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FOREWORD

The ACS SYMPOSIUM SERIES was founded in 1974 to provide a
medium for publishing symposia quickly in book form. The
format of the Series parallels that of the continuing ADVANCES
IN CHEMISTRY SERIES except that, in order to save time, the
papers are not typeset but are reproduced as they are submitted
by the authors in camera-ready form. Papers are reviewed under
the supervision of the Editors with the assistance of the Series
Advisory Board and are selected to maintain the integrity of the
symposia; however, verbatim reproductions of previously pub-
lished papers are not accepted. Both reviews and reports of
research are acceptable, because symposia may embrace both
types of presentation.
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PREFACE

THE EQUATION-OF-STATE APPROACH to model and correlate fluid-phase
equilibria has been emphasized more and more in the eight years since the
first symposium on this topic. In 1979, we edited the volume entitled
Equations of State in Engineering and Research (Advances in Chemistry No.
182), which was based on that symposium. Meanwhile, research activities
have been continually robust, particularly in building new models and in
extending established equations for new and improved applications.

The present volume is based on the April 1985 equation-of-state
symposium held to present a comprehensive state-of-the-art view of progress
In this area.

The term “equation of state” is used in a broad sense to include
mathematical description of volumetric behavior, derived properties, mixture
behavior, and phase equilibrium of fluids. The main thrust continues to be
the description of fluid-phase equilibrium, a phenomenon of enduring
interest because it is basic to mass transport and separation operations. At
the present stage of development, nonpolar fluids are modeled almost
exclusively with equations of state, and active research is extending to polar
fluids.

The twenty-eight chapters in this volume, reporting work and progress
on a broad front, are arranged in seven sections. Contributions are made by
authors from diverse disciplines, including chemical engineers, physical
chemists, and chemical physicists. The division of the volume into sections is
not rigorous; some papers can fit easily into more than one section.
Nevertheless, the arrangement should serve as a helpful guide to readers in
their initial encounter with this substantial collection.

We greatly appreciate the encouragement and support of the Division of
Industrial and Engineering Chemistry of the American Chemical Society in
sponsoring the symposium. Special thanks go to the authors of the papers.
In addition to the regular task of preparing their manuscripts, they have
gone the extra mile by preparing them in a camera-ready form. Their care
and devotion are clear from the quality of the finished product. Robin
Giroux of the ACS Books Department worked with us throughout the
development of the volume.

K. C. CHAO ROBERT L. ROBINSON, JR.
School of Chemical Engineering School of Chemical Engineering
Purdue University Oklahoma State University
West Lafayette, IN 47907 Stillwater, OK 74078

December 2, 1985

X
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1

Equations of State and Classical Solution
Thermodynamics
Survey of the Connections

Michael M. Abbott and Kathryn K. Nass

Department of Chemical Engineering and Environmental Engineering, Rensselaer
Polytechnic Institute, Troy, NY 12180-3590

Many contemporary researches in equation-of-statery
focus on the representation of properties of liquid
mixtures. Here, the conneéction with experiment is
made through excess functions, Henry's constants, and
related quantities. We present in this communication
a review and discussion of the apparatus linking the
equation-of-state formulation to that of classical
solution thermodynamics, and illustrate the key ideas
with examples.

The correlation and prediction of mixture behavior are central
topics in applied thermodynamics, important not only in their own
right, but also as necessary adjuncts to the calculation of chemical
and phase equilibria. Two major formalisms are available for repre-
sentation of mixture properties: the PVTx equation-of-state formu-
lation, and the apparatus of classical solution thermodynamics. It
is well known that the two formalisms are related, that a PVTx
equation of state in fact implies full sets of expressions for the
quantities employed in the conventional thermodynamics of mixtures.
Only with advances in computation, however, has it become possible
to take advantage of these relationships, which are now used in
building and testing equations of state.

The formulations differ in at least two major respects: in the
choices of independent variables, and in the definitions of special
functions used to represent deviations of real behavior from stan-—
dards of "ideality”. 1In the equation-of-state approach, temperature,

molar volume, and composition are the natural independent variables,

and the residual functions are the natural deviation functions. 1In
classical solution thermodynamics, temperature, pressure, and com—
position are favored independent variables, and excess functions are
used to measure deviations from "ideality". Thus translations from
one formulation to the other involve both changes in independent
variables and conversions between residual functions and excess
functions.

0097-6156/86/0300-0002$10.75/0
© 1986 American Chemical Society
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I. ABBOTT AND NASS Classical Solution Thermodynamics

Simple as all this sounds, we have found it frustrating not to
have available a single source in which the connections between the
two formulations are neatly laid out in purely classical terms.
Particularly vexing is the lack of a flexible but clean notation.
To meet our own needs, we have synthesized a system of definitions
and notation, partially described in the following pages. The
system seems adequate for both research and classroom use.

Deviation Functions

Rationale and Definitions. It is rarely practical to work directly
with a mixture molar property M. For example, M may not be defined
unambiguously, and may therefore not admit, even in principle,
direct experimental determination. Thus, neither U nor S nor H nor
G is defined at all, in the strict sense of the word. Both U and S
are primitive quantities, and H and G are "defined” in terms of one
or both of them. Moreover, property M by itself may not admit phys-
ical interpretations, except in a loose sense (e.g., entropy as a
"measure of disorder”). For these and other reasons, one finds it
convenient to introduce such quantities as residual functions and
excess functions. These quantities, themselves thermodynamic prop-
erties, are examples of a general class of functions which we call
deviation functions.

Deviation functions represent the difference between actual
mixture property M and the corresponding value for M given by some
model of behavior:

M(deviation) = M(actual) - M(model)

The choice of a model is to some extent arbitrary, but to be useful
the model must have certain attributes. Its molecular implications
should be thoroughly understood, so that deviation functions defined
with respect to it can be given clean interpretations. Real behav-
ior should approach model behavior in well-defined limits of state
variables or substance types, so that the deviation functions have
unambiguous zeroes. Finally, to facilitate numerical work, it is
desirable that the properties of the model be capable of concise
analytical expression.

Once a model is chosen, the conditions at which the comparison
(real vs. model) is made must be specified. There are several
possibilities here, but two are particularly felicitous. Thus, we
may define deviation functions at uniform temperature, pressure, and
composition:

M = M- 0%1,p,%) (1)

Here, the notation signals that mixture molar property MmOd for the
model is evaluated at the same T,P, and composition as the actual
mixture property M; superscript (capital) "D" identifies the devi-
ation function as a constant - T,P,x deviation function. Alterna-
tively, we may define deviation functions at uniform temperature,
molar volume (or density), and composition:

In Equations of State; Chao, K., € al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
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4 EQUATIONS OF STATE: THEORIES AND APPLICATIONS

= u - ™%y, x) (2)

Here, MmOd is evaluated at the same T,V, and composition as the
actual mixture property M; superscript (lower—case) "d" distin-
guishes this class of functions from that defined by Equation 1.

The two kinds of deviation function are related. Subtraction
of Equation 1 from Equation 2 gives

w2 = ™%r,p,x) - M™%, V, )

whence we find that

Md=MD+j

P

P (aMmod

* aP

)p P 3)

Here, pressure P* is the pressure for which the mixture molar volume
of the model has the same value V as that of the real solution at
the given temperature and composition. According to Equation 3,
deviation functions Md and MP are identical for those properties M
for which M4 jigs independent of pressure.

Residual Functions. The simplest model of mixture behavior is the
ideal-gas mixture:
Mmod _ Mig

Deviation functions defined with respect to the ideal-gas model are
called residual functions, and are identified by superscript R or r.
Thus, as special cases of Equations 1 and 2, we define

MR = M - Mig(T,P,x) (4)

and

ME = M - Mi&(T,V,x) (5)

Residual functions MR and %r are related by Equation 3, with the
assignments mod = ig and P* = RT/V. Thus

P ig
r R oM
M =M + [ () (6)
RT 3P T,x
v

Ideal-gas properties Ui8, Hig, C%g, and C%g are all independent
of pressure. Hence

ME = MR (M = U,H,Cy»Cp) )

On the other hand, ideal-gas properties Si8, Al8, and G18& are func-
tions of pressure. In particular,

In Equations of State; Chao, K., € al.;
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l. ABBOTT AND NASS Classical Solution Thermodynamics

( )T X - %

ig
3G _ RT
( )T b4 (aP )T,x TP

and hence, by Equation 6,

r = sR - Rynz (8)
AT = AR 4+ RTynz 9)
Gr = GR + RTygnz (10)

where Z = PV/RT is the compressibility factor.

Expressions for either MR or M are found from a PVTx equation
of state by standard techniques: see e.g. Van Ness and Abbott (1).
If the equation of state is explicit in pressure, then T,V (or molar
density p), and composition are the natural independent variables
and the MT are the natural residual functions. If the equation of
state is explicit in volume, then T,P, and composition are the
natural independent variables and the MR are the natural residual
functions. Tables I and II summarize formulas for computing the MT
from a pressure-explicit equation of state, and the MR from a
volume-explicit equation of state. Conversion from M™ to MT, or
vice versa, is done by Equations 7 through 10. Note that VI and pR
are identically zero.

Residual Function AT: a Generating Function. Most realistic
equations of state are explicit in pressure; T,V, and composition
are the natural independent variables. These are also the canonical
variables for the Helmholtz energy A, so the constant - T,V,x resid-
ual Helmholtz energy AT plays a special role in equation-of-state
thermodynamics. It can be considered a generating function, not
only for the other constant - T,V,x residual functions, but also for
the equation of state itself. The relevant working equations assume
a pretty symmetry when the independent variables are chosen as
reciprocal absolute temperature t ("coldness” = 1! ), reciprocal
molar volume p (molar density = V'l), and composition. They are
summarized in this form in Table III.

