imul taneous ly 
f i t t e d to p v and V* of n-hexane are a l so inc luded in F igure 1 f o r 
comparison. The s h i f t of e r ro r s to V v i s a l so very e v i den t . The 
d i f f i c u l t y encountered by equations conta in ing two temperature-
dependent parameters f o r represent ing the c r i t i c a l region i s dep icted 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
02

6

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



Y U ET AL. Design of Cubic Equations of State 

24 μ 

16 

1 6 

Δ / % Ο 
4 

2.5 
ΔΡ ν% Ο 

2.5 
5.0 

Γ " » — Γ 

J ι I ι L _ i I ι 1L 

» • ι ' J 1 L 

V ! 
( • » ι I ι L 0.6 0.7 0.8 

Tr 
0.9 1.0 

F igure 1 Dev ia t i on Curves obtained from equations con ta i n i n g 
two temperature-dependent parameters. 
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i n F igure 2, using the express ion in terms of a(=a/a c) and p(=b/b c), 
and p l o t t e d in terms of T p . The shape of the two curves , p a r t i c u ­
l a r l y near the c r i t i c a l p o i n t , prevents simple c o r r e l a t i o n of the 
parameters in terms of T f . 

The i n f l uence of values of u and w on the representat ion of V A 

values by means of the 2P1T equations (SRK, PR and HA) i s i l l u s t r a ­
ted in F igure 3. The three equations belong to the u + w = 1 fami l y 
and t h e i r " a " parameters were determined by f i t t i n g vapor p res su res . 
In F igure 3, the c a l c u l a t e d dev i a t i on s in V A and V v f o r methane, 
n-hexane and n-decane are p l o t t e d . None of the three equations 
y i e l d e d r e a l l y s a t i s f a c t o r y r e s u l t s . I t i s of i n t e r e s t to note that 
the general patterns of e r r o r d i s t r i b u t i o n are about the same. I t 
i s imposs ib le to obta in low dev i a t i on s f o r substances with 
d i f f e r e n t molecular weights from two-parameter equations by s imply 
ad j u s t i n g the u and w va lue s . This conf irms the conc lus ion reached 
above that three-parameter equations are d e s i r a b l e . 

The dev i a t i on contours of V A obtained from Equation 1 are 
p l o t t e d on u-w diagrams in F igures 4 and 5 fo r methane, n-hexane and 
n-decane. The numbers i nd i c a ted on the diagrams r e f e r to the number 
of carbons of the a lkanes , and the dots represent the minimum d e v i a ­
t i o n s . The temperature range covered in F igure 4 (0.5 < Tr < 0.98) 
i s l a r ge r than that in F i gure 5 (0.5 < Tr < 0 .85) . On the other 
hand, the contours in F igure 4 represent average abso lute dev i a t i on s 
of 2.5% i n V A , wh i le in F igure 5, 1%. As pointed out by Schmidt and 
Wenzel (J5), the f o l l o w i n g c on s t r a i n t s must be s a t i s f i e d to avoid the 
cond i t i on that V 2 + ubV + wb 2 = 0 f o r V > b, 

w > -1-u f o r u > -2 (4a) 

w > u 2 /4 f o r u < -2 (4b) 

The nonex i s t ing area i nd i c a ted in F igures 4 and 5 represents the 
area excluded by Equation 4. 

A comparison of the two diagrams i nd i c a te s that by narrowing 
the temperature range, the r e l a t i v e po s i t i on s of the two groups of 
d e v i a t i o n contours s h i f t towards l a r ge r values of w and smal ler 
value of u. In phase e q u i l i b r i u m c a l c u l a t i o n s , i t would be d e s i r a ­
b le to have more v o l a t i l e components wel l represented at higher T p 

va lues , and le s s v o l a t i l e components wel l represented at lower T r 

va lue s . 
The dev i a t i on contours f o r Z A i n the temperature and pressure 

ranges of 0.30 < T p< 0.99 and 0.01 < P p < 10.0 are p l o t t ed on the 
u-w diagram i n F igure 6. The contours represent 4% average abso lu te 
d e v i a t i o n s . S i m i l a r l y , the dev i a t i on contours f o r Z S U P in the 
temperature and pressure ranges of 1.01 < T p < 4.00 and 0.01 < P p < 
10.0 are p l o t t e d in F igure 7. The contours represent C 6 and 
C 1 0 , and the average absolute dev i a t i on s vary from 1.5 to 2.5%. 

When the dev i a t i on contours of F igures 4-7 are superimposed, 
the over lapp ing areas fo r the alkanes are p l o t t ed on the u - w 
diagram i n F igure 8. The dev i a t i on contour of V A f o r C 2 0 i s a l so 
inc luded in the f i g u r e fo r r e fe rence . Any l i n e or curve pass ing 
through these contours w i l l y i e l d the f o l l ow i ng average abso lute 
dev i a t i on s f o r the alkanes in the three phys ica l p r o p e r t i e s : 

V A : 1% (0.5 < T p < 0.85); 2.5% (0.5 < T p < 0.98) 
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Figure 2 V a r i a t i o n of α and β with T p f o r n-hexane from the 
PR equation 
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Figure 3a I l l u s t r a t i o n s of the i n f l uence of u and w values on 
the representa t ion of V A and V v by means of 2P1T 
equat ions . SRK (u=l, w=0), — PR (u=2, 
w=- l ) , - - - - - HA (u=3, w=-2). 
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Figure 3b I l l u s t r a t i o n s of the i n f l u e n c e of u and w 

values on the r e p r e s e n t a t i o n of V by means 
of 2PIT equations. SRK (u=1, w=0), 

PR (u=2, w=-1), - - - HA (u=3, w=-2). 
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values on the re p r e s e n t a t i o n of V by means 
of 2PIT equations. SRK (u=1, w=0), 

PR (u=2, w=-1), - - - HA (u=3, w=-2). 
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Figure 4 Dev ia t ion contours of V* in the temperature range of 
0.5 < T r < 0.98. Curves represent dev i a t i on s of 
2.5% i n V * . 
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Figure 5 Dev ia t i on contours of V* i n the temperature range of 
0.5 < T r < 0.85. Curves represent dev i a t i on s of 1% 
i n V * . Γ 
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F igure 7 Dev ia t ion contours of Z S U P . Dev ia t ion l e v e l s are 
i n d i c a t e d on each curve . 
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F igure 8 Overlapping areas r e s u l t i n g from superimposing 
d e v i a t i o n contours of F igures 4 -7 · 
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Z A : 4% (0.3 < Tr < 0.99) 
Z S U P < 2.5% (1.01 < T r < 4.00, 0.01 < P p < 10.0) 

The s o l i d curves i n F igure 8 represent the l o c i of the minimum 
d e v i a t i o n po int s f o r the ten a lkanes , with the except ion of the V * 
curve, which extends to C 2 0 . The fami l y of equations represented by 
the u + w = 1 r e l a t i o n s h i p on the u-w diagram cannot y i e l d good 
p r e d i c t i o n of V* va lue s , e s p e c i a l l y f o r alkanes of l a r g e r molecular 
we ight s . The des i red r e l a t i o n s h i p should have a p o s i t i v e s lope on 
the u-w diagram. 

Concluding Remarks 

For the purpose of ob ta in ing s a t i s f a c t o r y r e s u l t s s imultaneous ly f o r 
v a p o r - l i q u i d e q u i l i b r i u m values and vo lumetr i c p r o p e r t i e s , a t h r e e -
parameter van der Waals type equation with the parameter " a " f i t t e d 
to vapor pressure values i s d e s i r a b l e . 

Using dev i a t i on contours on u-w diagrams provides a means f o r 
des ign ing a d e s i r a b l e equation f o r represent ing s p e c i f i c phys i ca l 
p r ope r t i e s of the substances concerned. 

For the representa t ion of V A , Z* and Z S U P f o r normal a l kanes , 
the r e l a t i o n s h i p between u and w should y i e l d a p o s i t i v e s lope on 
the u-w diagram, contrary to the suggestion of Schmidt and Wenzel. 
A po s s i b l e equation i s that represented by the u - w = 3 r e l a t i o n ­
sh ip as shown in F igure 8. 
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A n Improved Cubic Equation of State 

R. Stryjek1 and J. H. Vera 

Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2A7, 
Canada 

The Peng-Robinson equation of state has been modified 
to extend its use to low reduced temperatures. The 
modified form, called the PRSV equation, is able to 
reproduce pure compound vapor pressures down to 1.5 
kPa with accuracy comparable to Antoine's equation for 
hydrocarbons, polar and associated compounds. Hydro­
carbon/hydrocarbon and aromatic hydrocarbon/polar com­
pound vapor-liquid equilibria have been correlated 
using a single binary parameter with an accuracy simi­
lar to the γ-ψ approach. The binary parameter is 
slightly temperature dependent. Two parameters are 
required to correlate vapor-liquid equilibria of satu­
rated hydrocarbon/polar compound systems. Water/ 
methanol system is well represented with one binary 
parameter model. Representation of the systems water/ 
ethanol and water/propanols requires the use of two 
binary parameters. 

The use of cubic equations of sta t e to c o r r e l a t e v a p o r - l i q u i d 
e q u i l i b r i u m data has received increased a t t e n t i o n i n the l a s t few 
years. For the purposes of t h i s study, important c o n t r i b u t i o n s 
have been presented by Mathias ( 1 ) , Mathias and Copeman ( 2 ) , Soave 
(3) and Gibbons and Laughton ( 4 ) . 

Mathias (1) proposed an improved temperature dependence f o r 
the a t t r a c t i v e term of the Redlich-Kwong equation of s t a t e . 
Mathias and Copeman (2) suggested a form f o r the temperature 
dependence of the a t t r a c t i v e term of the Peng-Robinson equation of 
s t a t e . Soave (3) showed that even the simple van der Waals T equa­
t i o n of st a t e may be used to c o r r e l a t e v a p o r - l i q u i d e q u i l i b r i a 
w i t h an appropriate temperature dependence of the a t t r a c t i v e term 
f o r pure compounds and the use of the mixing r u l e s proposed by 
Huron and V i d a l ( 5 ) . Gibbons and Laughton (4) presented a modi­
f i e d form of the Redlich-Kwong equation of st a t e i n c l u d i n g two 
adjustable parameters per pure compound. 

1 Current address: Institute of Physical Chemistry, PAN, Warsaw, Poland. 

0097-6156/ 86/ 0300-O560$06.00/ 0 
© 1986 American Chemical Society 
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27. STRYJEK AND VERA Improved Cubic Equation of State 561 

Pure Compounds 

In t h i s work we have selected the cubic equation of s t a t e proposed 
by Peng and Robinson ( 6 ) , namely, 

Ρ = Η _ - 2 (ί) 
v " b v 2 + 2bv - b 2 

with 

a = (0.45724 R 2 T 2 / P c ) a (2) 

and 

b = 0.0778 R T c/P c (3) 

where α i s given by 

α = [ l + κ (1 - T R
0 - 5 ) ] 2 (4) 

Peng and Robinson (6) considered κ to be a f u n c t i o n of the 
a c e n t r i c f a c t o r ω only. This equation performs w e l l f o r hydro­
carbons and s l i g h t l y polar compounds at reduced temperatures of 
the order of 0.7 and above. At low reduced temperatures, however, 
i t f a i l s to reproduce the vapor pressures of pure compounds even 
fo r nonpolar substances. 

P r e l i m i n a r y studies at reduced temperatures below 0.7 showed 
that d i f f e r e n t values of κ could be obtained f o r the same compound 
depending on the reduced temperature range of the vapor pressure 
data used i n the f i t t i n g procedure. In a d d i t i o n , f o r d i f f e r e n t 
compounds with a large v a r i a t i o n i n c r i t i c a l temperature, values 
of κ had a smooth v a r i a t i o n with the a c e n t r i c f a c t o r only when a l l 
compounds were considered i n the same reduced temperature range. 
These r e s u l t s suggested that i t was necessary to consider a f i x e d 
reduced temperature f o r a l l compounds i n order to generate a s e l f 
c o n s i s t e n t set of κ values. In t h i s work we selected T R = 0.7. 
Since t h i s temperature i s close to the normal b o i l i n g point f o r 
most substances, r e l i a b l e vapor pressure data are a v a i l a b l e i n i t s 
v i c i n i t y f o r most compounds. C r i t i c a l pressures and c r i t i c a l 
temperatures reported i n the l i t e r a t u r e were c a r e f u l l y examined 
and the most pr e c i s e values were selected f o r the e v a l u a t i o n of 
both ω and κ. The a c e n t r i c f a c t o r ω was obtained from i t s d e f i n i ­
t i o n . The value of κ, here c a l l e d K q , was obtained so as to 
reproduce e x a c t l y the experimental vapor pressure when the fuga-
c i t y of the vapor phase i s equal to the f u g a c i t y of the l i q u i d 
phase at T R = 0.7. Values of K Q SO obtained f a l l over a s i n g l e 
curve when p l o t t e d against ω, i r r e s p e c t i v e of the p o l a r i t y , degree 
of a s s o c i a t i o n or geometrical complexity of the molecules. The 
f o l l o w i n g c o r r e l a t i o n reproduces w e l l the v a r i a t i o n of K q w i t h ω 
fo r over eighty compounds. 

K Q = 0.378893 + 1.4897153ω - 0.17131848ω2 + 0.0196554ω3 (5) 

The use of equation (5) instead of the form f o r the depen­
dence of κ on ω proposed by Peng and Robinson (6) produced a f i r s t 
improvement i n the r e s u l t s . Not only the reproduction of vapor 
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562 EQUATIONS OF STATE: THEORIES AND APPLICATIONS 

pressures was improved i n the reduced temperature range from 0.7 
to 1.0, but also d e v i a t i o n s between c a l c u l a t e d and experimental 
vapor pressures f o r d i f f e r e n t compounds presented a more regular 
v a r i a t i o n at reduced temperatures below 0.7. However, f o r com­
pounds with ω * 0.1 and ω « 0.4 both forms give the same value of 
κ and thus, the same r e s u l t s . Maximum d i f f e r e n c e s between both 
c o r r e l a t i o n s are produced f o r low and high a c e n t r i c f a c t o r s . 

In order to reproduce s a t u r a t i o n pressures at reduced tem­
peratures below 0.7 i t i s necessary to introduce a temperature 
dependence on κ with at l e a s t one adjustable parameter c h a r a c t e r i ­
s t i c of each compound. A f t e r some t r i a l s , the f o l l o w i n g form was 
found to give a good f i t of vapor pressures down to low reduced 
temperatures 

κ = κ 0 + (1 + τ£·5)(0.7 - T R) (6) 

Although values of may be obtained from a s i n g l e vapor pressure 
datum at reduced temperature below 0.7, i n t h i s work values of 
were obtained by the f i t t i n g of low reduced temperature vapor 
pressure data. Some rep r e s e n t a t i v e values of κ-̂  are given i n 
Table I together with c r i t i c a l p r o p e r t i e s and a c e n t r i c f a c t o r s 
used i n t h i s work. For water and lower al c o h o l s there i s a small 
advantage i n using equation (6) i n a l l the range from low reduced 
temperature up to the c r i t i c a l temperature. For a l l other com­
pounds we recommend to use κ = κ f o r Τ, > 0.7. 