Application of these formulas may be illustrated by a simple
example. We choose for this purpose the van der Waals equation of
state, for which

AT(vdW) = - RTgn(l-bp) - ap (33)

where parameters a and b depend on composition only. The residual
pressure PT (= P-P18 = P- RT) is found from Equation 27:

bp RT 2

I-bp 2P

so the equation of state is

P¥ (vdw) =

In Equations of State; Chao, K., € al.;
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2

P(vdW) = g%%;-— ap (34)

The other residual functions follow from Equations 28 through 32.
Two results are

ST(vdWw) = Regn(l-bp) (35)

UT(vdW) = - ap (36)

Equations 35 and 36 support the common interpretations of the
hard-sphere (repulsive) term as representing an "entropic” contribu-
tion to the equation of state, and of the van der Waals "a" as an
energy parameter. The material of this section can in fact be taken
as a point of departure for the development of a classically-
inspired generalized van der Waals theory, motivated by Equations 33
through 36, but unrestricted by the assumptions attendant to the
original van der Waals equation of state (2).

Excess Functions. The conventional standard of mixture behavior for

condensed phases is the ideal solution. Deviation functions
reckoned against this model are called excess functions, and are
identified by superscript E or e. We define

ME = M - mid(T,P,x) (37)

and

e

M = M - Mid(T,v,x) (38)

where superscript id identifies the ideal solution. Equations 37
and 38 are special cases of Eﬁuations 1 and 2, with the assignment
mod = id. Excess functions M™ and M® are related by

aMld
3P

P

we = ME 4
*
P

)1, x%® (39)

which is a special case of Equation 3. Unlike the ideal-gas case,

. %
no simple general closed-form expression can here be written for P,
By definition, P” is in this case the pressure for which the ideal
solution has the same molar volume V as the real solution at the
given temperature and composition. Since

V1d = ZXiVi
i
this pressure must be found as a solution to the equation
*
yx. V. (T,P ) = V(T,P,x) (40)
ii:l.

Clearly, numerical relation of M° to ME via Equations 39 and 40
requires equation-of-state information, both for the real pure com—

In Equations of State; Chao, K., € al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
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Table I. Residual Functions from a Pressure-Explicit Equation of

State
PT = oRT(Z-1) (11
Ur=RTj()po (12)
[o]
' = -rr? | (%)p’x %9- + RT(z-1) (13)
o
r_ g (T2 -11 S (14)
s R £ [T(aT)p,x + z-1] 5
o]
AT =wrT [ (z-1) & (15)
o P
6" = RT jp(z—l) ‘319- + RT(Z-1) (16)
o]
oF - a1 IO[T(_B_ZE)' a2y 1o a7
\ 8T2 pPsX aT/p,x" p
¢l =cX-r+Rr[z+ 132 2 ( ) 17! (18)
PV [ (aT)p,x] (2 +e(55)1,x

In Equations of State; Chao, K., € al.;
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Table II. Residual Functions from a Volume-Explicit Equation of

Publication Date: March 24, 1986 | doi: 10.1021/bk-1986-0300.ch001

State
VR = %Z(z—l) (19)
R 2 F 9z dp
U = —RT (f) (a_T-)P,X —P— - RT(Z"l) (20)
R 2 Pz dp
H = -RT Jc; (B_'f)P,X e (21)
R P 3z dp
s = -R (j) [T(';;'T)P,x +z-1] 3 (22)
R P dp
A" = RT [ (z-1)5— - RT(z-1) (23)
o
R P dp
6" = RT [ (-1} (24)
o
CR = =RT F T iz. + 2 a_Z_ d_P (25)
P j[ ( Z)P,x (aT)P,x] P
o T
R _ R _ 32 2 Y4 -1
C;j = Cp +R-R[Z+ T(aT)P,x] (2 - P5p)r ) (26)

In Equations of State; Chao, K., € al.;
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Table III. Residual Functions from AT

Al'

r _ 2 .3
P e (3_0-3‘[’7{

r _ ZaAr
= v

9T )p,x

o = [a(rAr)J
9T psX

2=}
]
>
o]
+
-
~
=414
2
©
E]
+
©
e
|
ol;>
-
]

(27)

(28)

(29)

(30)

31

(32)

In Equations of State; Chao, K., € al.;
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ponents and for the real mixture. Hence the relation between M€ and
ME is not as "clean" as that between MT and MR,

Rough closed-form approximations to Equation 39, appropriate
for applications to condensed phases, may be found however. We
write Equation 39 as

id

), ®P) 41)

M w M 4 (

where the derivative is evaluated at the pressure P of the real mix—
ture. An expression for P° follows from Equation 41 by the assign-
ment M = V, because V& = 0 identically. Thus we find that

P =~ P - (42)

where kg is the isothermal compressibility of pure i:

o1 Y
K, = &

i v (350t

All quantities on the right side of Equation 42 are evaluated at
pressure P. According to Equation 42, the sign of VE determines
whether P” is less than or greater than P.

Combination of Equations 41 and 42 gives

e E (aMid E

M s M + (-~ (43)
3P )T,X gxiKiVi

which is the required approximation to Equation 39. Particular
cases of Equation 43 are generated on specification of M and of the
corresponding derivative (oMid /3P)T ,x° Table IV summarizes
expressions for this derivative in terms of the volumetric proper-
ties of the species composing the mixture. To demonstrate its
application, let us take M = A. Then, by Equations 43 and 48 we
find that

A® ~ AE + pyE

But
GE = AE + pyE

and hence we have rationalized the approximation
A® ~ GE

a result frequently used in molecular modeling of the constant -
T,P,x excess Gibbs energy.

In Equations of State; Chao, K., € al.;
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aMid
Table IV. Expressions for (a—P—)T,x
id
M =
M (aP )T,x
v - ;xi'(ivi (44)
U ngiKivi - szigivi (45)
H gxivi - szisivi (46)
S - ingivi (47)
i
A sziKivi (48)
i
G x. V. (49)
i'i
i
2 By
CP - Tgxisivi - Tgxi(aT)Pvi (50)

In Equations of State; Chao, K., € al.;
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Relations between Excess Functions and Residual Functions. Excess
functions and residual functions are related. The relationships are
most easily established through ME and MR, By Equations 4 and 37,
we have

ME = R - idd - iBy (51)
But

utd - IxM - Fix enx

i1 i i i
and
ig _ ig _

M XxiMi F Ix gnx,

where

0 W™ = U,H,CP)

4l
n
=
~~
=
[}

S) (52)
-RT (M = A,G)
Hence Equation 51 becomes

E R

= - - ig
MY =M= (Ix M - TxM )
i i
or
E _ R _ R
M =M EXiMi (53)

Equation 53 is a basis for relations connecting ME or M® to MR or
MT. It provides a link between excess functions and the equation of
state and it suggests how physical interpretations applying to par-
ticular residual functions are carried over to the corresponding
excess functions.

Experiment provides values of the constant - T,P,x excess func-
tions M, whereas the constant - T,V,x residual functions MY, par-
ticularly AT, are most cleanly related to a pressure-explicit
equation of state. By Equations 7 through 10, we have

MR = M + Fen z (54

with J defined by Equation 52. Combination of Equations 53 and 54
produces an expression relating ME to MT:

ME = M - I M "+ F IxanCV/v)) (55)
i

In Equations of State; Chao, K., € al.;
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Table V summarizes formulas for the constant - T,P,x excess
functions HE, SE, GE, and Cg in terms of A” and its temperature
derivatives. These recipes are useful for testing the abilities of
a PVTx equation of state to represent liquid-mixture properties.
Consider as an example the van der Waals equation of state, Equation
34, for which AT is given by Equation 33. Application of Equations
56 through 59 gives

HE(val) = = (ap-Jx,a, p,) + PV (vdW) (60)
i
s(vaW) = Rfx 2n %h(—:—bp—:—) (61)
11P1
Evamy = uE(vawy - 1sE(vaw) (62)
Ch(vaw) = R [1 - ; (1-bp )zp] -
“Z"i [1 - i:—%—i- (l—biipi)zpi]-l (63)

Here, VE(vdW) is the excess volume implied by the equation of state.
Unsubscripted quantities are mixture properties, and subscripted
quantities refer to the pure fluids.

Partial Properties

Rationale and Definitions. The partial-property concept is central

to applied solution thermodynamics. First, it represents a formal
(but arbitrary) basis for apportioning a mixture molar property M

" amongst the constituents of a phase. Second, it provides an elegant

apparatus for describing infinitely-dilute solutions. Finally, it
serves as a unifying concept in formulating mixture equilibrium
problems, because the chemical potential and its relatives stand to
the Gibbs energy and its relatives as partial properties: see Table
VI.

The conventional definition of a partial property Mj is

M, = [ignﬁ] (64)

i JT,P,n

3

where by implication temperature, pressure, and composition are
favored independent variables. This choice is entirely appropriate
in the laboratory frame of reference, because temperature and
pressure are the variables susceptible to precise measurement and
control. There are instances however where it is useful to broaden
the partial-property concept, to accommodate alternative choices of

In Equations of State; Chao, K., € al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1986.
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Table V. Excess Functions and the Residual Helmholtz Energy

E_ ,r_ r
H = (A gxiAi )
r
- T (ﬁ.) - ZX (a_A_i.)
3T Jy,x 4 1 13T 1V
+ Pyt (56)
r
SE = - (B_Ai) - Zx (a_Al)
0T Iy » § 1 \3T /¥y
+ RXxizn(V/Vi) (57)
E _ r _ r
"= (A" - IxA)
i
- RTgxig,n(V/Vi)
+ pvE (58)
2, r
E a2aT 3 A
€= T 2) "I |2
Vo™ Jv,x 1T a1t v
-2 -1 2 -1
-7 (—2—3) (%‘3’) - Xxi(—g-%) (—25) (59)
B V,x T,x 1 'Vi iT
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independent variables. Foremost among these is the application of
pressure-explicit equations of state to the calculation of chemical

and phase equilibria.

Table VI. Important Partial Properties

M M,

1
G ui (65)
G/RT an Ay (66)
R/RT en g, 67)
AG/RT gn a, (68)
cE/RT 2oy, (69)

Reis (3) discusses the generalization of the partial-property
concept to other sets of independent variables, and Abbott (4) has
extended the definition of Equation 64 to higher-order derivatives
with respect to mole numbers. A result common to both kinds of

generalizations is that the "summability feature”

M = zx.ﬁ
i i1

of the Mj, viz.,

(70)

is in fact possessed by a very large number of "partial properties”,

in addition to Mj.

The generalization of Equations 64 and 70 for choices of inde-
pendent intensive variables other than T and P is quite simply

rationalized. We outline a development here.

Let the total prop-

erty Mt = nM of a phase be a function of the set of mole numbers
nj,ny,s..., and of two arbitrary intensive variables X and Y. Then
the total differential d(nM) corresponding to an arbitrary change of

state is

(M) = l}a—g—x“M)den + L*’;;‘M)]dy +75

X,n

i

E (nM)]dn (1)

X,Y,nj

where subscript n denotes constancy of all mole numbers and nj

denotes constancy of all mole numbers save nj.

tities apply to Equation 71:

d(nM) ndM + Mdn

+
N ndxi xidn

l:a (nM)] (aM)
X Y,n oxX Y,x

a
=]
L}
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[__a <nM>] - n (Al‘_i)
3 Ix,n \ Yy, x
where subscript x denotes constancy of all mole fractionms.

Additionally, let us define the generalized partial property M; as

~ _a(nn)]
M, = |—= (72)
1 '~ 90y Ix,Y,n,

Combining the last six equations and collecting coefficients of n
and of dn, we obtain

But quantities n and dn are independent and arbitrary; the two
bracketed terms must therefore separately be zero, and we find that

™ = (ﬂ> X + (ﬂ) dy + JM, dx (73)
X aY i1
Y,x X,x i
and
M= Exini (74)

Equation 73 is merely a special case of Equation 71, with n=l.
Equation 74 is "new"” however; it is the required extension of the
"summability feature” of the ﬁi to other classes of partial proper-
ties.

Other analogs of the usual partial-property relations are found
by straightforward mathematics. For example, according to Equation
74, the total differential dM is

M = zxidMi + gMidxi

But this expression must be equivalent to Equation 73; comparing the
two gives immediately a generalized Gibbs-Duhem equation:

Jx @M, = (%) X + (—g%) ay (75)
i Y,x X,x

which is merely an extension of the familiar

In Equations of State; Chao, K., € al.;
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w [ an)
Jx 0, = (aT) dr + (aP dp (76)
i P,x T,x

Relations among Partial Properties of Different Types. Sometimes it

is necessary to convert one type of partial property to another.

Let us define, analogous to ﬁi’ a second partial property 171]'-

M = Hnﬂ)] a7)
i X',Y',nj

where intensive variables X' and Y' may be different from intensive

variables X and Y. We wish to relate partial property 171;_ to partial
property Mi. By Equation 71 we find that

[a (nM)J _ [a (nM)] (g ‘ .
any X',Y',n, 3X Jy,n '37y'x t',n,

I'a(nM)] &) N [a(nM)]
3Y x,n 'y X',Y',n .9 Ix,v,n

which becomes on simplification

hy o=, o) (22

1 ORIy w Vo0 xv yv o,
J (78)
+olS) (3
X,x 9% X',Y 0,

Equivalent statements of Equation 78 are possible. For example, the
derivative (BX/ani)x',Y',nJ— may be written as

()., -, (3
- - 2 Y’
an, X', ¥',n, AT fyr o \OTYy X', %,n,
or as
At
), - b6
i X',Y',nj

The derivative (BY/ani)X’,Y',nj may be similarly rewritten.

Only two classes of partial properties are of importance to us
here: those defined at constant T and P ("laboratory" partial
properties), and those defined at constant T and V (“"equation-of-
state” partial properties). Thus we define, as special cases of
Equation 72,

In Equations of State; Chao, K., € al.;
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- 3 (M) |
i [ J (64)
* M Jrp,n,
and J
H, = [?-gnﬂ] (79)
i T,V,nj

Here and henceforth the tilde (~) is used to distinguish a con-
stant - T,V partial property from the conventional constant - T,P

variety. Note that M, can equally well be considered a constant -
T,p partial property, where p is molar density.

Both classes of partial properties obey the summability rela-
tion of Equation 74:

M= Jx M (70)
i
and
M= ixiMi (80)

Each class of partial properties has its own Gibbs-Duhem equation:

Jx dM, = 2—1;) ar + (%};) dp (76)
i P,x T,x
and
~ M| M
yx dif, = &-—) ar + (37) av (81)
it 1 oT V,x v T,x

Finally, by Equation 78, we find the following relations between the
two classes of partial properties:

W o-W, - “(33) (gz ) (82)
T,x\°"4 T,P,n,
and
W, =, - n(%%) (%% ) (83)
T,x i T,V,nj

Equation 82 effects a conversion of laboratory partial proper—
ties to equation-of-state partial properties. Since

T ] - e (E)
1 JT,P,n. anylr p,n.

In Equations of State; Chao, K., € al.;
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we can rewrite it as

~ = _w .y [aM :
Mo=M + (V-7 (aV i} (84)

The conventional partial molar volume V; is thus a key quantity for
this type of conversion.

More common are applications requiring conversion of constant -
T,V partial properties to constant — T,P partial properties. Here
Equation 83 is appropriate; the analog of Equation 84 is

=

[]
=
+
~
o

[
R
N

lw

=

where

™
m

3 (nP)
1 3y |1,v,n.,
j

An equivalent result involving compressibility factors is

¥ =i RT - M
Mo=M o+ g (z zi) ( )T (85)

As an example of an application of this and earlier material,
consider the following standard problem: to determine an expression

for the component fugacity coefficient $ » convenient for use with a
pressure-explicit equation of state. We know that zn¢i is a

constant - T,P partial property with respect to GR/RT: see Equation
67, Table VI. Moreover, by Equations 10 and 16, we have the
following recipe for GR/RT:

GR

P d
s . -1 - - 9
X7 Z=-1-gnz + L z ;) 5

Since density appears explicitly in this equation, an expression for
%;R/RT 1s readily found. It is

(s o
i_ 5 (Z1) . 1) %
RT - Zi( Z ) snz + £ ;-0 ]

All that remains is to relate E?/RT (= zn¢i) to ﬁi/RT. Here, we

apply Equation 85, with the assignment M = GR/RT. The pressure
derivative of GR/RT is

In Equations of State; Chao, K., € al.;
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[_NGR/RT)] A (%)
P RT RT Z
T,x

Hence
G & 21
RT ~ RT +(Z"Zi)(z)
and thus we find that
~ P .
eng, =2 -1 - guz + (Zi—l)‘-)-dg— (86)
o

Equation 86 can of course be obtained by other procedures. In this
example we have attempted to make full use of material presented in
this and preceding sections.

Suppose that Z is represented by the van der Waals equation of
state, Equation 34:

Z(vdW) = lf—bp -2 (87)

Then

*® -b)p 2 P

> 1 i i
Z,(viW) = —+ ——— - —/——
- 2 T
i 1-bp (1-bp) R

and hence, by Equations 86 and 87,

~ %ip (a + ;i)p
2,n¢i(vdW) = l"_bp— =T en(l-bp)Z (88)

Here, quantities Ei and b, are partial equation-of-state parameters:

[

[°X
[
11}
@ !
|~
2|8
= 1e
——
-3
-
©
-
=]

)

o

"nm
QQ
~
=]
o
~

n
i-T,p ’nj

Explicit expressions for a, and b, require explicit expressions for
the mixing rules for paraméters a and b.

In Equations of State; Chao, K., € al.;
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Mixture Fugacity Behavior

Fugacity Coefficients, Activity Coefficients, and Henry's Constants.
Component fugacity coefficients are readily obtained from a PVTx
equation of state. For developing and testing equations of state
for phase-equilibrium applications, however, it is sometimes useful
to deal directly with quantities conventionally used for description
of the liquid phase, e.g., activity coefficients and Henry's
constants. We review in the following paragraphs the connections
among these measures of component fugacity behavior, and illustrate
how they are determined from pressure—explicit equations of state.
The fugacity coefficient is defined as

>

~

i
by x—ip (89)

where f; is the fugacity of species i in solution. The activity
coefficient Yg is

~

fy

Y; = TFo
i xifi
where f? is the standard-state fugacity. Two standard states are
populariy employed: Lewis-Randall ("Raoult's-Law”) standard states,
for which f; is the fugacity of pure i at the mixture T and P,

(90)

f; (LR) = fi 91)

and Henry's-Law standard states, for which
£2 (HL) = ‘M- (92)
i i
where Henry's "constant"” i is defined as

~

fi
lim — (93)
xi->0 Xy

N

i

the limit being taken at the mixture T and P.
If we write Equation 90 as

£y

then we see that all that is required to "convert"” a fugacity coef-
ficient to an activity coefficient is an expression for the ratio

In Equations of State; Chao, K., € al.;
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f;/P. For Lewis-Randall standard states, we have

o
T U

3 P %
where ¢ is the fugacity coefficient of pure i. Thus the conven-
tional Lewis-Randall activity coefficient is

9
o (94)

For Henry's-Law standard states, we have

£° N ) t

B A T i
P P 1m0
x> i
But

i - N
lim — = P lim ¢, = P

X i i
Xi+0 i Xi+0

where $i° is the fugacity coefficient at infinite dilution. Thus

R ~ o
W, = Poy (95)
and the Henry's-Law activity coefficient yi* is
b
Yi = T (96)
o3

Conversion from fugacity coefficients to activity coefficients
and Henry's constants is thus straightforward. One needs in addi-

tion to the component fugacity coefficient $i one or another of its
limiting values, viz.,

¢i = 1lim ¢i
Xi+1
or
¢1 = lim ¢i
xi+0

For a pressure-explicit equation of state, both of these are found
as limits of Equation 86.

In Equations of State; Chao, K., € al.;
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Consider as an example the van der Waals equation of state, for
which $i is given by Equation 88. For pure i, this equation yields

as a special case

2a 04

RT

byiPy
1=b, 504

zn¢i(vdw) = ¢n(l-b )Zi 97)

iiP1

where the doubly-subscripted parameters refer to pure i. Equations
94, 88, and 97 when combined produce an expression for the
Lewis-Randall activity coefficient implied by the van der Waals
equation. .

Evaluation of ¢4 (and hence of ﬂ+i or Yi*) requires a little
more care, because the state of infinite dilution for a species in a
multicomponent mixture can in principle be defined in many ways.
The natural definition of this state is as that state for which
X, approaches zero as the i-free mole fractions x3 remain constant.
(Here, x& z xj/ZXk , where j,k # i.) By this definition, Equation

88 yields k
B (0!

gn¢i°(vdw) s T T T - ¢n(1-b'p")z" (98)

For the general multicomponent case, the primed quantities in
Equation 98 are i-free mixture properties. Parameters Ziw and 3i°
are partial equation—of-state parameters, evaluated at the same
i-free composition as the mixture properties. For the binary case,
say of infinitely dilute solute 1 in solvent 2, Equation 98 reduces
to the simple result

R B, (a,,+a m)
® 1P 22791 JP2
a0, (vaw) = T-b,,0, - _T 2n(l b22p2)Z2 (99)

Here, the l-free "mixture"” is just pure solvent 2.