ο κ 

Table I. Pure Compound Parameters 

Compound T C , K P c, kPa ω K l 
Ethane 302.43 4879.76 0.0978 0.02814 
Cyclohexane 553.64 4074.96 0.2088 0.07023 
Benzene 562.16 4897.95 0.2093 0.07019 
Biphenyl 769.15 3120.78 0.3810 0.11487 
Acetone 508.10 4695.95 0.3067 -0.00888 
Ammonia 405.55 11289.52 0.2517 0.00100 
Water 647.29 22089.75 0.3438 -0.06635 
Methanol 515.58 8095.79 0.5653 -0.16816 
Ethanol 513.92 6148.33 0.6444 -0.03374 
1-Propanol 536.71 5169.55 0.6201 0.21419 
2-Propanol 508.40 4764.25 0.6637 0.23264 
P y r i d i n e 620.00 5595.26* 0.2372 0.06946 
Thianaphthene 752.00 3880.71 0.2936 0.06043 

* estimated by group c o n t r i b u t i o n method. 

Figure 1 compares the performance of the modified Peng-
Robinson equation, from here on c a l l e d the PRSV equation, with the 
modified cubic equations of st a t e of Soave (3) and of Gibbons and 
Laughton ( 4 ) . I t should be observed the forms of Soave (3) and of 
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STRYJEK AND VERA Improved Cubic Equation of State 563 

Gibbons and Laughton (4) con t a i n two adjustable parameters per 
compound while the PRSV equation contains only one. Table I I 
presents a comparison of r e s u l t s obtained with the PRSV equation 
and those reported by Mathias (1) using a modified Redlich-Kwong 
equation of s t a t e . C l e a r l y , the PRSV equation gives a b e t t e r 
representation of pure compound vapor pressures than any other 
modified cubic equation of s t a t e . For water, f o r example, vapor 
pressures are c o r r e l a t e d with a percent d e v i a t i o n of l e s s than 
0.03 from i t s t r i p l e point to a reduced temperature of 0.75. 
S l i g h t l y higher d e v i a t i o n s are obtained i n the high reduced tem­
perature range but, i n any case, d e v i a t i o n s are smaller than 
those obtained with other cubic equations of s t a t e . S i m i l a r 
r e s u l t s are obtained f o r ammonia. Heavy organic compounds, are 
equ a l l y w e l l represented by the PRSV equation down to very low 
vapor pressures. Figure 2 presents the performance of the PRSV 
equation f o r some compounds. Observe that f o r biphenyl vapor-
pressures are w e l l represented by the PRSV equation down to a 
pressure of 0.004 kPa. Results f o r p y r i d i n e present an average 
pressure d e v i a t i o n of about 0.1%. 

Table I I . Comparison of Results Obtained with the PRSV Equation 
and Those Reported by Mathias (1) 

ΔΡ % 

Compound T, ,K Mathias This work 

Water 273- -647 0.3 0.1 
Acetone 259- -508 0.4 0.2 
Methanol 288- -513 0.4 0.6 
Ethanol 293- -514 0.7 0.5 
1-Pentanol 348- -512 0.7 0.7 
1-Octanol 386- -554 2.2 1.6 

Binary Mixtures 

As f o r the Peng-Robinson equation of s t a t e , the expression f o r the 
f u g a c i t y c o e f f i c i e n t of a component i i n a mixture obtained from 
the PRSV equation has the general form 

*ηψ. - ^ i ( z - l ) - *n(z-B) - A £k + 1 - !îi)£n ζ+(1+/¥)Β (7) 
b a b 

2/2 Β z+(l-/2)B 

where ζ = Pv/RT, A » Pa/(RT) 2, Β = Pb/RT and a± and b i are 
obtained as 

â, - (2ïïL) (8) b ± - (IBL) (9) 
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ETHANE 

Δρ 
(%) 

WATER 

JE. 

AMMONIA 
m p 

0-4 0-5 0-6 
- ι I ι I 

0-7 0-8 0-9 T R 1-0 

Figure 1. Per Cent Deviations i n Calculated Pure Compound Vapor 
Pressures f o r Ethane, Water and Ammonia. PRSV; Soave 
(1984); - · - — Gibbons and Laughton (1984). 
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Figure 2. Per Cent Deviations i n Cal c u l a t e d Pure Compound Vapor 
Pressures f o r Biphenyl, Thianaphtene and P y r i d i n e using the PRSV 
Equation of State . 
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27. STRYJEK AND VERA Improved Cubic Equation of State 565 

The p a r t i c u l a r expressions of a^ and depend on the mixing r u l e s 
chosen f o r a and b, r e s p e c t i v e l y . In t h i s work we have used the 
conventional mixing r u l e f o r b i n a l l cases 

b = Y x, b, (10) 
j 

which gives 

= b^(pure compound) (11) 

For a, we tested f i r s t the conventional mixing r u l e 

with 

(12) 

0.5 
a i j = ( a i a j > ( 1 3 ) 

which gives 

a = 2 £ χ a - a (14) 
i j J i J 

These mixing r u l e s proved to be s a t i s f a c t o r y f o r mixtures of the 
type hydrocarbon/hydrocarbon and aromatic hydrocarbon/polar 
compound. However they gave only f a i r r e s u l t s f o r systems of the 
type saturated hydrocarbon/polar compound. For binary systems the 
binary parameters were f i t t e d minimizing the o b j e c t i v e f u n c t i o n : 
Q = £(ΔΡ/Ρ) , where Ρ i s the bubble pressure. Results presented i n 
the tables are those with the optimum value of the parameter at 
each temperature. Results f o r the binary system benzene/biphenyl 
are presented i n Table I I I . For comparison we have a l s o included 
i n Table I I I r e s u l t s obtained by Gmehling et a l . (7) using s t a n ­
dard γ-ψ approach. I t i s i n t e r e s t i n g to observe that at the lowest 
isotherm biphenyl i s below i t s normal melting p o i n t . Table IV 
presents a s i m i l a r comparison f o r d i f f e r e n t isotherms of the system 
benzene/acetone. Again here the one parameter mixing r u l e produces 
s u r p r i s i n g l y good r e s u l t s . Notably, values of the k j ~ parameter 
are almost independent of temperature f o r the system benzene/ 
acetone and present a r e g u l a r temperature dependence f o r the system 
benzene/biphenyl. No attempt was done to smooth the temperature 
dependence of k ^ since γ-ψ approaches use al s o p a r t i c u l a r values 
of two adjustable parameters at each temperature. For systems of 
the type saturated hydrocarbon/polar compound such as cyclohexane/ 
acetone the use of the one-parameter mixing r u l e given by equation 
(13) produced l a r g e r d e v i a t i o n s i n the c a l c u l a t e d pressures. These 
d e v i a t i o n s were not random, they presented a systematic trend with 
respect to composition f o r d i f f e r e n t systems s t u d i e d . The use of 
two binary parameters was c l e a r l y r e q u i r e d . 

In t h i s work we have used the two-parameter mixing r u l e 
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Table III. Vapor-Liquid E q u i l i b r i a for the System Benzene/Biphenyl 

ΔΡ, mm Hg 

PRSV-1 Wilson* NRTL* UNIQUAC* 

T,K 
3 — — 3 

k 1 2«10 ΔΡ Ay«10 ΔΡ A y 10 ΔΡ Ay«10 
— — 3 
ΔΡ Ay«10 

318.15 
328.15 
338.15 

A.420 0.60 0.2 
5.785 0.50 0.3 
7.100 0.73 0.4 

7.73 0.1 
15.74 0.3 
18.68 0.4 

3.16 0.0 
4.50 0.1 
5.84 0.1 

12.57 0.1 
18.78 0.4 
24.75 0.5 

*As reported by Gmehling et a l . (1980) 

Table IV. Vapor-Liquid E q u i l i b r i a for the System Benzene/Acetone 

"AT, mm Hg 

PRSV-1 Wilson* NRTL* UNIQUAC* 

T,K k 1 2 « 1 0 2 ΔΡ A y l O 3 ΔΡ A y l O 3 ΔΡ A y l O 3 ΔΡ A y l O 3 

298.15 
303.15 
313.15 
318.15 
323.15 

2.716 0.75 5.0 
2.836 1.23 9.9 
2.877 2.46 6.8 
2.512 0.68 4.2 
2.985 2.28 7.2 

0.50 2.8 
1.78 6.4 
2.14 4.2 
0.71 3.4 
3.19 7.6 

0.51 2.8 
1.78 6.4 
2.13 4.2 
0.76 3.5 
3.43 7.8 

0.48 2.7 
1.78 6.4 
2.08 4.1 
0.60 3.4 
3.06 7.5 

*As reported by Gmehling et a l . (1980) 
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27. STRYJEK AND VERA Improved Cubic Equation of State 567 

proposed by Huron and V i d a l (5) f o r the a term, which f o r the PRSV 
equation takes the form, 

a = b Ci x ± a i / b i - c g E ) (15) 

with c = 2/2/An [(2 + /2)/(2 - / 2 ) ] . With t h i s mixing r u l e f o r 
a, the term of equation (7) containing a^ takes the form 

Λ — ( i i + 1 - % = - i - [U - c An γ ± .] (16) 
- a b - Lb.RT 1» 

2/2B 2/2 1 

For the " i n f i n i t e pressure" excess f u n c t i o n we have used i n equa­
t i o n (15) the expression f o r the excess Gibbs energy proposed by 
Renon and Prausnitz (8) as suggested by Huron and V i d a l ( 5 ) . 
Thus, 

x» RT ν α . χ , i r G, . χ , ^ 
R T I G k i x k J j G k j x k J I G k j x k 

k k k (17) 

with 
r 0.3 Ag.. . 

G.. = exp - Z lJ_ (18) 
i j RT 

Water/alcohol systems present complex molecular i n t e r a c t i o n s 
and thus they are a severe t e s t f o r c o r r e l a t i n g methods. Table V 
shows r e s u l t s obtained with the one-binary parameter PRSV-1 form 
of equation (13) f o r the system water/methanol. These r e s u l t s are 
p e r f e c t l y comparable with those obtained by Gmehling et a l . (7) 
using the γ-ψ approach. For water/ethanol, water/l-propanol and 
water/2-propanol systems, the PRSV-1 equation gave poor r e s u l t s . 

Table VI shows the r e s u l t s obtained with the PRSV-HV model of 
equations (15) to (18), f o r the systems water/ethanol and water/ 
propanols. A dramatic improvement i n the r e s u l t s i s obtained with 
the two-binary-parameter PRSV-HV approach i n comparison with the 
previous treatment. For these h i g h l y non i d e a l systems the PRSV 
equation of sta t e i s very s e n s i t i v e to the mixing r u l e a p p l i e d . 
Values of the binary parameters a n d a r e a ^ s o reported i n 
Table VI. 

Conclusions 

The PRSV equation i s a valuable t o o l f o r computation of vapor-
l i q u i d e q u i l i b r i a f o r systems that p r e v i o u s l y could only be 
treated by the γ-ψ approach. In t h i s p r e l i m i n a r y p r e s e n t a t i o n of 
the PRSV equation we have attempted to give a general overview of 
i t s p o t e n t i a l i t i e s . More d e t a i l e d studies w i l l be presented i n 
forthcoming p u b l i c a t i o n s . 
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Table V. Vapor-Liquid Equilibria for the System Water/Methanol 

ΔΡ, mm Hg 

Τ Ν 

PRS\ J-l 

Τ Ν k 1 2»10 2 ΔΡ ΔΡ% A y l O 3 

298.15 10 8.866 0.86 1.39 7.6 
298.15 10 9.450 1.56 3.56 13.9 
308.15 14 8.555 1.62 1.95 14.4 
312.91 21 9.172 3.49 2.85 42.5 
313.05 10 8.240 1.27 0.75 7.0 
322.91 12 9.033 6.12 2.44 18.8 
323.15 13 8.500 3.12 1.59 11.4 
333.15 7 7.680 2.16 0.49 -333.15 12 8.385 6.45 2.37 18.2 
338.15 12 8.225 5.19 1.29 9.5 
373.15 16 8.360 15.59 0.91 10.4 

VLE data were taken from Gmehling et a l . (1980) 

Table VI. Vapor-Liquid Equilibria for the Systems Water/Ethanol, Water/1-Propanol, and 
Water/2-Propanol with the PRSV-HV Model+ 

T,K Δ 8 ι 2 Δ«21 ΔΡ% Ay 103 Τ,Κ Δ 8 ι 2 Δ 8 2 1 ΔΡ% Ay 103 

Water/Ethi inol Water/1-Propanol 

283.15 15.389 37.330 1.30 333.15 30.025 113.080 0.63 12.19 
288.15 17.069 38.054 0.78 - 333.15 26.341 111.025 1.42 12.02 
293.15 12.873 45.070 0.96 - 333.15 30.479 111.773 0.89 10.97 
298.15 12.242 49.783 1.02 6.78 363.15 27.979 122.111 0.58 8.38 
303.15 13.956 49.483 1.07 - ι ÏÏ^SS* 10.89 
303.15 11.757 52.320 0.72 -313.15 12.463 54.900 2.43 8.18 Water/2-Propanol 
323.15 7.649 64.892 1.33 12.39 
323.15 9.465 65.629 0.50 - 308.15 22.282 85.950 0.43 4.18 
323.15 9.339 64.331 0.64 - 318.15 25.538 93.873 0.87 22.23 
323.15 10.002 64.692 0.68 - 318.20 23.154 91.787 0.46 4.45 
323.15 9.890 64.534 0.49 - 328.18 23.502 97.766 0.44 5.19 
328.15 9.876 67.724 0.57 8.11 333.15 24.862 101.854 0.87 27.06 
333.15 9.242 66.508 0.60 14.37 338.15 24.109 103.587 0.50 4.64 
343.15 10.290 73.020 0.33 8.14 348.14 24.138 109.184 0.52 4.09 
343.15 9.394 72.342 0.40 - 423.15 22.444 144.766 0.94 15.50 
363.15 10.818 76.827 0.15 - 473.15 24.068 152.649 0.64 6.10 
423.15 6.330 94.911 1.31 5.88 523.15 21.999 159.728 0.25 7.92 
523.15 7.367 98.509 0.81 - 548.15 22.386 165.561 0.41 16.96 
548.15 26.043 73.547 1.99 9.13 Σ 0.58 10.76 
573.15 44.183 68.324 1.51 6.22 
598.15 54.582 68.014 0.59 6.28 
Σ 0^2 8.55 

+For Water/Ethanol, sets 1-17 from Gmehling et a l . (1980) and 18-22 from Barr-David and 
Dodge (1959), for Water/l-Propanol from Gmehling et a l . (1980), and for Water/2-Propanol, 
sets 1-7 from Gmehling et a l . (1980) and 8-11 from Barr-David and Dodge (1959). 
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STRYJEK AND VERA Improved Cubic Equation of State 569 

In g e n e r a l , the dramatic improvement i n the reproduction of 
the pure compound vapor pressures allows to obtain l e s s tempera­
ture dependent binary parameters. A one-parameter mixing r u l e 
s u f f i c e s to represent systems with symmetric excess Gibbs energy 
curves and a two-parameter mixing r u l e i s required when a system 
i s h i g h l y asymmetric. 
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Legend of Symbols 

a,b equation of s t a t e parameters 
I^ j b j ^ f o r d e f i n i t i o n see equations (8) and ( 9 ) , r e s p e c t i v e l y 
A,Β dimensionless terms: A = Pa/(RT) 2; Β = Pb/RT 

c numerical constant, 2/2/λη [(2 + /2)/(2 - /2)] 

g excess Gibbs energy at i n f i n i t e pressure 
00 

Ag.. binary parameter 
Gj,j temperature dependent binary parameter 
k binary parameter 
η number of moles 
Ν number of data points 
Ρ pressure 
R gas constant 
Τ absolute temperature 
T R reduced temperature 
ν molar volume 
χ mole f r a c t i o n 
y vapor, phase mole f r a c t i o n 
ζ c o m p r e s s i b i l i t y f a c t o r 
α f u n c t i o n of reduced temperature and a c e n t r i c f a c t o r 

value 
ΔΡ average d e v i a t i o n i n pressure 
Ay average d e v i a t i o n i n vapor phase composition 
κ see equation (6) 
K Q see equation (5) 
<̂  pure compound parameter. See Table I . 
ψ f u g a c i t y c o e f f i c i e n t 
ω a c e n t r i c f a c t o r 

S u bscripts 

c 
00 

c r i t i c a l property 
compounds 
value at i n f i n i t e pressure 
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New Mixing Rule for Cubic Equations of State 

for Highly Polar, Asymmetric Systems 

A. Z. Panagiotopoulos and R. C. Reid 

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 
MA 02139 

A new two-parameter mixing rule for van der Waals-type cubic 
equations of state was developed by making the normally used 
single binary interaction parameter kij a linear function of 
composition. A significant improvement was observed in the 
representation of binary and ternary phase equilibrium data 
for highly polar and asymmetric systems. Results are presented 
for systems with water and supercritical fluids at high 
pressures, as well as for low-pressure non-ideal systems. 
Ternary phase equilibrium data at high pressures, including 
LLG three-phase equilibria, were successfully correlated 
using parameters regressed from binary data only. 

Cubic equations of state (EOS) have become important t o o l s i n the 
ar e a o f phase e q u i l i b r i u m m o d e l l i n g , e s p e c i a l l y f o r systems at 
pressures close to or above the c r i t i c a l pressure of one or more of 
the system components. Among the more common of the c u r r e n t l y used 
cubic EOS, are the Soave m o d i f i c a t i o n of the Redlich-Kwong (1) and 
the Peng-Robinson EOS (2). The f u n c t i o n a l form of both equations, as 
we l l as sev e r a l other proposed cubics, can be represented i n a general 
manner as shown i n Equation 1 (3.) : 

RT a 
m ( 1 ) 2 2 V - b V + uVb + wb m m m 

where u and w are numerical constants. Table I l i s t s the values of 
u and w f o r some common EOS. 

For a mixture, parameters a m and b m are r e l a t e d to the pure 
component parameters and the mixture composition through a mixing 
r u l e . Equations 2 and 3 show one common choice f o r the mixing r u l e , 
the van der Waals 1 - f l u i d mixing r u l e : 

a = Υ Υ χ. χ. a. . (2) m r . î j i i ι J J J 

b - X x. b. (3) m h ι ι ι 

0097-6156/86/0300-0571 $06.00/0 
© 1986 American Chemical Society 
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Table I . Parameters f o r a few cubic Equations of State 

Equation of State u w 

van der Walls (1873) 0 0 
Redlich-Kwong (1949) 1 0 
Soave (1972) 1 0 
Peng-Robinson (1976) 2 -1 

The cross-parameters a ^ are r e l a t e d i n t u r n to the pure-compo­
nent parameters by a "combining r u l e " . Equation 4 shows a common form 
of the combining r u l e f o r a £ j : 

a.. = 7 a. a. (1-k. .) (4) 

In Equation 4, k t j i s c a l l e d a b i n a r y i n t e r a c t i o n parameter, and 
was o r i g i n a l l y introduced so that the equation can b e t t e r reproduce 
e x p e r i m e n t a l composition data i n systems th a t c o n t a i n components 
other than the l i g h t hydrocarbons. 

There has been c r i t i c i s m d i r e c t e d toward the o v e r s i m p l i c i t y of 
the cubic equation form, and r i g h t l y so. Nevertheless t h i s represen­
t a t i o n does d e s c r i b e , a t l e a s t q u a l i t a t i v e l y , a l l the important 
c h a r a c t e r i s t i c s of v a p o r - l i q u i d e q u i l i b r i u m behavior. A l t e r n a t i v e 
equations of s t a t e have (and are) being suggested, but, to date, none 
have been wide l y used and te s t e d . A l s o , too o f t e n , a l t e r n a t e EOS are 
s i g n i f i c a n t l y more complex and b r i n g w i t h them a d d i t i o n a l pure-compo­
nent and mixture parameters which must be evaluated by r e g r e s s i n g 
experimental data. 

We f e e l that the key to success i n employing the cubic equation 
form to model phase e q u i l i b r i a i s i n the choice of the mixing and 
combining r u l e s . Our goal , then, was to s e l e c t the simp l e s t forms, 
w i t h the fewest i n t e r a c t i o n parameters that could be used to c o r r e l a t e 
complex phase behavior i n both non-polar and h i g h l y p o l a r systems. 

Proposed Method 

We propose an e m p i r i c a l m o d i f i c a t i o n of the combining r u l e shown 
i n Equation 4. In our approach, we r e l a x the assumption k t j - k. ± 

thus i n t r o d u c i n g a second i n t e r a c t i o n parameter per b i n a r y : 

a.. - Ja. a. [1-k..+(k..-k..)x.] (5) 
I J ι J 1 J 1 J j i i J v ' 

Equation 5 has the f o l l o w i n g c h a r a c t e r i s t i c s : 

I f k.. - k. ± , the o r i g i n a l mixing r u l e given by Equation 4 i s 
recovered. 
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The " e f f e c t i v e " i n t e r a c t i o n parameter between components i and 
j approaches k £ ̂  as xL , the mole f r a c t i o n o f component i , 
approaches z e r o . I t a l s o approaches i i f x A approaches 
u n i t y . The apparent asymmetry under an interchange of i and j 
i s c o r r e c t e d by the f a c t that both a ^ and a ^ enter i n the 
c a l c u l a t i o n of the mixture parameter a m symmetrically. 

A p p l i c a t i o n of the r u l e given by Equation 2 f o r the c a l c u l a t i o n 
of the mixture parameter a m r e s u l t s i n a cubic expression f o r 
the mole f r a c t i o n dependence of the mixture parameter a m . This 
i s d i f f e r e n t from the case o f the conventional mixing r u l e 
(Equation 4 ) , which r e s u l t s i n a quadratic expression f o r a m . 

U s i n g t h i s m i x i n g r u l e w i t h Equation 1 , we can o b t a i n the 
f u g a c i t y c o e f f i c i e n t of a component i n a mixture as: 

ο A o f k b k , F V - . 0 P(V-b m) ^ 
i n * k - I N ~X7P~ = — ( RT " 1 > " i n RT + 

2 
Yx (a +a ) - ΥΥχ χ (k -k )7a a + χ Yx (k -k ) y a a b 
? i i k k i ' 1 J i j J i i J k ^ ι k i i k / v k i k 

b~ 
^ „ j i j J l 1 J k ^ i k i i k " k i k 

2V + b (u-7u2-4w) 
i n = (6) 

Juz - 4w b mRT 2V + b(u+yu 2-4w) 

An a l g o r i t h m f o r the de t e r m i n a t i o n of the phase e q u i l i b r i u m 
p r o p e r t i e s u s i n g the equations described above was developed. The 
main c h a r a c t e r i s t i c s of the method used are : 

Pure component parameter e v a l u a t i o n : A r e c e n t l y p r o p o s e d 
t e c h n i q u e (7) was used f o r the s u b c r i t i c a l components of the 
m i x t u r e s under c o n s i d e r a t i o n . This technique, s i m i l a r to the 
J o f f e and Z u d k e v i t c h method (8.) , p r o v i d e s pure component 
parameters t h a t e x a c t l y reproduce vapor pressure and l i q u i d 
volume of a compound at a temperature of i n t e r e s t . The reason 
t h i s approach was p r e f e r r e d over the conventional a c e n t r i c f a c t o r 
c o r r e l a t i o n i s that the l a t t e r does not work w e l l f o r h i g h l y 
p o l a r or a s s o c i a t e d components. For s u p e r c r i t i c a l components 
though, the normal a c e n t r i c f a c t o r c o r r e l a t i o n was used. 

Multicomponent e q u i l i b r i a were c a l c u l a t e d as f o l l o w s : We s t a r t 
by assuming tha t the component and i n t e r a c t i o n parameters are 
known at a given temperature, and p o s t u l a t e the existence of a 
given number of phases (2 or 3 f o r the examples given below). 
Then, Newton's method i s a p p l i e d f o r the s o l u t i o n of the system 
of n o n - l i n e a r equations given by Equation 7. 

- f f ( » f[ ) , i « 1,2 ... Ν (7) 
where the s u p e r s c r i p t s p e c i f i e s the phase and i r e f e r s to the 
component number. 
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For the c a l c u l a t i o n s presented i n t h i s paper, we e l e c t e d to use 
the Peng - Robinson EOS. The values of the two b i n a r y i n t e r a c t i o n 
parameters were regressed from experimental b i n a r y phase e q u i l i b r i u m 
data on a given isotherm. I t was found th a t although the temperature 
v a r i a t i o n of the parameters i s weak, i t must be taken i n t o account i f 
a q u a n t i t a t i v e agreement w i t h experimental data over a wide temper­
ature range i s de s i r e d . 

R e s u l t s 

P o l a r - S u p e r c r i t i c a l F l u i d Systems. As suggested e a r l i e r , the 
p r i n c i p a l m o t i v a t i o n behind the development of the new mixing r u l e , 
has been the r e p r e s e n t a t i o n of phase e q u i l i b r i u m i n systems that 
c o n t a i n a s u p e r c r i t i c a l component and one or more h i g h l y p o l a r 
compounds, such as water. 

The inadequacy of the conventional method f o r such systems i s 
demonstrated i n Figure 1, that shows the p r e d i c t e d composition of the 
two phases f o r the system carbon d i o x i d e - water at 323 K, f o r both 
the one-parameter and the two-parameter mixing r u l e s . Parameter k 1 2 

was f i t t e d to the s u p e r c r i t i c a l f l u i d phase c o n c e n t r a t i o n of water 
(Y2) f o r both models. Parameter k 2 1 f o r the two parameter model was 
f i t t e d to the l i q u i d phase composition of C0 2 ( X I ) . I t i s c l e a r that 
when the adj u s t a b l e parameter i n the single-parameter c o r r e l a t i o n i s 
f i t t e d to the composition of one phase, the r e s u l t s f o r the other 
phase a r e v e r y poor. In c o n t r a s t , the two-parameter c o r r e l a t i o n 
p r e d i c t s the composition of both phases e s s e n t i a l l y w i t h i n e x p e r i ­
m e n t a l a c c u r a c y throughout a pressure range from atmospheric to 
1000 bar. 

An important feature of the new method i s that the two para­
meters are e s s e n t i a l l y u n c o r r e l a t e d i n many cases, as shown i n the 
previous example, i n which the parameters were determined from data 
i n d i f f e r e n t phases. This i s g e n e r a l l y true only f o r systems i n 
which the compositions of the c o e x i s t i n g phases are very d i f f e r e n t . 
I n t h i s r e s p e c t , the proposed method i s s i m i l a r to a p r e v i o u s l y 
suggested technique f o r h i g h l y asymmetric systems (9) i n which a 
d i f f e r e n t i n t e r a c t i o n parameter i s used f o r each phase. The advantage 
o f the pr o p o s e d method i s best seen i n systems that approach a 
c r i t i c a l p o i n t ( f o r example a l i q u i d - l i q u i d phase ' s p l i t ) , and there­
f o r e cannot be adequately modelled i f a d i f f e r e n t equation i s used 
f o r d i f f e r e n t phases. 

In Figure 2, a comparison i s made between model p r e d i c t i o n s and 
the ex p e r i m e n t a l l y observed behavior f o r the C0 2 - water system over 
a temperature range from 298 Κ to 348 Κ (pure C0 2 i s s u b c r i t i c a l 
below 304.2 K) . Very good agreement i s obtained f o r a l l pressures 
f o r the composition of both phases. 

An i n t e r e s t i n g question a r i s e s i f we consider the lower pressure 
range examined. At those c o n d i t i o n s , the d e n s i t y of the gas phase i s 
low and d e v i a t i o n s from i d e a l i t y are s m a l l . One of the reasons f o r 
the complexity of p r e v i o u s l y proposed m o d i f i c a t i o n s of the mixing 
r u l e s f o r cubic EOS (4,5,6) i s the requirement t h a t the mixing r u l e 
should reduce to a quadratic form f o r a mixture second v i r i a l coef­
f i c i e n t B m at low d e n s i t i e s , whereas the observed behavior at the 
hig h d e n s i t y l i m i t can only be modelled w i t h a higher order mixing 
r u l e . For a cubic EOS of the type shown i n Equation 1, the expression 

 P
ub

lic
at

io
n 

D
at

e:
 M

ar
ch

 2
4,

 1
98

6 
| d

oi
: 1

0.
10

21
/b

k-
19

86
-0

30
0.

ch
02

8

In Equations of State; Chao, K., el al.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1986. 