Partial Equation-of-State Parameters. Composition is introduced
into many analytical engineering equations of state via "one-fluid
theory”, in which an equation of state for a mixture is assumed to
have the same functional form as that for the pure species.
Component mole fractions appear explicitly only in mixing rules for
the equation-of-state parameters. As illustrated by the example

just considered, evaluation of $i’ Yyo 9#&, or yi* then requires

expressions for the partial equation-of-state parameters. Letting
m denote a generic equation-of-state parameter, we define, analo-
gously as for any partial property,

In Equations of State; Chao, K., € al.;
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- a(m)]
T = (el (100)
i [ any T.P.n;

_ |3(om)
AL cton
i. T,p,nj

Usually, parameter § is taken to depend at most upon temperature and
composition; in such cases the restrictions to constant P or p are
superfluous in these definitions, and

- =[a(m)]
i any T,n

Note however that Equation 101 accommodates the currently-popular
concept of "density-dependent mixing rules”. Since pressure-
explicit equations of state are favored for engineering applica-

or

R

tions, we henceforth consider only ?i'

Development and testing of mixing rules is a major area of
research in applied thermodynamics, and new formulations appear
regularly: see other papers in this volume. For concreteness, and
to illustrate procedures, we treat here only the familiar "van der
Waals prescription”, according to which parameter y is quadratic
(or, as a special case, linear) in mole fraction:

T = ég)ﬁ{xl‘nkl (102)

Application of Equation 101 to Equation 102 yields on rearrangement
the simple result

™= ngknki -7 (103)

where 7 is the mixture parameter, given by Equation 102. 1In
deriving Equation 103, we assume that the parameters remain
unchanged on permutation of subscripts: wjx = mTkie

For pure i, Equation 103 yields the expected result:

1im L = Tii
xi+l

To evaluate ;i° (for infinitely dilute i), we first introduce i-free
mole fractions into Equations 103 and 102, obtaining

~ = - () -
Ty gy + 200 xi)g U

In Equations of State; Chao, K., € al.;
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where

_ .2
T =X, W

L - 2 1TVt !
4 + 2, (=x )] 'xm,  + (1=x,) % E XX ey (104)

ii

Combination of these equations gives
T = - e V2P T
™ xi(2 xi)nii + (1 xi) é % xkxz(zﬂki-“kz) (105)

Here, the primed mole fractions are i—free mole fractions, and the
primed sums specifically exclude species i. Equation 105 is
entirely equivalent to Equation 103; taking the limit xi+0 we' obtain

directly an expression for ;i at infinite dilution of i:
~ = LA ey} -
L % % xkxz(z“ki "kl) (106)

Similarly, we find from Equation 104 in the 11m1t as x +0 an
expression for the i-free mixture parameter r':

'

n' o= E'E’XLXLHM (107)

Equations 102, 103, 106, and 107 complete the apparatus required to

evaluate o and related quantities from a pressure—explicit equation
of state, with mixing rules given by the van der Waals prescription.
With respect to examples treated previously, they apply in par-
ticular to the van der Waals equation of state, where gy is iden-
tified with parameters a and b.

Numerical Examples

We illustrate the use of preceding material with two numerical
examples, both for the van der Waals equation of state. First, con-
sider the van der Waals excess functions, for which expressions are
given by Equations 60 through 63. Calculation of numerical values
of these quantities requires values for the equation-of-state para-
meters. For binary mixtures containing species 1 and 2, six parame-
ters are needed: aj], byj, @z, bpp, a1y, and bjg. The first four
are found from information on the pure components; the interaction
parameters ajp and by, are estimated from combining rules or, pre-
ferably, from mixture data.

Since the application is to the representation of excess func-
tions for liquid mixtures, it is reasonable to determine the ajj and
bji from data on pure liquids. Various combinations of properties
are employed for this purpose; we choose here the liquid/vapor

saturation pressure Piat, the molar density p% of the saturated

liquid, and the molar heat of vaporization AHlv

A molar property change of vaporization AMl of pure fluid i is
defined as

In Equations of State; Chao, K., € al.;
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LV
AMi

sat

25 - M‘;(T,PS“) (108)

i

MZ(T,P

where the terms on the right side denote molar properties of pure 1

as saturated vapor and as saturated liquid. Since temperature and

pressure are uniform, AMiv is just a difference between constant -

T,P,x residual functions:

AMiv - M&’V - Mf’l (109)

Here, the terms on the right are constant - T,P,x residual functions
for pure i as saturated vapor and as saturated liquid:

sat
)

sat
1 )

- mig
M, (T, PY

v
M} (T,P

R,2 2 sat, _ . ig sat
M M (T,P;"7) - MP(T,P. )

Residual functions are readily determined from a PVTx equation of
state by procedures reviewed earlier. Hence, by Equation 109, so
also are property changes of vaporization.

Consider the molar heat of vaporization Aﬂiv. By Equation 109,
v _ JRy,v _ R,
AHi Hi Hi
and, by the definition of H,
R _ R R
Hi --Ui+PV:l
where, by Equation 7,
R _ r
Um0y
Thus, by the last three equations,
AV _ T,V _ T8 sat, 1 _ 1.
AHY (uy U I M S (110)
i Py

Equation 110 expresses the molar heat of vaporization in a form con-
venient for use with a pressure—explicit equation of state.
Constant - T,V,x residual internal energies are found from Equation

12, and P52t 15 related to p%
itself. .

For the van der Waals equation of state, we have by Equations
110, 36, and 34 that

and pI by the equation of state

In Equations of State; Chao, K., € al.;
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LV _ L _ v sat_l____l_
Al-li (vaw) aii(pi pi)+Pi . 1) (111)
Py Py
where
sat piRT 2.2
par = — - a6 (112)
i1P1
and
V.
[} RT
sat i v\2
Py b Y a;4(py) (113
i1P1

Given experimental values for Pfat, pg,

solves Equations 111, 112, and 113 for p:, a

and AHQV at specified T, one
1 P

1 and b The value

i ii®
of p: so obtained is merely an intermediary quantity; because the

equal-fugacity requirement for liquid/vapor equilibrium is not
invoked, pI is not necessarily the "true" saturation vapor density

implied by the equation of the state at the specified T. (The
equal-fugacity requirement would provide a fourth equation; vapor

pressure Piat would then be treated as an unknown, to be determined

along with pz, a,,, and bii')

ii

The above-described procedure when applied separately to pure 1
and to pure 2 provides values for aj]s by, @y, and byy. To find
a)p and by, we assume the availability of data for HE and VE, each
at a single composition. The working equations follow from
Equations 60, 34, and 102, applied to the liquid phase:

E E
H (vdW) = - (ap X13110] xzazzpz) + PV (vdwW) (114)
- pRT )2
P(vdW) 1-bp ap (34)
E S R S |
Vi(vaw) = p X0y X509 (115)
a-= x2a + xza + 2x,x,a (116)
1711 2722 172712
b = x2b,, + x2b), + 2x,%,b (117)
1711 2722 172712

Here, liquid molar densities p], p2, and p are found as solutions to
Equation 34, under appropriate assignments for the equationmof-state
parameters., Agreement with experiment is forced for HE and VE at

the single states from which ajp and by, are determined; calculations

In Equations of State; Chao, K., € al.;
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of HE and VE at other states, or of other excess functions at any
states, constitute extrapolations. When compared with experiment,
these extrapolations provide tests of the van der Waals mixing rules
and (to a lesser degree) of the ability of this equation of state to
represent properties of the liquid phase.

The literature abounds with such comparisons and it is not our
purpose to survey them here. Instead we show in Figure 1 predicted
values of the scaled excess functions VE/x1%xy, GE/x xoRT, HE/x)x,RT,
SE/xlsz, and CPE/xlsz for the system argon(l)/krypton(2). Pure-
component parameters were estimated as described above from satura-
tion data compiled by Vargaftik (5). Parameters a]y and by, were
estimated from equimolar values of HE and vE at zero pressure, as
given by the correlations of Lewis et al. (6) for HE at 116.9 K and
Davies et al. (7) for vE at 115.77 X.

Both pressure and temperature effects are illustrated in Figure
1. Particularly to be noted are the essential equivalence of the 0
bar and 1 bar isobars at 120 K. This justifies the frequent use of
the zero-pressure liquid state in calculations of excess functions
from equations of state. For example. one obtains for the van der
Waals equation at zero pressure an explicit expression for the
liquid density:

2 oy L ’ _ 4bRT
p” (vdW; P=0) = 3% (1 + 1 ——a—)

Moreover, the expression for the excess enthalpy simplifies to

HE(vdW;P=0) = - (ap - zxiaiipi)
i

Next we examine the composition dependence of Henry's constant
’ 1;2,3 for solute species 1 in a mixed solvent containing species
2 and 3. Here, the solute-free mole fractions xé and xé are
appropriate measures of composition. Subtleties of behavior are

nicely displayed through the "excess" quantity 1n?+%_2 3» defined as
<y

E - X - ! 1Y) - x! B
en¥y o, 3= a5 - xeadr L, - xjenM g (118)

where":‘if'l.2 and @41.3 are Henry's constants for species 1 in pure

’ »

solvents 2 and 3. The comparison in Equation 118 is made at uniform

T,P, and composition, and zn?%E
1;2,3

species form an ideal solution; however, gn’N

is identically zero if the three
E
1;2,3
excess function as defined by Equation 37, because Qnﬂ#l_z 3 is not
a mixture molar property. >

According to Equation 95, Henry's constant is proportional to
the fugacity coefficient at infinite dilution. Combination of
Equations 118 and 95 thus yields the general result

is not a true

In Equations of State; Chao, K., € al.;
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Figure 1 (A,B). Scaled van der Waals excess functions for liquid
mixtures of argon(1) and krypton(2). (The 10,000-bar isobar is
not shown in A).
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Figure 1 (C,D). Scaled van der Waals excess functions for liquid
mixtures of argon(1) and krypton(2).
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mixtures of argon(1) and krypton(2).
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Figure 1 (G,H). Scaled van der Waals excess functions for liquid
mixtures of argon(1) and krypton(2).
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Figure 1 (I,J). Scaled van der Waals excess functions for 1liquid
mixture of argon (1) and krypton (2).
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~ ~

L ng)"/-E

- © I © ot “o0
1;2,3 ~ 0150 3 T XMy T X3hé g (119)

For the van der Waals equation, zn&? is given by Equation 98. With
quadratic mixing rules for parameters a and b, we find from
Equations 98, 99, 106, and 107 the following expressions for the
fugacity coefficients:

] R
2(xéb12 + x3b13) b
l_blpl P

24) 19 3 (VAW) =

1 1 1
2(xja;, + x32;3)p

RT

- gn(l-b'p ')z’ (120)

zn;T;z(vdW) = (_le)if;;__%)”

Ei%%EZ. = an(1=by90,)2, (121)
2H;T;3(vdW) - ff;é%i;g%ﬂig

Ef%%ﬂi = An(l7by305)Zy (122)

Solute-free mixture parameters a' and b' are given by

- (xé)za22 + (x§)2333 + 2x)xja, s (123)

bl

(xé)zbzz + (x§)2b33 + 2x'x

%373 (124)

and liquid densities and compressibility factors are found as solu-
tions to the equation of state.