28. PANAGIOTOPOULOS AND REID Highly Polar, Asymmetric Systems 575 
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• Wîebe and Gaddy (1941) 

+ Coan and King (1971) 
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Figure 1. Experimental and p r e d i c t e d phase e q u i l i b r i u m behavior 
f o r the system carbon dioxide - water at 323 Κ. XI i s the mole 
f r a c t i o n of C0 2 i n the l i q u i d phase and Y2 the mole f r a c t i o n 
of water i n the f l u i d phase. 
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f o r the mixture second v i r i a l c o e f f i c i e n t i s 
a 

Β - b m (9) m m RT 

The proposed mixing r u l e does not obey the requirement f o r a 
quadra t i c dependence of B m, since the dependence of a m on the mole 
f r a c t i o n s of the components of a mixture i s cub i c . Because of t h i s , 
i t was s u r p r i s i n g at f i r s t t h a t such a good agreement was found at 
the low pressure range between model p r e d i c t i o n s and experimental 
r e s u l t s . To compare the performance of the proposed mixing r u l e f o r 
the mixture vo l u m e t r i c p r o p e r t i e s , we c a l c u l a t e d the mixture second 
v i r i a l c o e f f i c i e n t a t 323 Κ usi n g Equation 7 w i t h the values of k 1 2 

and k 2 1 c a l c u l a t e d e a r l i e r , as w e l l as u s i n g a common i n t e r a c t i o n 
parameter equal to t h e i r a r i t h m e t i c average. I n the l a t t e r case, the 
mixing r u l e r e s u l t s i n a quadratic f u n c t i o n a l i t y f o r B m . As can be 
seen from Figure 3, the d i f f e r e n c e i n the c a l c u l a t e d dependence of B m 

on the mixture composition between the two cases i s indeed s m a l l . 
A d d i t i o n a l examples of the model performance f o r p o l a r - super­

c r i t i c a l f l u i d systems are shown i n Figures 4 and 5 f o r the carbon 
d i o x i d e - ethanol and the carbon d i o x i d e - acetone systems. Again, 
agreement between model p r e d i c t i o n s and experiment i s e x c e l l e n t , even 
q u i t e c l o s e to mixture c r i t i c a l p o i n t s . I t i s i n t e r e s t i n g to note, 
t h a t f o r the system carbon d i o x i d e - acetone, the optimal values of 
the two parameters are q u i t e c l o s e to each other. Using the conven­
t i o n a l mixing r u l e f o r t h i s p a r t i c u l a r system would have r e s u l t e d i n 
almost as good agreement between experiment and p r e d i c t i o n as f o r 
the two - parameter c o r r e l a t i o n . I t i s encouraging to note that the 
proposed c o r r e l a t i o n n a t u r a l l y leads i t s e l f to the e l i m i n a t i o n of the 
second parameter i f the systems being modelled are r e l a t i v e l y simple. 

Low Pressure VLE. Up to t h i s p o i n t , we have focused our d i s c u s s i o n 
on systems a t r e l a t i v e l y h i g h pressures. For such systems, the 
equation of s t a t e approach has already been t e s t e d e x t e n s i v e l y . I f we 
are i n t e r e s t e d i n modelling ternary phase behavior , we a l s o need 
i n t e r a c t i o n parameters between the l e s s v o l a t i l e components of a 
mixture t h a t do not form two-phase systems a t h i g h pressures. The 
e a s i e s t way to o b t a i n such parameters i s to u t i l i z e VLE data at low 
pressures that are widel y a v a i l a b l e . 

As a t e s t of the a p p l i c a b i l i t y of the method f o r low pressure 
systems, we c o r r e l a t e d isothermal VLE data f o r the b i n a r y system 
ethanol - water at a range of temperatures (18). The r e s u l t s are 
p l o t t e d i n Figure 6. Agreement i s again very good, even c l o s e to the 
az e o t r o p i c r e g i o n , and the accuracy of the p r e d i c t i o n s i s c l e a r l y 
comparable to the accuracy of excess Gibbs Free Energy models w i t h 
the same number of adjus t a b l e parameters. 

T e r n a r y Systems One of the most s t r i n g e n t t e s t s f o r a proposed 
c o r r e l a t i o n i s i t s a b i l i t y to p r e d i c t ternary behavior when only the 
b i n a r y behavior i s known. I n Figure 7 the model p r e d i c t i o n s f o r the 
tern a r y system carbon d i o x i d e - ethanol - water are presented. The 
model p r e d i c t i o n s are based s o l e l y on values of the i n t e r a c t i o n 
parameters regressed from b i n a r y data at the same temperature (the 
values of the pure component and mixture parameters used are a l s o 
shown on the same f i g u r e ) . 
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Mole fraction C02 

Figure 2. Experimental and p r e d i c t e d phase e q u i l i b r i u m behavior 
f o r the system carbon dioxide - water at sev e r a l temperatures. 
Experimental data are from references 12-15. 

θ η 

? - 5 -
ο 
Ε 
ιο - 1 0 -

- 4 0 Η , , , , 1 1 1 1 1 1 
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Figure 3. Pred i c t e d second v i r i a l c o e f f i c i e n t versus composition 
f o r the carbon dioxide - water system at 323 K. 
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120 

0 0.2 0.4 0.6 0.8 

Mole fraction C02 

F i g u r e 4. Experimental (10) and p r e d i c t e d phase e q u i l i b r i u m 
behavior f o r the system carbon dioxide - ethanol. 

0 0.2 0.4 0.6 0.8 1 

Mole Fraction Carbon Dioxide 

F i g u r e 5. Experimental (16) and p r e d i c t e d phase e q u i l i b r i u m 
behavior f o r the system carbon dioxide - acetone at 313 K. 
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F i g u r e 6. Experimental (18) and p r e d i c t e d phase e q u i l i b r i u m 
behavior f o r the system ethanol - water. 
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As can be seen from F i g u r e 7, the a c c u r a c y o f the model 
p r e d i c t i o n s a t the low ethanol c o n c e n t r a t i o n range i s very good. The 
c a l c u l a t e d t i e - l i n e s deviate from the experimental data as the p l a i t 
p o i n t i s approached, but s t i l l the c o r r e c t q u a l i t a t i v e behavior i s 
p r e d i c t e d . One more i l l u s t r a t i v e example of the c a p a b i l i t i e s of 
the model i s given i n Figure 8 f o r the ternary system carbon d i o x i d e 
- acetone - water at 313 K. The most prominent c h a r a c t e r i s t i c of the 
model p r e d i c t i o n s f o r the system i s an extensive three-phase region. 
At t h i s temperature, the s o l u b i l i t y of carbon d i o x i d e i n the acetone 
phase i s very h i g h even at moderate pressures. This can be seen 
a l r e a d y i n F i g u r e 8a t h a t corresponds to a pressure of 20 bar. 
As pressure i s increased to approx. 22 bar (Figure 8b), the l i q u i d 
phase undergoes a phase s p l i t , i n t o a lower l i q u i d phase r i c h i n 
water and a middle l i q u i d phase r i c h i n acetone, which c o e x i s t w i t h a 
f l u i d phase r i c h i n C0 2. The three phase region increases i n s i z e as 
p r e s s u r e i s i n c r e a s e d (Figures 8c, 8d) and then g r a d u a l l y s h r i n k s 
again (Figure 8e) . At approx. 82 bar (not shown on Figure 8), the 
system passes through a c r i t i c a l s t a t e again, and the middle l i q u i d 
phase becomes i d e n t i c a l to the s u p e r c r i t i c a l phase. At even higher 
pressures, only two phases c o e x i s t , and the e f f e c t of pressure on the 
composition of the phases i s much smalle r (Figure 8 f ) . 

T h i s complex b e h a v i o r was o b s e r v e d e a r l i e r f o r the system 
ethylene - acetone - water by E l g i n and Weinstock (11). T h e i r " Type 
2 " q u a l i t a t i v e phase diagrams bear a s t r i k i n g resemblance to our 
model p r e d i c t i o n s . The model p r e d i c t i o n s are f u l l y supported by 
experimental evidence from our l a b o r a t o r y as i n d i c a t e d on Figures 
8c, 8d and 8e, i n which the measured compositions of the three phases 
are shown i n a d d i t i o n to the model r e s u l t s . The c a l c u l a t e d phase 
compositions are not i n exact agreement w i t h the experimental data, 
but the c o r r e c t p r e d i c t i o n of the appearance and disappearance of the 
t h i r d phase s t r o n g l y i m p l i e s that the model captures the s u b s t a n t i a l 
f e a t u r e s of the p h y s i c a l r e a l i t y . A more complete p r e s e n t a t i o n of the 
p e r t i n e n t experimental r e s u l t s and comparison w i t h model p r e d i c t i o n s 
i s given elsewhere (10). 

Conclusions 

A new two-parameter m i x i n g r u l e i s pr o p o s e d f o r use i n cubic 
Equations of State and i s shown to be e s p e c i a l l y u s e f u l i n c o r r e l a ­
t i n g the phase e q u i l i b r i u m behavior i n h i g h l y p o l a r systems that 
cannot be c o r r e c t l y r e p r e s e n t e d by a conventional one-parameter 
m i x i n g r u l e . The i n t r o d u c t i o n of Equation 5, i s at t h i s p o i n t a 
p u r e l y e m p i r i c a l c o r r e c t i o n to the o r i g i n a l form of the mixing 
r u l e . The m o d i f i c a t i o n i s r e l a t e d , but i s not d i r e c t l y d e r i v e d from, 
the idea of l o c a l compositions, that has been shown i n the past to 
r e s u l t i n improved r e p r e s e n t a t i o n of the phase e q u i l i b r i u m behavior 
i n h i g h l y p o l a r and asymmetric mixtures. 

Among the advantages o f the pro p o s e d m i x i n g r u l e , are the 
r e l a t i v e s i m p l i c i t y of the r e s u l t i n g expressions f o r the deriv e d 
thermodynamic p r o p e r t i e s , together w i t h the f a c t t h a t the model can 
be e a s i l y reduced to the conventional one-parameter mixing r u l e f o r 
wh i c h a s u b s t a n t i a l amount o f r e g r e s s e d i n t e r a c t i o n parameters 
e x i s t s . The model i s shown to a c c u r a t e l y reproduce data f o r both high 
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Ethanol (2) 

Water (3) C02C1) 

Τ = 313 Κ . Ρ = 103 ba 

F i g u r e 7. Ternary phase e q u i l i b r i u m behavior f o r the system 
carbon dioxide - ethanol - water ( experimental data from 12,12.) . 

Wator P - 20.• bar C 0
2
 W a t e r Ρ - 22. 3 bar C 0

2
 W o t e r Ρ - 30.0 bar 

Ρ - 40. 1 bar ^ Water p m 5 7 m l b a r
 C 0

2 * Q t e r Ρ - 100 bar 

F i g u r e 8. Ternary phase e q u i l i b r i u m behavior f o r the system 
carbon dioxide - acetone - water at 313 Κ ( experimental data 
(10) f o r the three-phase e q u i l i b r i u m compositions i n c,d and e 
are shown as f i l l e d t r i a n g l e s ) . 
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pressure p o l a r - s u p e r c r i t i c a l f l u i d , and low pressure p o l a r - p o l a r 
b i n a r y phase e q u i l i b r i u m . I n a d d i t i o n , p r e d i c t i o n s f o r ternary 
systems based on c o e f f i c i e n t s regressed from b i n a r y data only, are 
q u a l i t a t i v e l y c o r r e c t f o r the systems st u d i e d . 

One p o s s i b l e weakness of the proposed model, i s that i t does 
not reproduce the c o r r e c t f u n c t i o n a l dependence of a mixture second 
v i r i a l c o e f f i c i e n t on the composition. 
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Soave parameters, 393f 
standard parameters , 392f 
Yarborou^i parameters, 394t 

vapor pressure e r ro r f o r 
Redlich-Kwong equat ion , 397f 

Carbon d i o x i d e - o i l system 
s a t u r a t i o n l o c i comparison of 

p red i c ted and compared 
va lues , 41 8t 

s a t u r a t i o n locus i n t e r s e c t i o n , 426f 
C a r n a h a n - S t a r l i n g equat ion 

c o m p r e s s i b i l i t y f a c t o r , 526 
contact values f o r f l u i d s , 256 

Chemical p o t e n t i a l s , b ina ry f l u i d 
mixture , 375 

C l a s s i c a l behavior 
f l u i d mixtures , 115-116 
i m p l i c a t i o n s , 115 
s c a l e d behavior c ro s sove r , 113-115 

C l a s s i c a l equa t i ons , d isadvantages , 119 
C l a s s i c a l f l u i d s 

d e f i n i t i o n , 111 
s t r o n g divergences i n behavior 

ob ta ined , 111 
C l a s s i c a l s o l u t i o n thermodynamics, 

independent v a r i a b l e s , 2 
Combining r u l e s 

e m p i r i c a l m o d i f i c a t i o n , 572 
exp re s s i on , 572 
new l o c a l composit ion models , 261 

C o m p r e s s i b i l i t y e q u a t i o n , mixing r u l e 
d e v i a t i o n f o r f l u i d s , 317-318 

C o m p r e s s i b i l i t y f a c t o r 
d e v i a t i o n contours f o r cub ic 

equat ions , 555f,556f 
hard spheres 

Ca rnahan -S t a r l i n g equa t i on , 528f 
d i s rupted by mix ing r u l e s , 335-336 

mixture hard-sphere e r r o r , 339f 
mixtures o f Lennard-Jones 

molecules , 259t 
p r e d i c t i o n s f o r square -we l l 

f l u i d s , I88f 
propane-propadiene system r e s u l t s , 

98 
van der Waals mix ing r u l e s compared 

w i t h new, 337 
Computer s i m u l a t i o n , l o c a l composit ion 

fo rmulat ions comparison, 357-358 
Conf i g u r a t i o n a l energies , de f ined f o r 

van der Waals p a r t i t i o n 
f u n c t i o n , 191 

Conformai parameters, d e f i n i t i o n , 315 
Conformai s o l u t i o n 

d e f i n i t i o n , 315 
mix ing r u l e s , 31 7 
polar f l u i d treatment d i f f i c u l t y , 316 

Conformai s o l u t i o n approximation (CSA) 
mixture r a d i a l d i s t r i b u t i o n 

f u n c t i o n s , 320 
See a l s o M u l t i f l u i d conformai 

s o l u t i o n approx imat ion 
Conformai s o l u t i o n mix ing r u l e s 

compared w i t h new l o c a l composit ion 
models, 262 

d e n s i t y c a l c u l a t i o n s f o r b ina ry 
mixtures , 269t 

Convent iona l Success ive S u b s t i t u t i o n 
(COSS) 

ACSS compar ison, 484 
convergence behavior of a 

m ix tu r e , 487 
Κ values updated, 479 
s o l u t i o n r e g i on f o r a m i x t u r e , 485f 

Convergence, speed with f l a s h 
c a l c u l a t i o n s , 488-492 

Coo rd ina t i on number 
l o c a l composit ion model for b ina ry 

mixtures , 252 
p r e d i c t i o n s f o r square -we l l 

f l u i d s , I86f 
Coo rd ina t i on number models 

square -we l l f l u i d 
comparison, 183-I85t 

van der Waals p a r t i t i o n f u n c t i o n , 184 
C o r r e l a t i o n h o l e , e xp l ana t i on i n f l u i d 

s t r u c t u r e experiment, 20 5 
C o s t a i d c o r r e l a t i o n , s p e c i f i c volume 

p r e d i c t i o n , 93 
Cr icondentherm, c o l l i n e a r i sochores f o r 

var ious systems, 51 
C r i t i c a l l i n e , i n i t i a l s lope 

exp re s s i on , 126 
C r i t i c a l point 

thermodynamics, 133-134 
See a l s o Mixture c r i t i c a l point 

C r i t i c a l s t a t e s , descr ibed by equations 
of s t a t e , 109-178 

C r i t i c a l volume, c u b i c equations 
p r e d i c t i v e a b i l i t y i n b ina ry 
mixtures , 151 

Crossover f u n c t i o n , d e f i n i t i o n , 113 
Cryogenic mixtures , f l u i d - f l u i d and 

s o l i d - f l u i d e q u i l i b r i a , 371-385 
Cub ic Cha in o f Rotators equat ion 

d e s c r i p t i o n o f b ina ry 
s u p e r c r i t i c a l p r o p e r t i e s , 171 

s o l u b i l i t y o f a c r i d i n e i n 
t r i f l u o r o c h l or cm ethane, 1 76f 

s o l u b i l i t y o f phenol i n carbon 
d i ox i de , 1 76f 

s u p e r c r i t i c a l s o l u b i l i t y 
d e s c r i p t i o n , 164 

Cub ic equations of s t a t e 
b ina ry system's c r i t i c a l l o c i 

p r e d i c t e d , 153-154 
des ign , 542-546 
disadvantages of two 

t em per at ur e- de pen dent 
parameters, 546-548 
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Cubic equat ions o f s t a t e—Cont inued 
equat ions examined i n design 

s t u d y , 538-539 
e v a l u a t i o n , 538-539 
e x p r e s s i o n , 537 
f e a t u r e s , 540t 
g e n e r a l , cho ices of cons t an t s , 436t 
genera l form, 434,571 
mix ing r u l e s 

a p p l i c a t i o n s , 324 
p o l a r , asymmetric systems 

de r i ved , 571-582 
g e n e r a l i z e d , 314-328 

mixture a p p l i c a t i o n s , 314 
parameter values i n b inary c r i t i c a l 

l o c i s tudy , I48t 
parameters , 572 
Peng-Robinson equat ion mod i f i ed t o 

low reduced temperatures , 560 -56 9 
polar f l u i d s a p p l i c a t i o n , 434-451 
p r e d i c t i n g b inary c r i t i c a l 

l o c i , 132-154 
quadra t i c temperature f u n c t i o n 

used, 435 
s e l e c t i o n and d e s i g n , 537-538 
t em per at ur e- de pen dent 

par am et ers , 43 5, 53 9 
van der Waals mix ing r u l e s 

a p p l i c a t i o n , 361-362 
r e s u l t s , 331 

D 

D e i t e r ' s equat ion 
a p p l i e d t o t et r a f l u o r cm ethane, 71-73 
d isadvantages , 82 
mix ing r u l e s , 374 

D e v i a t i o n entropy 
argon , l i q u i d s a t u r a t i o n cu rve , 527f 
hard-sphere e q u a t i o n - o f - s t a t e 

proper ty c o r r e l a t i o n , 520-521 
heats of v a p o r i z a t i o n ob ta ined , 520 
i d e a l gas 

hydrocarbons w i th r a r e gases , 523f 
l i g h t gases , ha logens , and 

amines, 523f 
var ious compounds, 521f, 524f 

l i q u i d - v o l u m e v a r i a t i o n w i th 
temperature, 52 5 

D e v i a t i o n funct ions 
d e f i n i t i o n , 3-4 
r a t i o n a l e , 3 

Dew-bubble point curve (DBC), mixture 
c r i t i c a l po int l o c a t i o n , 42-44 

D i e l e c t r i c continuum model , i o n i c 
f l u i d s , 281 

D i f f u s i o n a l s t a b i l i t y 
homogeneous phase c r i t e r i a , 481 

D i f f u s i o n a l s t a b i l i t y — C o n t i n u e d 
l i m i t eva luated i n s i n g l e - s t a g e f l a s h 

c a l c u l a t i o n s tudy , 483 
D i l u t e m i x t u r e s , c l a s s i c a l and 

non c l a s s i c a l t reatment , 125 
D i l u t e n e a r - c r i t i c a l mixtures 

d i ve rg ing p a r t i a l molar volumes of 
the s o l u t e , 121 

non c l a s s i c a l a n a l y s i s , 122-125 
osmot ic s u s c e p t i b i l i t y , 124 

Ε 

E f f e c t i v e carbon number (ECN) 
d e f i n i t i o n , 443 
Pa t e l - T e j a e qua t i on , parameters 

ob ta ined , 443 
Energy—See Gibbs energy 

—See Helmholtz f r e e energy 
Energy e q u a t i o n , mix ing r u l e d e v i a t i o n 

f o r f l u i d s , 317-318 
Energy of i n t e r a c t i o n , van der Waals 

p a r t i t i o n f u n c t i o n , 181 
Entropy 

c a l c u l a t i o n f o r methane-car bon 
system, 55t 

See a l s o D e v i a t i o n entropy 
Equations of s t a t e 

Adachi equa t ion , 135 
a p p l i c a t i o n s , 352 
c l a s s i c a l s o l u t i o n thermodynamics 

connect ion , 1-40 
combining r u l e s f o r new l o c a l 

composit ion models , 261 
comparison of equations a p p l i e d to 

t et r a f l u o r cm ethane, 81-82 
composi t ion mix ing r u l e s s t u d i e d f o r 

b ina ry systems, 366t 
da t a , phenomena, and c r i t i q u e , 41-107 
D e i t e r ' s equat ion i n phase e q u i l i b r i a 

s tudy , 372 
d e n s i t y dependence o f a t t r a c t i v e 

terra, 363f 
d e s c r i p t i o n f o r San Andres o i l s 

developed, 407-408 
d i s t r i b u t i o n f u n c t i o n theory bas i s 

f o r nonspher ica l 
mo lecu les , 227-244 

examined f o r b ina ry c r i t i c a l l o c i 
p r e d i c t i o n , 134-135 

f l u i d mixtures , 259 
f l u i d - f l u i d and s o l i d - f l u i d 

e q u i l i b r i a , 371-385 
formal ism concepts r e l a t i n g t o 

s o l u t i o n thermodynamics, 35 
g ene ra l i z ed van der Waals p a r t i t i o n 

f u n c t i o n , 180-200 
hard-sphere a p p l i c a t i o n , 521 
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INDEX 587 

Equations o f s t a t e—Cont inued 
hard-sphere mixtures f o r f l u i d 

r e p r e s e n t a t i o n , 255-258 
i n i t i a l l o c a l composit ion 

importance , 354 
l i q u i d - m i x t u r e p r o p e r t i e s , 10 
l o c a l composit ion a c t i v i t y 

c o e f f i c i e n t model 
a s s i m i l a t i o n , 251 

mix ing r u l e s development, 3 53-355 
parameter c o n s t r a i n t s , 58 
Peng-Robinson equa t i on , 135 
p e r t u r b a t i o n t h e o r y , 64-70 
p e r t u r b e d - a n i s o t r o p i c - c h a i n theory 

e q u a t i o n , 299 
phase e q u i l i b r i u m c a l c u l a t i o n 

b a s i s , 371 
quantum c o r r e c t i o n of van der Waals 

type , 373 
quantum e f f ec t s c o n t r i b u t i o n s 

averaged, 374 
r a d i a l - d i s t r i b u t i o n f u n c t i o n 

a p p l i c a t i o n , 361 
Redl ich-Kwong e q u a t i o n , 134 
s e l e c t e d i n s u p e r c r i t i c a l e x t r a c t i o n 

s t u d y , 157-159b 
Soave equa t ion , 134 
s o l u b i l i t y d a t a dev i a t i ons f o r b ina ry 

mixtures , 166-16 9t 
s u p e r c r i t i c a l e x t r a c t i o n c a l c u l a t i o n 

summary, 170t,171 
s u p e r c r i t i c a l s o l u b i l i t y c a l c u l a t i o n 

use, 157-159,171 
Te j a e q u a t i o n , 135 
volume r o o t s , 476 
See a l s o Cub ic equat ions of s t a t e 

Ethane , c a l c u l a t e d volume e r ro r u s ing 
Redlich-Kwong parameters , 399t 

Excess f r e e energy, l o c a l compos i t ion 
model a p p l i c a t i o n s , 250 

Excess f unc t i ons 
c a l c u l a t i o n o f van der Waals , 25 
d e f i n i t i o n , 6 
r e s i d u a l Helmholtz energy 

r e l a t i o n s h i p , 1 4t 
Excess volumes , s imu la ted and 

c a l c u l a t e d compared, 344f 
Expansion c o e f f i c i e n t s , l i q u i d - l i q u i d 

mixtures , 119-120 

F 

F i e l d - d e n s i t y space , c r i t i c a l exponents 
pa th , 112f 

F i e l d - f i e l d space , c r i t i c a l exponents 
path, 112f 

F i r s t - c o n t a c t s t u d i e s , 
d e f i n i t i o n , 406-407 

F l a s h c a l c u l a t i o n s 
c h a r a c t e r i s t i c problems, 495 
flow diagram of computat ional 

a l g o r i t h m , 508f 
m u l t i phase 

computat ional a l g o r i t h m , 496 -504 
d i s t r i b u t i o n determined, 500-501 
four -phase system r e s u l t s , 494-51 5 
overview, 495 
s o l u t i o n search s t r a t e g y , 505f 
water a d d i t i o n e f f e c t s t o 

four -phase system, 515 
wate r - f r ee d e s c r i p t i o n , 504 - 507 

s i n g l e stage 
convergence behav io r , 476-492 
COSS r e s u l t s , 484,487f 
slow convergence problems, 488 

two phase 
e q u i l i b r i u m constants d e f i n e d , 497 
Κ value i n i t i a t i o n , 498 

water e f f ec t on phase 
d i s t r i b u t i o n , 512f-514f 

F lo ry -Hugg ins mode l , a c t i v i t y 
c o e f f i c i e n t model , 195 

F l u i d d e s c r i p t i o n s 
development f o r o i l - c a r b o n d iox ide 

systems, 415-42 5 
overv iew, 407-408 
See a l s o F l u i d - f l u i d e q u i l i b r i a 

F l u i d - f l u i d e q u i l i b r i a 
e q u a t i o n - o f - s t a t e a p p l i c a t i o n to 

c ryogen ic m i x t u r e s , 371-385 
thermodynamic c o n d i t i o n s , 375-376 
See a l s o F l u i d d e s c r i p t i o n s 

F l u i d mixtures 
c l a s s i c a l c r i t i c a l behav io r , 115-116 
n o n c l a s s i c a l behavior ev idence , 119 
n o n c l a s s i c a l c r i t i c a l 

behavior , 116-119 
See a l s o F l u i d s 

F l u i d s 
a t t r a c t i v e and r e p u l s i v e f o rces i n 

models, 228 
c r i t i c a l behavior of pure , 110-113 
l o c a l s t r u c t u r e v i a Monte Ca r l o 

s i m u l a t i o n , 201-213 
t e s t ed by the 

per t ur be d - an i sot r ο p i c -cha i η 
theory , 301-302 

See a l s o F l u i d mixtures 
See a l s o Real f l u i d s 

Free energy 
exp re s s i on de r i ved f o r i o n i c 

f l u i d s , 292-295 
W h i t i n g - P r a u s n i t z e x p r e s s i o n , 253-254 
See a l s o Gibbs energy 
See a l s o He lmholtz f r e e energy 

F u g a c i t y , mixture behavior , 21-25 
F u g a c i t y c o e f f i c i e n t 

a c t i v i t y c o e f f i c i e n t 
c onve r s i on , 21-22 

d e f i n i t i o n , 21,479 
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Fugac i ty c o e f f i c i e n t — C o n t i n u e d 
de r i ved from new cub ic equat ion 

mix ing r u l e , 573 
e v a l u a t i o n at i n f i n i t e d i l u t i o n , 23 
exp r e s s i on f o r PRSV equa t ion , 563 
exp re s s i on f o r use i n 

propane-propadiene system, 97 
e x p r e s s i o n from van der Waals 

e q u a t i o n , 34 
Peng-Robinson equa t i on , 354 
PFGC equat ion d e r i v a t i o n , 456 
press ure-e x p l i c i t e q u a t i o n - o f - s t ate 

e x p r e s s i o n , 19 

G 

Gases , quantum e f f e c t s a t low 
temperature , 372-373 

Gibbs-Duhem e q u a t i o n , d i f f e r i n g f o r 
p a r t i a l p r o p e r t i e s , 18 

Gibbs energy 
b ina ry f l u i d m i x t u r e , 375 
c a l c u l a t i o n f o r pure substances , 379f 
i n f i n i t e pressure excess f u n c t i o n 

de r i v ed , 567 
mul t iphase e f f e c t s , 506 
s imulated and c a l c u l a t e d values 

compared, 346f 
Goodwin equat ion 

parameter p r e c i s i o n i n 
pro pane-pro pa d i en e system, 93 

propane and propadi en e cons t an t s , 911 
pro pane-pro pa d i en e system 

a p p l i c a t i o n , 89 

H 

Haar and Kohler equa t i on , a p p l i e d t o 
t e t r a f l u o r cm ethane, 70-71 

Han-Cox-Bono-Kwok-Star l ing equa t ion 
s o l u b i l i t y of benzoic a c i d i n carbon 

d i o x i d e , 175f 
s o l u b i l i t y of f l u o r i n e i n 

e thy l ene , 175f 
s u p e r c r i t i c a l s o l u b i l i t y 

d e s c r i p t i o n , 164 
Hard-sphere e q u a t i o n , property 

c a l c u l a t i o n at high d e n s i t i e s , 526 
Hard-sphere expansion (HSE) 

approximation 
mean-dens i ty app rox imat ion , 332 
mixture r a d i a l d i s t r i b u t i o n 

f unc t i ons , 321 
Hard spheres 

conformai s o l u t i o n m ix ing 
r u l e s , 335-337 

Hard spheres—Cont inued 
equations of s t a t e fo r 

f l u i d s , 255-258 
Harmen-Knapp e q u a t i o n , s u p e r c r i t i c a l 

s o l u b i l i t y d e s c r i p t i o n , 164 
Heats of v a p o r i z a t i o n 

entropy dev i a t i ons used f o r 
e s t i m a t i o n , 520 

entropy e f f e c t s used f o r 
e s t i m a t i n g , 52 5 

Heavy hydrocarbon d i s t r i b u t i o n s , f l u i d s 
from San Andres o i l s , 412f 