For the present exercise, ten parameters are needed: ajp, byo,
a33, b33, ajz, by, a13, by3, azz, and byz. Ideally, the pure-
component parameters would be estimated from liquid-phase data
(e.g., as in the excess-function example), and the interaction para-
meters from liquid/vapor equilibria and gas-solubility data. We
adopt for this example a more straightforward approach. Parameters
ajj and bj; are estimated from critical constants Tci and Vci via
the classical relations

In Equations of State; Chao, K., € al.;
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2 RT V (125)
a = 5
ii 8 ci ¢y
b = Ly (126)
ii 8 ci

Interaction parameters are determined from the conventional com—
bining rules

1/2

a (127)

1j (l-kij)(a a..)

11733

bij = (l-zij)(bii+ bjj)/Z (128)

where parameters Ky j and g3 are pure numbers, of absolute value
less than unity. We wish to illustrate the effects of varying
kij and lij
sitivity of mixed-solvent Henry's constants to the numerical values
of the interaction parameters.

The parametric study is done for a simulated ternary system at
300 K and 1 bar, in which hydrogen(l) is the solute, and n—heptane(2)
and n-decane(3) compose the mixed solvent. Parameters for the pure
fluids are obtained from Equations 125 and 126 and parameters aj3
and bp3 are fixed once and for all by setting kp3 = 293 = 0 in
Equations 127 and 128, Assignment of numerical values to k12’ L1os

from Equations 119

on the "excess" quantity zn?#%,z 3» i.e., the sen
Rt ]

E
k13 and 213 then permits calculation of 1n?+1;2

through 124,

Numerical results are displayed on Figure 2. Figures 2A and 2B
illustrate the effects of independently varying the energy interac—
tion parameters; here, we have set 212 = 213 = O. Figures 2C and 2D
similarly show the effects of varying g12 and 213, with kjo= kj3 = O.
The results confirm that mixed-solvent Henry's constants, like excess
functions for liquid mixtures, can serve as probes for assessing
mixing rules and combining rules for PVTx equations of state.

»3

Closure

Connections between the PVTx equation-of-state formalism and
the conventional apparatus of classical solution thermodynamics are
cleanly exposed through a few unifying concepts, e.g., generalized
deviation functions, generalized partial properties, and component
fugacity coefficients. We have found the notion of partial
equation-of-state parameters to be particularly helpful, because it
allows one to postpone questions relating to composition dependence
until they really need to be addressed.

Much of the substance of this communication resides in defini-
tions and generalizations, and in the summaries of working formulas
collected in the tables. To keep the paper to a reasonable length,
we have provided examples and illustrations for but a single

In Equations of State; Chao, K., € al.;
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Figure 2 (A,B). van der Waals Henry's constants at 300K and 1
bar, for hydrogen(1) in mixed solvents containing n-heptane(2)
and n-decane(3).
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(D)

Figure 2 (C,D). van der Waals Henry's constants at 300K and 1
bar, for hydrogen(1) in mixed solvents containing n-heptane(2)
and n-decane(3).
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equation of state: the van der Waals equation. The principles and
procedures are of course easily applied to other, more realistic
equations of state.

Exercises in synthesis necessarily build on precedents, in this
case too diffuse and numerous to cite in detail. We are however
pleased to acknowledge as general sources of inspiration the
published researches of P.T. Eubank, K.R. Hall, the late A.
Kreglewski, M.L. McGlashan, K.N. Marsh, J. Mollerup, S.I. Sandler,
R.L. Scott, K.E. Starling, and J. Vidal. To these and to other
equation-of-state enthusiasts we acknowledge our indebtedness.
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Legend of Symbols

a,b = parameters in van der Waals equation of state
;i = activity of species 1

A = molar Helmholtz energy

CP,Cv = molar heat capacities

fi = fugacity of pure i

fi =  fugacity of species i in solution

f; = standard-state fugacity of species i

G = molar Gibbs energy

H = molar enthalpy

ﬂﬁ = Henry's constant for species i

M = arbitrary molar, or intensive (e.g. M = P), property
Md = constant - T,V,x deviation function

MD = constant - T,P,x deviation function

Me = constant - T,V,x excess function

ME = constant - T,P,x excess function

Mr = constant - T,V,x residual function

MR = constant - T,P,x residual function

Mt = total property = nM

ﬂi = generalized partial property

Mi = constant - T,P partial property

ﬁi = constant - T,V partial property

AM = constant - T,P,x property change of mixing
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(>
pe
<

sat

[ N

N X ¥ <« ¢ A »w m ™" v 8
]

= molar property change of vaporization of pure i
= amount of substance ("mole number")

=  pressure

= liquid/vapor saturation pressure of pure i
= universal gas constant

= molar entropy

= absolute temperature

= molar internal energy

= molar volume

= mole fraction

= arbitrary intensive variables

= compressibility factor = PV/RT

Greek Letters

B
Yi

&
oy

volume expansivity = v'l(aV/aT)P,x

= activity coefficient of species i

= isothermal compressibility = —V-I(BV/BP)T,X
= absolute activity of species i

= chemical potential of species i

= arbitrary equation-of-state parameter

= molar density

=  "coldness" = T_1

=  fugacity coefficient of pure 1

fugacity coefficient of species i in solution

Superscripts

id
ig

mod

= denotes an ideal-solution property
= denotes an ideal-gas property
= denotes a model mixture property

= denotes a property of a species at infinite dilution
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The Collinearity of Isochores at Single- and Two-Phase
Boundaries for Fluid Mixtures

John S. Rowlinson’, Gunter J. Esper?? James C. Holste?, Kenneth R. Hall?,
Maria A. Barrufet?, and Philip T. Eubank?

"Physical Chemistry Laboratory, Oxford University, Oxford 0X1 3QZ, United Kingdom
2Department of Chemical Engineering, Texas A&M University, College Station, TX 77843

Fluid isochores for mixtures of fixed overall compo-
sition generally change slope on passing across the isopleth
(dew-bubble point curve, DBC) from the homogeneous to
heterogeneous phase region on a pressure/temperature dia-
gram. A thermodynamic proof is given which shows the iso-
chores to be always collinear at the cricondentherm (or any
temperature extremum), rather than at the mixture critical
point. The proof agrees with a different, more mathematical
proof given earlier by Griffiths. These thermodynamic
proofs are supported by our new, high-precision density data
for the CHu/CO and N,/CO, equimolar bglarhes in addition to
previously pub%ished measurements for ~“He/ He and for H2/CHu
at Duke University and Rice University, respectively.

Collinearity of the isentropes at the cricondenbar is
also demonstrated and supported by recent calculations using
our CH, /CO, data. Because fluid isochores for both pures
and mixtureés in the homogeneous region are approximately
linear, most accurate equations of state (EOS) begin with
this premise and then add correction terms for curvature.
The present results contain thermodynamic constraints for
such EOQOS.

Figure 1 illustrates a typical dew-bubble point curve (DBC) or iso-
pleth for a binary mixture of fixed overall mol fraction, z,. The
mixture critical point (CP) is shown to lie between the point of
maximum pressure, the cricondenbar (CB), and the point of maximum
temperature, the cricondentherm (CT). However, if the slope of the
critical locus, (dP_/dT ), is positive for a particular z, (1 = more
volatile component), then the CP will lie outside the CB/CT gap.

This occurrence is usual for 2z, 2 0.8 causing a CP to the left of the

3Current address: Institut fiir Thermo- und Fluid-dynamik, Ruhr-Universitat,
D-4630 Bochum 1, Federal Republic of Germany.

0097-6156/86/0300-0042$06.00/0
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CB but also happens for z, < 0.1 when (dpc/ch)|CP2 > 0 causing a CP
below the CT [1].

The saturation density increases monotonically as we %traverse
the DBC as in Figure 2 from CT to CP to CB. The low density iso-
chores are shown to have a steeper slope on the two-phase side of the
DBC. We prove that the 1limiting slopes at the DBC from the single
and two-phase sides are identical at the CT. Above the CT, the
isochoric slope from the single phase side is steeper. These results
are independent of the location of the CP, which indeed fails to
exist for some mixtures of fixed composition.