Helmholtz f r e e energy 
equa t i on , 453 
mixture e r r o r , 34Of 
pe r tu rba t i on theo ry d e s c r i p t i o n , 282 
PFGC e q u a t i o n - o f - s t a t e 

f o rmu l a t i on , 453 
van der Waals mix ing r u l e s compared 

w i th new, 337 
W h i t i n g - P r a u s n i t z express ion used f o r 

f l u i d mixtures , 260 
See a l s o R e s i d u a l Helmholtz energy 

Henry ' s cons t an t s , m ix ing r u l e s 
assessed f o r equat ions of s t a t e , 35 

Henry ' s law a c t i v i t y c o e f f i c i e n t , 
d e f i n i t i o n , 22 

Heyen equat ion 
s o l u b i l i t y o f benzoic a c i d i n carbon 

d i o x i d e , 1 73f 
s o l u b i l i t y o f f l u o r i n e i n 

e thy l ene , 173f 
Hydrocarbon systems 

water a d d i t i o n t o s i n g l e - p h a s e 
system, 507, 508t 

water a d d i t i o n t o three -phase 
system, 509 

water a d d i t i o n t o two-phase 
system, 509 

Hydro car bon-water system 
A CSS technique de r i ved , 502-503 
divergence problems prevented , 502 
i n i t i a l es t imate of Κ va lues , 502 
m u l t i component system des c r i bed, 511 
mul t iphase f l a s h 

c a l c u l a t i o n s , 504 -50 7 
Hydrocarbons 

molecular f l e x i b i l i t y i n c r e a s e as 
cha in l e n g t h i n c r e a s e s , 522 

See a l s o Ligj it hydrocarbon 
systems 

Hydrogen s u l f i d e , c a l c u l a t e d volume 
e r ro r u s ing Redl ich-Kwong 
parameters, 400t 

I 

I n f l e c t i o n l o c u s , i s o c h o r i c , 58 
I n t e r a c t i o n energy, PFGC equa t i on , 455 
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INDEX 589 

I n t e r a c t i o n parameters 
carbon d i o x i d e , d e s c r i b ed by 

Redl ich-Kwong equa t ion , 410 
determined f o r propane-propadiene 

system, 93-95 
hydrocarbon-water system, 51 0t 
Redlich-Kwong equat ion f o r San Andres 

Formation o i l s , 41 It 
I n t e r n a l energy 

l o c a l composit ion model of b ina ry 
mixture , 2 53 

s imple f l u i d , 534f 
I o n i c f l u i d s 

d i e l e c t r i c continuum model , 281 
equat ion of s t a t e , 281-295 
f r e e energy exp res s i on 

de r i v ed , 292-295 
model approximations used i n 

pe r tu rba t i on expans ion , 287 
models used , 281 
p e r t u r b a t i o n theo ry advantages , 282 

I s en t ropes , c o l l i n e a r i t y at 
c r i condenbar , 51-53 

I sobutane , c a l cu l a t ed volume e r ro r 
us ing Redlich-Kwong 
parameters, 399t 

Isochores 
c o l l i n e a r i t y f o r f l u i d s , 42-59 
c o l l i n e a r i t y proof of 

G r i f f i t h s , 48-51 
I s op l e th—See Dew-bubble point curve 

(DBC) 
Isothermal m e l t i n g , d iagram, 383f 
I t e r a t i o n counts 

ACSS a p p l i e d t o m i x t u r e , 490f ,491f 
COSS a p p l i e d t o m i x t u r e , 490f 
Newton-Raphson procedure a p p l i e d t o 

mix tu re , 491f 

Κ 

Ko h i e r e q u a t i o n , d isadvantages , 82 
Kub ic e q u a t i o n , s u p e r c r i t i c a l 

s o l u b i l i t y d e s c r i p t i o n , 164 

L 

L a t t i c e f l u i d t h e o r i e s , approximat ions 
for s h o r t - c h a i n molecules , 202 

L a t t i c e gas model 
c o o r d i n a t i o n number model 

de r i ved , 184 
n o n c l a s s i o a l model a p p l i c a t i o n , 118 
See a l s o L a t t i c e models 

L a t t i c e models , a p p l i e d t o 
te t ra f luoromethane , 78 

L a t t i c e t h e o r i e s , l o c a l composit ion 
mix ing r u l e s de r i ved , 355-356 

Lennard-Jones mixtures 
c o m p r e s s i b i l i t y f a c t o r f o r b ina ry 

m i x t u r e s , 259t 
conformai s o l u t i o n c a l c u l a t i o n s , 342 
equat ions of s t a t e f o r b inary 

m i x t u r e s , 258 
l o c a l composit ion compared with 

square -we l l f l u i d s , 22Ot 
new mix ing r u l e s t e s t e d , 342 
c o m p r e s s i b i l i t y f a c t o r f o r b inary 

mixtures , 259t 
Lennard-Jones p o t e n t i a l 

approximation by squa re -we l l 
p o t e n t i a l , 230 

s i x - s t e p square -we l l p o t e n t i a l 
approx imat ion , 23Of 

L e u n g - G r i f f i t h s e q u a t i o n , g a s - l i q u i d 
mixtures mode l ing , 118 

Lewis -Randa l l s tandard s t a t e s , a c t i v i t y 
c o e f f i c i e n t d e f i n i t i o n , 21 

L i ght hydrocarbon systems, PFGC 
equat ion a p p l i c a t i o n , 462-469 

L i q u i d d e n s i t i e s , Peng-Robinson and 
P a t e l - T e j a compared, 442t 

L i q u i d - l i q u i d e q u i l i b r i u m 
methanol-heptane system, 449f 
l i q u i d - l i q u i d mix tu res , d ivergence 

p r ed i c t ed f o r s p e c i f i c h e a t , 119 
L i quid -vapor e q u i l i b r i u m , composit ions 

for San Andres o i l - a c i d gas 
mixture , 42Ot 

L o c a l composi t ion 
adhesive i n t e r molecu lar p o t e n t i a l for 

mixtures , 356 
bulk compos i t ion d i f f e r e n c e s , 214 
bulk composit ion e f f e c t s i n 

square -we l l molecules s t u d y , 217 
d e f i n i t i o n f o r b ina ry f l u i d 

systems, 252 
dens i t y e f f e c t s i n square -we l l 

molecules s t udy , 217 
dete rminat ion , 214 
f o rmu l a t i on comparison t o computer 

s i m u l a t i o n , 357-358 
equations f o r square -we l l 

mo lecu les , 215 
extent i n square -we l l m ix tu re , 198f 
G i e r y c z and Nakanishi equa t i on , 218 
Hu, Ludecke, and P rausn i t z 

e quat ion , 21 8 
mix ing r u l e s , d e n s i t y c a l c u l a t i o n s 

f o r b ina ry mixtures , 269t 
model comparison f o r square -we l l 

mo lecu les , 219 
o r i g i n , 354 
square -we l l molecules by Monte C a r l o 

s i m u l a t i o n , 214-225 
s t a t i s t i c a l mechanical d e f i n i t i o n 

f o r f l u i d s , 251-252 
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Loca l compos i t ion—Cont inued 
temperature e f f ec t s i n square -we l l 

molecules s tudy , 217 
L o c a l composit ion models 

combining r u l e s f o r f l u i d s , 261 
comparison among 

dens i t y de pendent, 196-199 
comparison with conformai s o l u t i o n 

mix ing r u l e s , 262 
composit ion dependence of model , 199 
c o o r d i n a t i o n number f o r b inary 

mixtures , 252 
dens i ty -de pendent model 

d i s c u s s i o n , 196 
e r r o r s , 358 
Whi t ing and P r a u s n i t z , 195-199 

equat ion of s t a t e f o r mixtures , 260 
excess f r e e energy a p p l i c a t i o n s , 250 
i n t e r n a l energy of b inary 

mix ture , 253 
mix ing r u l e f o r l ow -dens i t y 

mix tu re , 360 
summary and comparison, 197t 
See a l s o L o c a l composit ion 

L o c a l coo rd ina t i on numbers , d i f f e r e n t 
models l e a d i n g t o d i f f e r e n t 
equat ions of s t a t e , 191-192 

M 

Mean-dens i ty approximation (MDA) 
compared t o mod i f i ed mean-dens i ty 

approx imat ion f o r argon-krypton 
m ix tu r e , 334f 

Lennard-Jones molecules s t u d i e d f o r 
f l u i d s , 258-259 

van der Waals , 332 
See a l s o Mod i f i ed mean-density 

approximation (MMDA) 
Mean s p h e r i c a l approximation (MSA) , 

expansion of i o n i c f l u i d 
model ing , 290-291 

Mechanica l s t a b i l i t y , homogeneous phase 
c r i t e r i a , 481 

Methane, c a l c u l a t e d volume e r ro r f o r 
Redlich-Kwong parameters, 398t 

Mix ing r u l e s 
a t t r a c t i v e energ ies e f f ec t on b ina ry 

f l u i d s , 258-259 
b ina ry c r i t i c a l l o c i p r e d i c t i o n 

used, 136 
conformai s o l u t i on s 

d e r i v a t i o n , 332-335 
conformai s o l u t i on s equat ions , 335 
d e f i n i t i o n , 314 
d e n s i t y dependent, 195-196 
dens i ty -de pen dent l o c a l 

compos i t i on , 354 

Mix ing ru l e s—Cont inued 
e q u a t i o n - o f - s t ate composit ion 

dependence, 254-255 
e q u a t i o n - o f - s t ate a p p l i c a t i o n s , 324 
i n d u s t r i a l p e r s p e c t i v e , 352- 3 67 
Lennard-Jones mixtures t e s t e d , 342 
l o c a l composit ion d e r i v a t i o n , 355-357 
l o c a l composit ion e f f e c t , 358-360 
l o c a l composi t ion model a p p l i e d to 

l ow -dens i t y m i x t u r e , 360 
l o c a l composit ion r u l e s and conformai 

s o l u t i o n r u l e s compared, 262-272 
van der Waals o n e - f l u i d , 

mach ine - s imu la t ion r e s u l t s , 360 
mo lecu la r s i z e e f f e c t s , 255-258 
Monte C a r l o s i m u l a t i o n used t o t e s t 

Lennard-Jones f l u i d s , 342 
m u l t i f l u i d hard -sphere 

expansion, 323 - 324 
m u l t i f l u i d t h e o r y , 322 
new l o c a l composit ion r u l e a p p l i e d to 

t e r n a r y systems, 272 
o n e - f l u i d conformai s o l u t i o n s 

improved, 331-349 
o n e - f l u i d diameters c a l c u l a t e d , 337 
o n e - f l u i d t h e o r y , 318-319 
P a t e l - T e j a equat ion , 446 
Peng-Robinson equa t i on , 326-329t 
PRSV equat ion , 565-566 
recent developments, 331 
Redlich-Kwong equa t ion , 326, 329t 
s t a t i s t i c a l mechanical 

theo ry , 317-318 
s u p e r c r i t i c a l e x t r a c t i o n s tudy 

a p p l i c a t i o n s , 157 
systems s tud i ed by l o c a l 

compos i t ion , 355 
van der Waals and random mix ing 

compared, 359-360 
van der Waals compared w i t h MMDA, 337 
van der Waals equa t ion , 324-326 
van der Waals one f l u i d 

assumptions, 359-360 
improved, 353 
mach ine - s imu la t i on r e s u l t s , 360 
p r e d i c t i v e power, 360 
r a d i a l d i s t r i b u t i o n f u n c t i o n , 359 
summary, 353 

See a l s o Conformai s o l u t i o n mix ing 
r u l e s 

See a l s o van der Waals o n e - f l u i d 
mix ing r u l e s 

Mixture c r i t i c a l p o i n t , r e l a t i o n s h i p t o 
the c r i con den bar and 
cr icondentherm, 42-44 

Mixture p r o p e r t i e s , two major 
formal isms, 2 

Mixture r a d i a l d i s t r i b u t i o n func t i ons 
conformai s o l u t i o n approx imat ion , 320 
d e n s i t y expansion 

approx imat ion , 321-322 
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INDEX 591 

Mixture r a d i a l d i s t r i b u t i o n f unc t i on s 
—Cont inued 
hard-sphere expansion 

approx imat ion , 321 
m u l t i f l u i d conformai s o l u t i o n 

approx imat ions , 323 
random mix ing approx imat ions , 319-320 
See a l s o Rad ia l d i s t r i b u t i o n 

f unc t i on 
Mixtures 

c r i t i c a l exponents pa th , 117f 
equat ion of s t a t e from l o c a l 

composit ion models , 260 
equat ions of s t a t e f o r 

f l u i d s , 259-260 
i m p u r i t y e f f ec t s on extens ive 

p roper t i e s , 128 
non c l a s s i c a l behavior near a c r i t i c a l 

p o i n t , 123f 
p e r t u r b e d - a n i s o t r o p i c - c h a i n theory 

d i s cus sed , 300-301 
t e s t e d f o r f l u i d s , 302-306 

van der Waals p a r t i t i o n f u n c t i o n 
e q u a t i o n , 189 

See a l s o B ina ry mixtures 
See a l s o Multicomponent mixtures 

Models 
c h a r a c t e r i s t i c s , 3 
phase e q u i l i b r i u m d e s c r i p t i o n , 352 

Mod i f i ed mean-densi ty approximat ion 
(MMDA) 

a rgon -krypton mixture 
a p p l i c a t i o n , 333 

comparison w i th van der Waals 
o n e - f l u i d p r e d i c t i o n s , 347t 

equa t ion , 333 
hard-sphere diameter 

comparison, 34Of,341f 
hard - sphere diameter r a t i o , 338f,339f 
Lennard-Jones mixtures 

r e s u l t s , 344t-345t 
phase e q u i l i b r i a a p p l i c a t i o n , 377-378 
phase e q u i l i b r i a c a l c u l a t i o n f o r 

b inary systems, 380 
s i m u l a t i o n r e s u l t s compared, 348t 
van der Waals compared f o r b ina ry 

systems, 380 
Molar heat of v a p o r i z a t i o n , determined 

from an equat ion of s t a t e , 26 
Molar volumes 

divergences i n m i x t u r e s , 213f 
PFGC equa t i on , 457 
p r e d i c t i o n e r ro r s f o r equations of 

s t a t e , 4 6 l t 
p r e d i c t i o n e r ro r s f o r PFGC 

equa t i on , 462 
p r e d i c t i o n from PFGC equat ion f o r 

i sopentane , 463f 
Mole f r a c t i o n s — S e e Phase mole 

f r a c t i o n s 
Molecu lar dynamics s i m u l a t i o n , 

mo lecu la r model examinat ion , 202 

Mo lecu l e s—See Nonspher ica l molecules 
Monte Ca r l o program 

d e s c r i p t i o n , 203 
mo lecu la r movements, 203 
r e l i a b i l i t y t e s t s , 204 