BASIC IDENTITIES

Imagine a fixed volume cell containing liquid of total volume Vl and
gas of total volume Vg. Then,

L L 3 =2 =%
dav” = VT (dT) + VP (dp) + \I1 (dn1) + v2 (dn2) (1)
where

L L L L
VT = (av /aT)P’nSL’nl , VP = (9V /aP)T’n!L’nl

1772 172

and dn, = dny“. The addition of a similar equation for d\lg to
Equation 1 provides

) g L AT g
(Vp + V) dT + (Vg + v%,) dP = AV, (dn,) + AV, (dn,) (2)
where AV, = (\—I.g - \7?’) is the difference of partial molar volumes

between t]he two1 p}kaslei. Two further equations connecting the four
vaEiables (T, P, n7, n.)) follow from the equilibrium conditions of
~ ~8 1 2

dui = dui [2]. First

du § = -8} (an) + ¥ (ap) + (oy,/on) , (an) +
T,P,n,
(31, /3n,) (an,,) (3)
1 2 T,P,n:“ 2

where the sum of the last two terms is also (3{ /8x1)T p (dx,) with
X4 the mol fraction in the liquid phase. Equating a similar

expression for dﬁ% to Equation 3 results in

A8, (aT) = AV, (dP) = (3w /3y,)q o (dy;) = (B /3x)q o (Ax))  (B)

where y, is the mol fraction in the vapor phase. The analogous
equation for the less volatile component is

In Equations of State; Chao, K., € al.;
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T

Figure 2. A qualitative diagram exhibiting the nature of iso-
chores and isentropes in both the single and two-phase regions for
a binary mixture of fixed composition. Note the collinearity of
the isochores (lines of constant density, p) at the CT. The
isentropes (lines of constant entropy, S) are collinear at the CB.
Both the density and entropy are monotonic tracing the DBC and are
subscripted in order of increasing magnitude. IIL is the iso-
choric inflection locus.
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A82 (dT) - AV2 (dP) = (3u2/3y1)T’P (dy1) - (thz/é)x.I )T,P (dx1) (5)

Application of the Gibbs-Duhem equation to _e_ac_h_ phase yields

X, ('61111/'ax1)P’T = x, (3“2/3x1)P,T and vy, (3u1/8y1)P,T

Y, (2)ﬁ2/8y1)P e Multiplication of Equation (4) by X, and Equation
’

(5) by X, followed by addition yields

<x; 8V, > (dp) - <x;48,> (dT) = (Ax/yz) (3“1/ay1)P,T (dy1) (6)

where <xiA\7.> = X A\71 +x_ AV, and AX = (y, - x,). Likewise, multi-
plication of Equal:ion (4) by Y, and Equation 25) by Yo followed by
addition provides

<yiAV1> (dP) - <yiASI> (dT) = (Ax/xz) (8“1/3x1)P,T (dx1) (7

Before combining Equations (2), (6) and (7), we modify Equation (2)
by first noting that

+ nQ' (dx%/dT) (8)

X, (dn1/dT) =X (dnz/dT) V,n1 n,

v,n 1

Wy ,n2 V,n1 ,n

2
and that a similar equation can be, written for the lgas phase. The
reader is reminded that dn, = dn1 whereas n, = n_ + ng. Multi-
plication of Equation (8) by y, and of the gas phase equation by X,
followed by subtraction yields

(y, = x;) (dn,/aT) = n2y1 (ax,/d1) + nfx, (dy,/dT) (9)

1

where all total derivatives indicate a constancy of total volume V,

n1 and n2. Likewise,

_ _ .8 %
(y1 xl) (dn2/dT) n®x, (dy1/dT) +ny, (dxl/dT) (10)

Equation (2) together with Equations (9) and (10) for (dnl/dT) and
(dn2/dT), respectively, becomes

) = ,.8 T ove(v¥iy8
n (dx1/dT)<yiAVi>+n (dy1/dT)<xiAVi> (VT+VT)(Ax)

(dP/dT) = (11)

2
(Vg + VE) (8x)
Equation (6) shows that

(dy1/dT) = [<xiAV1>(dP/dT) - <xiASi>] y2/(Ax) (au1/ay1) (12)

P,T
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where

(3”1/3y1)P,T = <xiAVi>(8P/3y1) (y

T 2/Ax) =— <xiASi>(8T/8y1)

(yZ/Ax)
(13)

P

Substitution of Equations (12) and (13) into Equation (11) along with
analogous equations for (dx1/dT) and (auI/Bx ) results in

1P, T
(dP/dT) =
9x 9x dpP 8y oy
Lo A 1 1 g LB g
n <yiAVi>[(ET‘)P*‘SF‘)T‘aT’]*“ <x, AV >[(aT pt ) 1 (gp - (v V) (ax)

(vE+vE) (ax)

(14)

This equation is solved for (dP/dT) with the quality, q = [ng/(ng +
nn')], introduced as well as vl = (ng'/aT) = (V!‘/nn'), vg, vy‘ and
VE. T P,)(1 T T P

P

-(dP/dT) =

PR S _ - g
@ q)VT+qu](Ax)+(1 q)<yiAVi>(Z)xz/liT)p+q<xiAVi>(Z)yZ/Z)T)p (15)

PRV -4 _ - =
[ q)VP+QVP](Ax)+(1 q)<yiAVi>(8x2/8P)T+q<xiAVi>(ayz/aP)T

== +
Because (ZBP/'()T)X2 (axz/aT)P (aP/axz)T , an alternate form of
Equation (15) is

[1-@)virqvd1(ax)-(3p/oT) | + n'-(ap/2T) + of
X5 Yo
g

-(dP/dT) = (16)

[O-@)vi+avdl(ax)+nten

L . = g _ g
where n° = (1 q)<yiAVi>(ax2/8P)T and n° = q<xiAVi>(2)y2/2)P)T

PURE COMPONENT CHECK

Both n!' and ng are everywhere zero for a pure compound causing
Equation (16) to reduce to

-(dP/dT) = [(1-q) v% + qv8

£ - @ (dq/dT)]/U—q)vf; ¢ qvd] a7

For either pure components or mixtures of fixed overall composition,
quality lines form a family of curves in the heterogeneous region
issuing from the critical point. Any continuous path through the

American Chemical Society
Library
1155 16th St., N.W.
Washington, D.C. 20036
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heterogeneous region ending at the CP results in (dq/dT) = 0 at the
CP via straight line tangencyl For_ any f%ged value of q nearing the

CP, Equation (17) contains vr 2 v% and vp > vg so that (dp%/dT) =

-(vg/vg)c = (aP/aT)p . Here the homogeneous phase side derivaties v£
c
and vr, (f = fluid), are both divergent but their ratio is

identically the slope of the critical isochore at the CP. This
collinearity of the vapor pressure curve with the critical isochore
was known to van der Waals [3].

BINARY MIXTURE AT THE CRICONDENTHERM (CT)

At the CT, (9P/3T) and (aP/Byz)T
(BT/ayZ)P and <xiA§i§ are finite so that <xiAVi> is zero from
Equation (13). With q unity, n® = 0 and (9p/01) - 8 = q <x AV >+
(3y,/9D)5" = (1)+ (0)+(f) =0, where f = Finite (nonzero).

Equation (16) then reduces to -(dP/dT) = (v%/vg) == (aP/aT)p or

are infinite while AX,

collinearity is obtained for any extremum (maximum or minimum) in the
temperature on the DBC. We have assumed here that the CT lies on the
dew-point curve but in the unusual case where it is on the bubble-
point curve the conclusions are identical. Figure 2 is a
pressure/temperature diagram showing the qualitative behavior of
fluid isochores for a binary mixture exhibiting a classical DBC
including a vapor/liquid critical point. Figure 3 is the analogous
qualitative diagram for equimolar COZ/N which has no CP nor CB but a
CT and a minimum temperature (MT). AS é%e density of the homogeneous
phase increases it is termed first "gas", then "liquid" and, finally,
once again "gas". Both the isochores p_, and 95 at CT and MT,
respectively, are collinear. 3

ISOCHORIC COLLINEARITY PROOF OF GRIFFITHS

Levelt Sengers [4] has noted an earlier proof due to Griffiths which
appeared as an appendix in the important grtiq}e of Doiron, Behringer
and Meyer [5], which contains their ~He/ He isochoric density
measurements. Our previous discussions with engineers and chemists
leads us to believe that this proof is known mostly to a limited
number of physicists. We repeat here a backwards version of this
terse, brilliant proof to call it to the attention of a wider
audience. Compared to the proof given earlier, Griffiths' proof is
more concise and mathematical. The reader can take his pick because
these two different proofs lead to the same conclusion.

A standard mathematical argument is employed thrice to relate
various quantities across the DBC. Let &(y,w) be a continuous
function whose derivatives are discontinuous along a curve in the
(y,w) plane separating regions I and II. The differential of g along
this curve is

dg = (ag/aw)i dy + (3&/8m)$ dw = (BE/aw)ildw N (ag/aw)iI dw (18)
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Figure 3. A qualitative diagram representing a binary mixture
with no critical point (e.g., equimolar CO,/N,). Note the
difference between isochoric slopes on either side of the DBC
tracing the DBC from low to high densities.
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where (35/3¢)i refers to the derivative at the DBC taken from the
side of region I, etc. Then

I _ I - I_ 11
[(ag/aw)w (ag/aw)m ] dy = [(35/3m)w (35/3m)w ] dw (19)
or
s (35/3¢)w = - (dw/dy) +§ (ag/aw)w (20)

where § indicates the difference, I-II. We are specially interested
in 6(3P/aT)p 2. ? for which Equation (20) reads
’
1
§ (E)P/ap)T'Z1 == (dT/dp)zl e § (Z)P/BT)‘),z1 (21)

where the total derivative (dT/dp)Z is taken along the DBC. This

derivative 1is positive at low densi%ies passing through zero at the
CT to become negative at higher densities (see Figure 1). Griffiths
proves that the left-hand side of Equation (21) is always nonnegative
so that G(BP/BT)p z must be negative below the CT, positive above

’
the CT and thus zero1itse1f at the CT.
To prove that 6(8?/3p)T z 2 0, Equation (20) is again applied
’

but with £ = p, ¢ P and w = z, at constant temperature:

1

s (Bp/aP)Z =" (dzl/dP)T . 6(39/321)P,T (22)

1’

The derivative (Bp/aP)z T 2 0 for mechanical stability (see Ref.
’

[2], p. 18). A Maxwell rélation,

2

(3792 ¢ = = p (aA/BP)Z1’T (23)

Wwhere A = My T Mg is then used to obtain

§(3p/3P) = 02 (dz,/dP). - 6(3A/3P) (2u)
20,7 P 1 T z2,,T

Equation (20) is applied a third time with £ = A, y = P and w =2, to

replace 6(8A/3P)Z o With 6(8A/8z1)P T 1
1’ ’

2 2
G(Bp/aP)Z1' == p (dzl/dP)T .« 8 ('aA/Z)z1)P’T (25)

T

Now (Z)A/Z)z1)P’T

constraint) and &s nongegative in the homogeneous region for material
stability or (3 Gm/azl)P T 2 0, where Gm is the molar Gibbs energy
’

is zero in the two-phase region (due to a phase rule

In Equations of State; Chao, K., € al.;
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(see Ref. [2], p. 115). Hence, §(dp/0P) S 0or §(3P/3p), 20

because (ap/ap)z 2 0 for mechanical stability. This completl,es the

10T
proof of Griffiths.