Monte C a r l o s imu la t i on 
f l u i d s t r u c t u r e c a l c u l a t i o n , 204-205 
mix ing r u l e s t e s t e d f o r Lennard-Jones 

mix tu res , 342 
models h i s t o r y , 202 
procedure i n square -we l l molecules 

s tudy , 216 
r e s u l t s compared w i t h RISM, 209 
r e s u l t s i n f l u i d s t r u c t u r e 

experiment, 212 
r e s u l t s i n square -we l l molecules 

s t udy , 216-217 
M u l t i component mix tu re s , i s o c h o r i c and 

i s e n t r o p i c c o l l i n e a r i t y , 58 
M u l t i f l u i d conformai s o l u t i o n 

approx imat ion , mixture r a d i a l 
d i s t r i b u t i o n f u n c t i o n s , 323 

M u l t i f l u i d d ens i t y expans ion , m ix ing 
r u l e s , 324 

M u l t i f l u i d hard -sphere expans ion , 
mix ing r u l e s , 323-324 

M u l t i f l u i d t h e o r y , m ix ing r u l e s , 322 
Mult iphase e q u i l i b r i u m , governing 
equat ions , 500 

Mul t iphase s o l u t i o n s , search 
s t r a t e g y , 504 

Ν 

N - f l u i d t h e o r i e s , compared, 256-258 
N e a r - c r i t i c a l f l u i d s 

d e s c r i p t i o n of impure, 125-129 
i m p u r i t y e f f e c t s c a l c u l a t e d , 126 
i m p u r i t y e f f e c t s on d e n s i t y , 126 
See a l s o N e a r - c r i t i c a l mixtures 

N e a r - c r i t i c a l mixtures 
c l a s s i c a l a n a l y s i s , 120-122 
non c l a s s i c a l d e s c r i p t i o n , 110-131 
p a r t i a l molar p rope r t i e s 

behavior , 120-121 
See a l s o N e a r - c r i t i c a l f l u i d s 

N e a r - c r i t i c a l r e g i o n 
ACSS de f ined and used , 499 
Κ va lue es t imat ion by evaporat ion 

techn ique , 499 
N e a r - c r i t i c a l s t a t e s , descr ibed by 

equations of s t a t e , 109-178 
Nearest ne i ghbo r s , d e f i n i t i o n , 356-357 
Newton-Raphson procedure 

de f ined , 481 
Κ values updated, 481 

N i t r o g e n , c a l c u l a t e d volume e r r o r f o r 
Redlich-Kwong parameters , 398t 
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N o n c l a s s i c a l f l u i d s , d i s c u s s i o n , 111 
Ν on polar f l u i d s , l o c a l composit ion 

model a p p l i c a t i o n , 250-275 
Nonspher ica l molecules 

accuracy of equat ion of s t a t e f o r 
hydrocarbons, 240-244 

e q u a t i o n - o f - s t a t e a p p l i c a t i o n to 
polar f l u i d s , 244 

equat ions of s t a t e based on the 
d i s t r i b u t i o n f u n c t i o n 
t h e o r i e s , 227-244 

equations of s t a t e compared, 240-244 
parameter r e d u c t i o n i n equat ions of 

s t a t e , 239-240 

0 

O n e - f l u i d conformai s o l u t i o n , m ix ing 
r u l e s improved, 331-349 

O n e - f l u i d t h e o r y , d e f i n i t i o n , 23 
One-step square -we l l p o t e n t i a l 

angle-de pendent Gaussian o v e r l a p 
equat ion , 235-238 

contact values of c o r r e l a t e d 
f u n c t i o n s , 236-237t 

index v a r i a t i o n w i t h i n t e n s i t y , 234f 
pressure p r e d i c t i o n , 237t 

Osmotic s u s c e p t i b i l i t y 
d ivergence i n mixtures , 115,116 
n e a r - c r i t i c a l m ix tu re s , 124 

Ρ 

Para f f ins , h a rd - co r e volume v a r i a t i o n 
with c r i t i c a l volume, 243f 

Parameters 
c o r r e c t i o n parameter c o r r e l a t e d f o r 

P a t e l - T e j a equa t i on , 445f 
c o r r e l a t i o n f o r P a t e l - T e j a 

equa t i on , 444f 
degrees of freedom v s . b va lue o f 

p a r a f f i n s , 532f 
development f o r San Andres Formation 

o i l s , 410-413 
no η po lar f l u i d s t e s ted f o r 

pert ur be d - a n i s otro p i c - cha i η 
t h e o r y , 302 

Pen g-R obi ns on-S t r yj ek-V er a 
equa t ion , 562t 

Peng-Robinson and P a t e l - T e j a 
compared, 437f 

Redl ich-Kwong equat ion 
carbon d i o x i d e , 402-403 
c r i t i c a l temperatures and ranges i n 

f i t , 204t 
d e f i n e d , 390 
de te rminat ion , 390 

Redlich-Kwong equat ion—Cont inued 
var ious substances , 403-404 
vo lumet r i c e r ro r comparison f o r 

carbon d i o x i d e , 398t 
vo lumet r i c e r ro r comparison f o r 

e thane , 399t 
vo lumet r i c e r ro r comparison f o r 

hydrogen s u l f i d e , 400t 
vo lumet r i c e r ro r comparison f o r 

i s obu tane , 399t 
vo lumet r i c e r ro r comparison f o r 

methane, 398t 
vo lumet r i c e r ro r comparison f o r 

n i t r o g e n , 398t 
t em per at ur e- de pen dent 

cub ic equa t i ons , 539 
f o r the Redlich-Kwong 

equa t ion , 389-400 
two t emperature-de pendent, d ev i a t i on 

curves obta ined from cub ic 
equat ions , 547f 

See a l s o Conformai parameters 
See a l s o I n t e r a c t i o n parameters 

Parameters from group c o n t r i b u t i o n s 
(PFGC) equa t ion 

b a s i s , 453 
b i n a r y i n t e r a c t i o n c o e f f i c i e n t s , 457 
des c r i p t i o n , 4 52 
d i f f i c u l t i e s , 462 
group parameters ob ta ined , 456-4 57 
l i m i t a t i o n , 457 
parameters, 455 
phase e q u i l i b r i a , 452-470 
w r i t t e n i n terms of 

c o m p r e s s i b i l i t y f a c t o r , 4 54 
P a r t i a l e q u a t i o n - o f - s t a t e parameters 

dete rminat ion , 23-24 
van der Waals equat ion example, 24-25 

P a r t i a l p rope r t i e s 
d e f i n i t i o n o f g e n e r a l i z e d , 16 
e q u a t i o n - o f - s t ate p r o p e r t i e s , 

convers ion o f l a b o r a t o r y 
pro p e r t i es , 18-19 

d e f i n i t i o n , 17 
l a b o r a t o r y p r o p e r t i e s , d e f i n i t i o n , 17 
l i s t , 15b 
r a t i o n a l e and d e f i n i t i o n s , 13-20 
r e l a t i o n s h i p of d i f f e r e n t 

t y p e s , 17-20 
summabi l i ty f e a t u r e , 15 

P a t e l - T e j a equat ion 
constants obta ined from the c r i t i c a l 

po in t , 438 
c r i t i c a l l o c i p r e d i c t i o n s , 448 
mix ing r u l e s , 446 
polar molecu le vapor p r e s su r e s , 439 
r e d u c t i o n t o Peng-Robinson 

equa t ion , 438 
v a p o r - l i q u i d e q u i l i b r i a r e s u l t s 

compared, 446-448 
Peng-Robinson equat ion 

accuracy f o r nonspher i ca l 
mo lecu les , 244 
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INDEX 593 

Peng-Robinson equat ion—Cont inued 
c r i t i c a l l o c i p r e d i c t i o n s , 448 
exp r e s s i on , 561 
f u g a c i t y c o e f f i c i e n t s , 354 
mix ing r u l e s , 326 - 329t,4 96 -4 97t 
parameter i n f l uence on s a tu r a t ed 

l i q u i d volume 
p r e d i c t i o n , 550 -552f 

parameter v a r i a t i o n f o r 
n-hexane, 54 9f 

po l a r molecule vapor p ressures , 439 
s o l u b i l i t y 

benzoic a c i d i n carbon 
d i o x i d e , 1 74f 

f l u o r i n e i n e t h y l e n e , 174f 
s u p e r c r i t i c a l d e s c r i p t i o n , 164 

Peng-Ro b inson -S t ry j ek -V era e quation 
f u g a c i t y c o e f f i c i e n t e xp r e s s i on , 563t 
r e s u l t s compared, 563t 

Pe r tu r ba t i on expansion 
i o n i c f l u i d model ing approximations 

used , 287 
mean s p h e r i c a l approximations (MSA) 

r e s u l t ob ta ined f o r i o n i c 
f l u i d s , 287 

P e r t u r b a t i o n theory 
advantages , 64 
a p p l i e d t o t e t ra f luoromethane , 79-81 
i n t e g r a l e v a l u a t i o n f o r i o n i c 

f l u i d s , 287-290 
i o n i c f l u i d model ing advantages, 282 
mixture e q u a t i o n - o f - s t a t e 

development, 3 53 -3 54 
P e r t u r b e d - a n i s o t r o p i c - c h a i n theo ry 

accuracy , 302 
a n i s o t r o p i c m u l t i p o l a r i n t e r a c t i o n s 

c a l c u l a t e d , 300 
azeotrope p r e d i c t i o n i n m i x t u r e s , 305 
b inary i n t e r a c t i o n 

parameters , 305, 306t 
canon ica l ensemble p a r t i t i o n 

f u n c t i o n , 298 
equat ion of s t a t e , 299 
f l u i d mixtures , 302-306 
f l u i d - m i x t u r e p rope r t i e s 

c a l c u l a t e d , 303-305 
ha rd - cha in r e p u l s i o n c a l c u l a t i o n , 299 
higher order terms i n pe r tu rba t i on 

expans ion , 300 
i s o t r o p i c i n t e r a c t i o n s 

c a l c u l a t i o n , 299 
Κ f a c t o r s 

comparison f o r hydrogen 
s u l f i d e - p e n t a n e system, 308f 

comparison f o r methyl 
i o d i d e - a c e t o n e system, 309f 

comparison f o r s u l f u r 
d i ox ide - ace tone system, 307f 

Lennard-Jones i s o t r o p i c i n t e r a c t i o n s 
c a l c u l a t e d , 299 

mixture p roper ty p r e d i c t i o n from 
pure-component parameters, 305 

P e r t u r b e d - a n i s o t r o p i c - c h a i n theory 
—Cont inued 
parameters f o r no η po lar f l u i d s , 302 
phase e q u i l i b r i a comparison f o r 

a cet one-cyclohexane system, 31 Of 
pure f l u i d s t e s t e d , 301-302 
pure-component f l u i d parameters 

ob t a ined , 301t 
pure-component p a r t i t i o n f u n c t i o n 

ex t ens i on , 300-301 
s a tu r a t ed l i q u i d molar volume 

comparison, 304f 
thermodynamics of m u l t i p o l a r 

mo lecu les , 297-311 
vapor pressure comparison of d i p o l a r 

f l u i d s , 303f 
Pe r tu rbed -ha rd - cha in theory 

approximations f o r s h o r t - c h a i n 
mo lecu les , 202 

e q u a t i o n - o f - s t a t e model b a s i s , 228 
p rope r ty p r e d i c t i v e a b i l i t i e s , 298 

P e r t u r b e d - s o f t - c h a i n theo ry , 
d i f f e r ence s from ha rd - cha in 
theo ry , 298 

Petroleum r e s e r v o i r s , water i n c l u s i o n 
i n phase behavior s t u d i e s , 494 

Phase behav io r , p r e d i c t e d by PFGC 
equa t i on , 462 

Phase diagram 
argon-water system at c r i t i c a l 

r e g i o n , 450f 
ethene-naphthalene system, 384f 
t e t r a f luorom ethane-a lkane 

system, 386f 
Phase d i s t r i b u t i o n c o e f f i c i e n t s 

computation of f eed mixture 
s e p a r a t i o n i n t o two phases, 478 

d e f i n i t i o n , 477 
i n i t i a l values v a r i e d f o r mixtures i n 

f l a s h c a l c u l a t i o n s tudy , 483 
Newton-Raphson a lgor i thm 

employed, 489 
s i n g l e - s t a g e f l a s h c a l c u l a t i o n s 

updated, 479 
t r i v i a l s o l u t i o n convergence a f t e r 

i n i t i a t i o n , 492 
Phase e q u i l i b r i a 

behavior 
new mix ing r u l e a p p l i e d t o b ina ry 

system, 575f,577f 
p r ed i c t ed behavior f o r b ina ry 

system us ing new mixing 
r u l e , 578f,579f 

t e rna ry phase behavior u s ing new 
mix ing r u l e , 58lf 

c a l c u l a t i o n d i f f i c u l t i e s at h i gh 
pressures , 371 

d a t a , s c a r c i t y f o r h i gh molecu la r 
weight hydrocarbons, 297 

e q u a t i o n - o f - s t a t e c a l c u l a t i o n , 371 
PFGC equat ion r e p r e s e n t a t i o n , 

452-470 
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Phase equ i l i b r i um—Cont inued 
p r o p e r t i e s , a l gor i thm developed f o r 

c u b i c equat ions , 573-574 
t h e o r i e s , f a i l u r e f o r h igh molecu lar 

wei#it hydrocarbons, 297 
Phase mole f r a c t i o n s , de te rminat ion f o r 

s i n g l e - s t a g e f l a s h 
c a l c u l a t i o n s , 478 

Polar f l u i d s 
cub i c e q u a t i o n - o f - s t a t e 

a p p l i c a t i o n , 434-451 
e q u a t i o n - o f - s t a t e a p p l i c a t i o n t o 

nonspher ica l mo lecu les , 244 
l o c a l composit ion model 

a p p l i c a t i o n , 250-275 
Polar s u p e r c r i t i c a l f l u i d p rope r t i e s 

convent iona l method inadequac ies , 574 
low-pressure range examined, 574 
new mixing r u l e a p p l i e d , 574 