EXPERIMENTAL RESULTS

The 80.5% 3He/19.5% uHe mixture of Ref. 5 from Duke University showed
collinear isochores at the CT for a system with the CP to the left of
the CB on the P/T diagram. Figure 7 of Ref. 5 also showed the slope
(dP/dT) to increase but weakly with temperature and with overall
density in the heterogeneous region.

Later, isochoric measurements for a 20.05% H,/79.95% CH, mixture
at Rice University by Kobayashi and coworkers [6] illustrated
collinearity at the CT for a system without a CB--at least not within
30 degrees of the CT temperature.

At the same time, measurements for CO, binaries in our labora-
tories at Texas A&M University showed iso<:2hor'ic collinearity for a
nearly equimolar mixture of CO /CHu as seen in Figure 4, The CP for
this mixture is not known exact%y but has been estimated using a BACK
equation of state (E0OS). Later, we measured a nearly equimolar
mixture of CO,/N, resulting in the quantitative Figure 5, a dramatic
illustration of 1Isochoric collinearity at the CT. As discussed in a
previous section, this mixture has no CP nor CB but a CT and a
minimum temperature (MT) as shown by the qualitative Figure 3, based
partly on necessarily less precise data at the higher densities.

COLLINEARITY OF ISENTROPES

In the fundamental equations of thermodynamics for pure components
the variables are P, T, S and V. P and T are analogous potential
functions of zero degree of mathematical homogeneity whereas S and V
are analogous functions of first degree. The isentropic slope,
(aP/BT)S, is collinear with the vapor pressure curve at the CP for
pure components as is the isochoric slope.

For binary mixtures the role of S and V can be reversed in any
of the proofs given above with the result that isentropes are
collinear at the CB. The qualitative nature of binary isentropes is
illustrated in Figure 1. For mixtures, it may be said that "volume
is prejudiced in favor of temperature whereas entropy favors
pressure".

To confirm experimentally the collinearity of isentropes at the
CB, we have taken the equimolar CO.,/CH, data of Figure U4 and calcu-
lated entropy increments on isotherms via the identity

P2
(as) =~ | Gpran)  (dp/p?) (26)
P4

To traverse r‘t:emper'al',ur'e it is convenient to use the entropy residual
function, Sm(p,T):

In Equations of State; Chao, K., € al.;
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Figure 4. Binary mixture data for 52.40 mol % methane/U7.60 mol %
carbon dioxide illustrating isochoric collinearity at the cricon-
dentherm. The critical point (CP) of this diagram is not exper-
imental but estimated from a BACK equation of state [101].
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p p

_1 -
(Sp/R) = T ' | Gz ot @o/p) + | L(z,710/p]; dp (27)

o [o}

where Z (= P/pRT) is the compressibility factor and S; =S (T,p) -
S;(T,p) With S* the perfect gas mixture value based upon a reference
pressure and temperature, P_and T _, respectively. Like Equation
(26), Equation (27) assumes isothermal integration. When the iso-
therm crosses the DBC, special precautions must be taken. Although
we use Equation (27) for the calculations, Equation (26) is easier to
examine. Imagine that our isotherm crosses the DBC first at a dew-
point pressure or density, Ppp? and second at a bubble-point pressure
or density, p .. quause o? discontinuities of the derivatives,
(3P/3T) and (?fm/aT ) , Equation (27) must be integrated in three
separate steps: (1) frm zero density to p,., (2) across the two-
phase region from pp to p p and (3) from Pgp to a higher density in
the compressed liquid. d%en the isotherm is supercritical, the
bubble point is simply replaced by the upper dew point. Along the
isotherm, S is a continuous function of density but (asm/ap)T
suffers a discontinuity at the DBC.

Values of S calculated from Equation (27), see Table I, were
then graphed as g versus pressure along isotherms for the CO,/CH
binary. These isoé%erms must show a positive isobaric heat capacity,
C = T (3S_/3T) , for thermal stability. The counter deriv-

pvzz m P,22

. -2
ative, (Z)Sm/aP)T,Z ==p . (Z)p/aP),I.,Z . (aP/aT)p,z , is usually

negative but (BP/aTgp z may be negative In the two-phase region near

’

the CP. With these criéeria in mind, some smoothing of our two-phase
results were made on the sensitive S/P diagram, Figure 6. While our
high-precision, P(p,T) measurements usually withstand well the
differentiation and integration of Equation (27), such is not always
the case in the two-phase region. Here we first have fewer data
points and second are concerned about equilibrium when two phases are
present in a blind cell without mixing capability.

Following this slight, judicious massaging of our isotherms on
the S/P graph, Figure 6, a crossplot of isentropes was made on a P/T
diagram--Figure 7. Although more data are desirable at lower
entropies (i.e., higher pressures and lower temperatures), Figure 7
supports the notion of isentropic collinearity at the CB.

We also checked that (3P/3T) > (3P/3T) at each (T,P) of

8,22 PrZ,

Figures U4 and 7. The difference of these two slopes is (pCV/T) .

. 2 .2 ~
(3T/6Vm)P z - Further, it can be shown that (3°P/3T )S,z is gen

’
erally pos%tive so that the isentropes of Figure 7 are concave up-
wards. Both pure methane and pure CO exhibit this behavior with
(BP/BT)S z collinear with the vapor pressure curve at the CP.
c’™2
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Table I: The calculation of Entropies for 62.40 mol% CH4 and 47.60 mol% CO;
Reference State: Pg = 0.101826 MPa (1 Atm.), Tgp = 278.16 K
The entries are: pressure (Roman), (MPa), and dimensionless entropy (Italic), (S;m/R).
Density (mol/ms)
T(K) 820.871 1246.85 38074.69 4799.85 7539.85 10509.1 11850.4 16560.7 18619.5
0.7817 2.8496 6.2404 8.8193 12.267 16.098 18.246 32.090 48.550
800.00
2.080 -8.550 -4.657 5.276 5.980 6.569 6.807 -7.599 7.956
0.7511 2.7189 5.8710 8.1789 11.103 14.219 15.930 27.664 42.286
288.76
2.207 ~8.679 4.787 5.408 6.112 6.702 6.939 7.729 8085
0.7085 2.5362 5.3479 7.2619 9.4650 11.644 12.823 21.687 33.787
278.20
-2.986 -8.857 -4.967 5.589 6.297 6.890 -7.129 -7.920 -8.278
0.6724 2.3802 4.8953 6.4597 8.0573 9.4941 10.306 16.774 26.764
260.08
-2.589 -4.012 -5.128 -5.745 6.451 7.042 7. 280 ~-&.069 -8 428
0.6628 2.3386 4.7738 6.2429 7.6807 8.9282 9.6523 15.493 24.927
266.61
-2.580 -4.058 -5.164 5.786 6.492 7.178 7.488 -8.205 -8.500
0.6620 2.3350 4.7630 6.2236 7.6516 8.8780 9.5946 15.380 24.764
266.80
-2.584 -4.057 -5.167 5.7189 6.887 7.162 7.874 8.648 -8.987
0.6612 2.3318 4.7537 6.2069 7.6266 8.8349 9.5450 15.282 24.625
266.08
2.588  -4.060 5.170 5.792 7.996 8141 8405  -9.177  -9.4T1
0.6606 2.3290 4.7455 G6.1879 7.6044 8.7966 9.5010 15.196 24.501
265.80
2.590 -4.062 5.169 5.828 7.858 &.190 -R.454 -9.220 9.510
0.6578 2.3167 4.7096 6.1055 7.5084 8.6310 9.3108 14.823 23.964
254.78
-2.608 4.0 5182 -5.997 7.461 £.878 8652 -9.487 .9.728
0.6562 2.3098 4.6892 6.0584 7.4535 8.5365 9.2023 14.610 23.659
264.20
-2.609 -4.081 5.189 6.066 -7.508 R.447 -&8.725 -9.568 9.864
0.6521 2.2921 4.6372 5.9392 7.3147 8.2974 8.9287 14.072 22.886
262.78
2.627 -4.099 5.207 6.462 &072 -8.998 9. 226 -10.04 10.94
0.6504 2.2845 4.6150 5.8884 7.2554 8.2297 8.8123 13.842 22.556
2632.10
-2.685 -4.106 5.214 6.530 -8.104 &.946 ~-9.212 -10.04 10.84
0.6487 2.2773 4.5938 5.83908 7.1988 8.1650 8.7012 13.624 22.242
261.50
2.642 4.114 5.221 6.596 8185 -8.958 9.288 -10.07 10.87
0.6414 2.2454 4.4790 5.6251 6.9487 7.8793 8.2954 12.681 20.856
248.84
2.678 4.144 5.816 6.908 8. 421 -9.189 -9.868 -10.08 -10.88
0.6321 2.2049 4.2861 5.3540 6.6329 7.5183 7.9222 11.451 19.114
245.50
-2.714 -4.184 -5.602 -7.105 -8.518 -9.216 -9.870 -10.09 -10.46
0.6237 2.1686 4.1134 5.1112 G6.3499 7.1950 7.5878 10.374 17.561
242.50
~-2.750 -4.221 -5.821 7.246 -8.572 -9.228 9.878 -10.02 -10.51
0.6164 2.1367 3.9621 4.8986 6.1022 6.9119 7.2951 9.4364 16.206
289.87 ]
-2.782 ~-4.258 -5.999 -7.866 R.625 9.285 -9.878 10.07 -10.58
0.6003 2.0662 3.6283 4.4292 5.56553 G6.2871 6.6490 7.3829 13.236
284.08
-2.858 ~-4.828 -6.180 -7.828 -8.548 9.938 9.588 -10.44 -10.80
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Figure 6. The calculated entropies for equimolar methane/carbon
dioxide mixture (see caption of Figure 4). The slope of isotherms
is (-p/vP) whereas the isobaric heat capacity, cpx’ is roughly the
average temperature multiplied by the isobaric "éntropy increment
divided by the temperature increment.
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Figure 7. A pressure/temperature diagram illustrating isentropes
(dashed lines) for the nearly equimolar methane/carbon dioxide
mixture (see caption of Figure 4). Scatter in the calculated
entropies prevents a definitive conclusion from these data alone
of isentropic collinearity at the cricondenbar. However, these
data are supportative of that proof and show that collinearity
occurs on the upper part of the DBC between 237-255K.
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THE ISOCHORIC INFLECTION LOCUS (IIL)

For pure components, it appears that the IIL always intersects the
vapor pressure curve at the CP and again, for some compounds, at a
liquid density roughly twice critical. Recent density data at Rice
University (20.05 mol% H_ /79.95 mol% CH,) and Texas A&M University
(52.40 mol% CH, /47.60 mo%.% C0, and uu.l’)o mol% C0,/55.30 mol% N,)
suggest that tlhe IIL may intersect the DBC at tge CT for binary
mixtures.