Pressure composit ion diagram 
hydro gen-car bo η monoxide system, 382f 
hydro gen-methane system, 379f 
t et r a f l u o r cm et hane-butane 

system, 386f 
Pressure composit ion l o c i , c a l c u l a t e d 

f o r San Andres Formation 
o i l s , 417,425 

Près sure - temperature diagram, 
hydro gen-met hane system, 38l f 

Propadi en e 
a n a l y s i s i n var ious compounds, 89t 
p r o p e r t i e s i n pro pane-pro pa d i en e 

exper iment , 94t 
vapor pressure va lues i n 

propane-propadiene experiment 
compared, 94f 

Propane 
c a l c u l a t e d volume e r ro r u s ing 

Redlich-Kwong parameters, 399t 
r e l a t i v e v o l a t i l i t i e s i n 

propadi ene, 1 04t 
vapor pressure values i n 

pro pan e- pro pa d i ene e xperim ent 
compared, 91 f 

Pro pane-propadi ene system 
b i n a r y i n t e r a c t i o n parameters , 99t 
c e l l and t ransducer used, 88f 
equat ions used, 87 
exper imenta l c o n d i t i o n s , 87-89 
f u g a c i t y c o e f f i c i e n t e xp r e s s i on , 97 
i n t e r a c t i o n parameters, 96f 
l i q u i d c o m p r e s s i b i l i t y f a c t o r s i n 

experiment, 98 
non l inear behavior of r e l a t i v e 

v o l a t i l i t i e s , 98 
phase e q u i l i b r i a , 86-105 
pressure da t a , 90t 
pressure measurements used t o 

determine parameters, 89-93 
r e l a t i v e v o l a t i l i t i e s 

compared, 102f-104f 

Pure f l u i d s , van der Waals p a r t i t i o n 
f unc t i on used, 181-189 

Q 

Quantum c o r r e c t i o n , van der Waals -type 
equat ion of s t a t e , 372-373 

Quantum c o r r e c t i o n f u n c t i o n , expansion 
c o e f f i c i e n t , 373t 

R 

Rad i a l d i s t r i b u t i o n f u n c t i o n s , 
so f t - sphe re m ix tu r e , 334f 

Random mixing approximation (RMA) , 
mixture r a d i a l d i s t r i b u t i o n 
f u n c t i o n s , 319-320 

Raoul t ' s l aw, Κ values i n i t i a t e d , 477 
Real f l u i d s 

hard spheres as model b a s i s , 227 
P -V -T behavior , 238-244 

Redlich-Kwong equat ion 
a t t r a c t i o n parameter, 374 
b ina ry system r e s u l t s , 378 
c a l c u l a t e d volume e r r o r from 

parameters f o r carbon 
d i o x i d e , 398t 

d e s c r i p t i o n of b inary s u p e r c r i t i c a l 
p r o p e r t i e s , 171 

d i sadvantage , 380 
g e n e r a l i z e d , component p rope r t i e s f o r 

San Andres o i l s , 409t 
mix ing r u l e s , 326,327t,374 
mixture phase behavior o f San 

Andres Formation o i l s , 406-433 
parameters 

d e f i n e d , 134, 390, 408 
pro pane-propadi ene system, 95-98 
Soave m o d i f i c a t i o n , 390 
t em per at ure-de pen dent, 390 
temperatures above 

c r i t i c a l , 390-3 9 5 
used i n San Andres o i l s s tudy , 408 

Peng-Robinson equat ion compared, 533 
phase e q u i l i b r i a e q u a t i o n , 372 
s o l u b i l i t y 

benzoic a c i d i n carbon 
d i ox i de , 1 72f 

f l u o r i n e i n e thy l ene , 172f 
three -phase e q u i l i b r i a d e s c r i p t i o n of 

San Andres o i l s , 419 
van der Waals equat ion comparison, 81 

R e l a t i v e v o l a t i l i t i e s , non l inea r 
behavior of pro pane-propadi ene 
system, 98 
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Residual funct ions 
d e f i n i t i o n , 4 
Helmholtz energy d e r i v a t i o n , 9t 
p r e s s u r e - e x p l i c i t e q u a t i o n - o f - s t a t e 

d e r i v a t i o n , 7t 
r e l a t i o n s h i p t o excess f u n c t i o n s , 12 
v o l u m e - e x p l i c i t e q u a t i o n - o f - s t a t e 

d e r i v a t i o n , 8t 
Res i dua l Helmholtz energy, r o l e i n 

e q u a t i o n - o f - s t a t e thermodynamics, 5 

S 

San Andres Formation o i l s 
a c i d g a s - o i l mixture 

d e s c r i p t i o n , 425-43 0 
c a l c u l a t e d and exper imental r e s u l t s 

compared, 41 7t 
comparison i n sour gas s t u d i e s , 427t 
composit ion data p repa ra t i on f o r 

Redl ich-Kwong a p p l i c a t i o n , 410 
e q u a t i o n - o f - s t a t e parameters 

ad jus ted , 41 4t 
f l u i d compositions compared, 413t 
Redlich-Kwong equat ion a p p l i e d t o 

phase behavior , 406-433 
Saturated l i q u i d d e n s i t i e s , 

Peng-Robinson and Pa t e l - Te j a 
compared, 442t 

Satura ted l i q u i d volume, d e v i a t i o n 
contours f o r cub i c 
equat ions , 553f, 554f 

Sca l ed p a r t i c l e t h e o r y , r i g i d 
nonspher ica l mo lecu les , 228 

S c a l i n g l aws , pure f l u i d s a p p l i e d t o 
f l u i d mixtures , 116-118 

S c a l i n g v a r i a b l e s , one-component 
f l u i d , 1 l4f 

Schmidt-Wenzel equa t ion , s u p e r c r i t i c a l 
s o l u b i l i t y d e s c r i p t i o n , 164 

Second v i r i a l coef f i c e n t , p r e d i c t e d v s . 
composi t ion f o r b inary system, 577f 

Soave-Redl ich-Kwong equat ion 
mixture pressure dev i a t i ons f o r 

one-parameter f i t , 96f 
mixture pressure dev i a t i ons f o r 

two-parameter f i t , 99f 
parameter i n f l u e n c e on s a tu r a t ed 

l i q u i d volume 
p r e d i c t i o n , 550-552f 

parameter v a lue s , 134 
s u p e r c r i t i c a l s o l u b i l i t y 

d e s c r i p t i o n , 164 
S o l i d - f l u i d e q u i l i b r i a 

b i n a r y systems s t u d i e d , 380 
d i scussed f o r b inary mixture , 376-377 
e q u a t i o n - o f - s t a t e a p p l i c a t i o n t o 

c ryogen ic mixtures , 371-385 

S o l i d volume, da ta and sources f o r 
var ious compounds, 1 63t 

S o l u b i l i t y , d e v i a t i o n s f o r b inary 
mixtures from equations of 
s t a t e , 166-I69t 

So lu te s a tu ra ted vapor , 
e q u a t i o n - o f - s t a t e c a l c u l a t i o n , 161 

S o l u t i o n thermodynamics, 
p a r t i a l - p r o pert y concept, 13 

Square-wel l f l u i d s 
coo rd ina t i on number models 

compared, 183-184 
coo rd ina t i on number models f o r 

var ious equations of s t a t e , I85t 
d e v i a t i o n i n c o m p r e s s i b i l i t y 

f a c t o r , I87t 
l o c a l composit ions compared w i t h 

Lennard-Jones f l u i d s , 220t 
pressure c a l c u l a t i o n equa t i on , 235 

Square-wel l m ix tu re s , s imulated number 
of nearest neighbors , 2211 

Square-wel l molecules 
bu lk compos i t ion e f f ec t on l o c a l 

compos i t ion , 219 
l o c a l composit ion 

changing with bulk 
compos i t i on , 223f 

f u n c t i o n of d ens i t y , 22Of 
f u n c t i o n of temperature, 222f 
Monte C a r l o s i m u l a t i o n , 214-225 

model comparison at var ious 
d e n s i t i e s , 224 

Monte C a r l o s i m u l a t i o n 
com pa r i son , 218-219 

new l o c a l composit ion model 
proposed, 224 

temperature e f f ec t on l o c a l 
compos i t ion , 219 

un l i ke - ene rgy f a c t o r e f f ec t on l o c a l 
compos i t ion , 219 

Square -we l l p o t e n t i a l 
contact va lue , 232 
contact values of c o r r e l a t e d 

f u n c t i o n s , 232-23 8 
d e f i n i t i o n , 229 
e quat ion , 215 
Gaussian ove r l ap f o r a n i s o t r o p i c 

mo lecu les , 23Of 
Gaussian ove r l ap mode l , 230 
See a l s o One-step square -we l l 

p o t e n t i a l 
See a l s o Two-step square -we l l 

p o t e n t i a l 
S t a b i l i t y l i m i t s , mixtures i n f l a s h 

c a l c u l a t i o n s tudy , 482f 
S t a t i s t i c a l mechanics 

d i f f i c u l t i e s i n e q u a t i o n - o f - s t a t e 
a p p l i c a t i o n s , 201-202 

f l u i d model ing , 180 
h i s t o r y o f e q u a t i o n - o f - s t a t e 

a p p l i c a t i o n s , 201 
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S t a t i s t i c a l mechanics—Continued 
mix ing r u l e s , 31 7-31 8 

S t robr idge equat ion 
c o e f f i c i e n t s and t h e i r e r ro rs , 65t 
form used i n t e t r a f l u o r omet hane 

experiment, 63 
Success ive s u b s t i t u t i o n a l go r i thms , 

convergence t o t r i v i a l 
s o l u t i o n , 489 

S u p e r c r i t i c a l e x t r a c t i o n 
a p p l i c a t i o n s , 156,352 
c a l c u l a t i o n summary f o r var ious 

equations of s t a t e , 170t 
c r i t i c a l p roper t i e s used i n 

s tudy , 1 60t 
equations of s t a t e eva lua ted , 156-180 
equations of s t a t e s e l e c t e d , 157 
r e s u l t s i n b inary mixtures s t udy , 164 

S u p e r c r i t i c a l s o l u b i l i t y 
c a l c u l a t i o n , 161-164 
data sources f o r var ious 

compounds, I65t 
e q u a t i o n - o f - s t ate use fu lness , 157 

S u p e r c r i t i c a l s t a t e s , d e sc r i b ed by 
equat ions of s t a t e , 109-178 

Two-step square -we l l p o t e n t i a l 
angle-de pendent Gaussian o v e r l a p , 

equat ion , 238 
angle-de pen dent parameters, 234f 
nonspher ica l mo lecu les , 230 

U 

U n l i k e - i n t e r a c t i o n p o t e n t i a l 
parameters, e x p r e s s i o n s , 317 

U n l i k e - p a i r c o e f f i c i e n t s 
a p p l i c a t i o n t o pro jected b inary 

c r i t i c a l l o c i , 138 
obta ined f o r Soave equat ion f o r 

b inary mixtures , 152 
obta ined f o r Te ja equat ion f o r b ina ry 

mixtures , 152 

V 

Τ 

Ternary systems, new mix ing r u l e 
performance d e s c r i p t i o n , 576-580 

T et r a f l u o r omet hane 
apparatus used i n experiment, 63 
dens i t y values from St robr idge 

e q u a t i o n , 67t 
equat ion of s t a t e , 60-82 
isotherms s t u d i e d , 61 
PVT p r o p e r t i e s , 61 
thermodynamic behav ior , 60-61 

Thermodynamic modeling 
a p p l i c a t i o n requirements , 182 
approaches, 180 

Three-phase system, water a d d i t i o n t o 
hydrocarbon system, 509 

T r i v i a l s o l u t i o n 
convergence i n f l a s h c a l c u l a t i o n 

s tudy , 483 
mixtures occur rence , 476 

T rou ton ' s law 
c o r r e c t i o n f o r d i f f e r ences i n vapor 

molar volume, 521 
i n t e r p r e t a t i o n s , 52 0-53 3 

Two-phase e q u i l i b r i u m 
governing equations , 497 
p r e d i c t i o n by i n i t i a l f l a s h 

c a l cu l at i ons , 50 6 
Two-phase f l a s h c a l c u l a t i o n s , 

p rocedure , 497 -500 
Two-phase system, water a d d i t i o n to 

hydrocarbon system, 50 9 

van der Waals equat ion 
d i sadvantage , 81 
l i q u i d d e n s i t y express ion at zero 

pressure , 28 
mix ing r u l e s , 324, 32 5t 
polar asymmetric system 

d e s c r i p t i o n , 355 
terms d i scussed , 533 

van der Waals o n e - f l u i d m ix ing r u l e s 
app l i ed t o a l l d e n s i t i e s , 192 
compared wi th mod i f i ed mean-density 

approx imat ion , 347t 
compared wi th random mix ing , 359-360 
Lennard-Jones mixture 

r e s u l t s , 344t-345t 
p r e d i c t i v e and c o r r e l a t i v e power, 360 
square -we l l c on f i gu r a t i on 

p r e d i c t i o n , 362f 
van der Waals p a r t i t i o n f u n c t i o n 

accuracy f o r square -we l l 

f l u i d s , 187-189 
advantages i n e q u a t i o n - o f - s t a t e 

development, 189 
c o n f i g u r a t i o n a l energies de f ined , 191 
c o o r d i n a t i o n number model used, 184 
e quat ion , 1 81 
fundamental equat ion o f s t a t e 

ob ta ined , 182 
mixtures equa t ion , 189 
vo lumet r i c equat ion of s t a t e 

o b t a i n e d , 182 
van der Waals t h e o r i e s — S e e N - f l u i d 

theo r i e s 
V a p o r - l i q u i d e q u i l i b r i u m 

c y c l ο he xan e- he xanol system, 44 7f 
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INDEX 597 

V a p o r - l i q u i d equ i l i b r i um—Cont inued 
l o c a l composit ion mix ing r u l e s 

a p p l i e d to var ious 
systems, 270-271f ,273-274f 

l ow -pressure r e g i o n s t u d i e d f o r new 
a p p l i c a t i o n , 576 

p red ic ted by PFGC equa t ion , 462 
p r e d i c t i o n from l i q u i d - l i q u i d phase 

s epa r a t i on s , 385 
propane-propadiene system 

va lues , 100t,102t 
to luene -pentano l system, 447f 
values obta ined from c u b i c equat ions 

o f s t a t e , 537 
vapor -pressure r e p r e s e n t a t i o n i n 

c u b i c equat ions s tudy , 540 
Vapor pressures 

Antoine equat ion used f o r 
es t ima t ing , 52 5 

compared f o r two equations of 
s t a t e , 460t 

data sources f o r var ious 
compounds, 1 62t 

e f f e c t of alpha constant on cub i c 
equat ions of s t a t e , 436t 

Peng-Robinson equat ion f a i l u r e , 561 
PFGC equa t i on , 457 
p r e d i c t i o n s from PFGC equat ion f o r 

i sopentane , 46 l f 
V a r i a t i o n a l i n e q u a l i t y m i n i m i z a t i o n 

theo ry—See VIM theory 

VIM theo ry , a p p l i e d t o 
t et r a f l uo r omet hane, 79 

V i r i a l c o e f f i c i e n t — S e e Second 
v i r i a l c o e f f i c i e n t 

V i r i a l equat ion 
a n i s o t r o p i c molecules , 230-232 
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