We know of no thermodynamic proof for this behavior whether for
pure components or mixtures of fixed composition. A nonclassical
proof might be required for pure compounds but if the mixture inter-
section is indeed the CT rather than the CP, then a classical proof
should be possible. Considerable importance is attached to the
IIL for not only is it the locus of the extremum of the heat
capacity Cv z but also its different qualitative behavior at

’
densities above critical for pure compounds has been related to
molecular effects, such as polarity [T7].

DISCUSSION

Although we have presented proofs for (1) isochoric collinearity at
the CT and (2) isentropic collinearity at the CB assuming a binary
mixture, it is obvious that these results apply also to multi-
component mixtures because the derivatives are at constant overall
composition. From another viewpoint, any multicomponent system may
be considered a "pseudo-binary" and the above derivations repeated.
The derivative (8P/8T)p z is important because a number of

’
thermophysical property measurements are performed at constant volume
and composition. For example, Nowak and Chan [8] have extended the
"adiabatic non-flow saturation calorimeter method" to mixtures in the
heterogeneous region. This method for measuring latent heats of
vaporization and heat capacities was made famous by Osborne, Stimson
and Ginnings (0SG) working primarily on water at NBS in the 1930's.
The approximate working equations of Ref. 8 relate the apparent
specific heat of the calorimeter to the desired isobaric heat
capacity, Cp g 7 for both the liquid and vapor at saturation.

’
Because mixtures are difficult to duplicate, data are most con-
veniently taken along a series of isochores. In the homogeneous
phase region, the density is lowered to the next isochore by simply
exhausting part of the fluid or by expanding it into a second
volume--as in the Burnett-isochoric method for the density measure-
ments of Table I.

Finally, the present work has an important bearing upon mixture
equations of state (EOS). Many physical EOS for both pure components
and mixtures begin with straight isochores (van der Waals EOS) and
then add correction terms to account for curvature Lgl. It is an
experimental fact that isochores are nearly linear in the homogeneous
region on a pressure/temperature diagram for both pures and mixtures.
The collinearity of isochores at the CT for mixtures provides a
sensitive constraint for EOS parameters.

In Equations of State; Chao, K., € al.;
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The Equation of State of Tetrafluoromethane

J. C. G. Calado/, R. G. Rubio?, and W. B. Streett
School of Chemical Engineering, Cornell University, Ithaca, NY 14853

An experimental study of the P-V-T properties of tetra-
fluoromethane (CF,) over wide ranges of temperature and
pressure is used to test several semi-empirical equa-
tions of state and molecular theories. The experimen-
tal data have been correlated by the Strobridge equa-
tion, and comparisons are made with the Haar and Kohler,
Deiters and BACK equations of state, as well as with
the lattice gas model of Costas and Sanctuary, the
variational inequality minimization (VIM) theory of
Mansoori, and the perturbation theory of Gray and
Gubbins.

We have recently completed a detailed experimental study of the
equation of state of tetrafluoromethane, CF,, covering a wide range
of temperature and pressure (1).

Tetrafluoromethane is an attractive substance from both the
technological and theoretical points of view. It is widely used as
a low-temperature refrigerant (Freon 14) and a gaseous insulator,
and its molecules offer an interesting theoretical study of the
underlying intermolecular forces. Whilst its grosser features may
be considered to be representable by a quasi-spherical (or glob-
ular) molecule, its thermodynamic behavior, especially in mixtures,
displays a nonideality that is symptomatic of the anisotropy inher-
ent in its microscopic interactions. For instance, a whole variety
of phase diagrams arise when tetrafluoromethane is mixed with
hydrocarbons (2). Even the existing low-density studies lead to
contradictory conclusions about the intermolecular potential of
CFy. While in some cases a simple (12,6) Lennard-Jones potential
is able to describe the second virial coefficient data (3), in
other cases a spherical-shell model has been claimed to be neces-
sary (4-6).
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Tetrafluoromethane seems to be an ideally placed molecule for
this kind of study: on the one hand, it is fairly small, non-
polar, highly symmetric (tetrahedral) and thus suitable for the
testing of a wide variety of statistical theories and semi-
empirical equations of state; on the other hand, since it has a
relatively big octopole moment, it exhibits enough anisotropy to
serve as a discriminator against cruder theoretical approaches. As
such, tetrafluoromethane seems to fall between methane (CH,) for
which a (12, 6) Lennard-Jones potential seems to be adequate, and
tetrachloromethane (CCl,) for which a spherical-shell or site-site
model is necessary.

Strong orientational correlations, which persist over several
molecular diameters, have been found for tetrahedral molecules
(7,8), and interlocking effects have been detected in tetrachloro-
methane molecules using Brillouin scattering techniques (9). These
phenomena suggest that the spherical reference system, frequently
utilized in perturbation and variational approaches (10) could fail
for this kind of molecules. In addition, calculations carried out
using the site-site distribution function formalism show that the
disagreement with results from computer simulation is much larger
than for diatomic molecules (11). Those interlocking and other
effects should become more pronounced at higher densities, hence
the need to extend the pressure range for which P-V-T data are
available. Powles et al. (12) have pointed out that pressure and
configurational energy data over wide ranges of density and temper-
ature are necessary in order to improve intermolecular potential
functions and to test theories.

There have been several experimental studies of the P-V-T
properties of CFL.3 but only up to about twice the critical density
(pc = 7.1 mol dm=>). The most extensive and accurate measurements
are those of Douslin et al. (4, 13) which cover the temperature
range 273-623 K and pressures up to 400 bar. MacCormack and
Schneider worked in the same temperature range but only with pres-
sures up to 55 bar (14), while Lange and Stein (6) and Martin and
Bhada (15) extended the measurements to lower temperature (203 K)
and pressures up to 80 and 100 bar, respectively. Staveley and his
co-workers measured both the orthobaric densities (16) and the
saturation vapor pressure (17) of tetrafluoromethane. Thermody-
namic properties of the saturated 1iquid, from the triple-point
89.56 K to the critical point 227.5 K, have been calculated by Lobo
and Staveley (18), while Harrison and Douslin (19) calculated them
for the compressed gas (temperatures 273-623 K and densities 0.75
- 11.0 mol dm-3).

There was obviously a need for more data, especially in the
low temperature, high-pressure region. We studied thirty-three
isotherms in the temperature range 95-413 K and pressures up to
1100 bar, obtaining about one thousand and five hundred new P-V-T
data points (1). Figure 1 shows the P - T regions for which data
are now available. The P-V-T surface of tetrafluoromethane is now
thus well defined over a wide range of temperature and pressure,
from the dilute gas to the highly compressed 1iquid.

In this paper we examine the ability of several types of
equations of state and molecular theories to predict the P-V-T
properties of CF,. Detailed tables of thermodynamic properties
will be published elsewhere (20).
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Experimental

Since our study covered both low and moderately high temperatures,
low and high densities, two different apparatuses were used. The
measurements in the 95 to 333 K range were made in the gas-expan-
sion type apparatus which has been utilized and described before
(21). In this apparatus, the amount of substance contained in a
calibrated 27.5 cm® cell, kept at a measured pressure and tempera-
ture, is determined by expansion into a large volume, followed by
suitable P-V-T calculations (the pressure in the expansion volume
is kept under 1.5 bar, to avoid any uncertainties in the equation
of state of the gas). For the runs above 330 K a modification of
the direct-weighing apparatus described by Machado and Streett (22)
was used. Here the amount of substance is measured directly by
weighing a full cell of approximately 100 cm® capacity.

Temperature control was achieved with a boiling liquid-type
cryostat for the low-temperature apparatus (replaced by a simple
water bath in the experiments above 270 K) and by a cascade-type
oven in the higher temperature apparatus. Substances used in the
boiling 1iquid type cryostat were nitrogen (95 K), argon (100 -

120 K), methane (130 - 152 K), tetrafluoromethane (160 - 200 K),
ethane (210 - 245 K) and monochlorodifluoromethane (252 - 263 K).
The temperature was controlled to within + 0.02 K in the cryostat,
and to within * 0.002 K in both the 1iquid bath and the air oven.
It was measured, in all cases, with a platinum resistance thermome-
ter and referred to the IPTS - 68.

Pressures in the cells were measured with a Ruska dead-weight
gage, (model 2450), the absolute accuracy being 0.1% or better, and
the precision being about 0.01%.

The main source of error in both apparatuses lies in the
imprecise knowledge of the volume of the systems. Details of the
calibrating procedures have been given in previous papers (21,

22). We estimate that the average absolute error in density is
about 0.1% for p > 8 mol dm-3, 0.3% for 2 < p/mol dm=> < 7 and 0.4%
for p < 2 mol dm-3.

The CF, used in this work was from Linde (maximum purity
99.7%). It was purified by fractionation in a low-temperature
column with a reflux ratio of 19/20. The final purity is estimated
to be better than 99.99%.

Results
The over one thousand and five hundred data points were correlated
by the Strobridge equation in the following form (1)
1
P = RTp + (ART + Ayt A3/T + A,/T? + Ag/T*)p? +
(AGRT + A7)p% + AgTo* + (Ag/T2 + Ay/T3 + Ay1/T*)exp[Ayep2]0% +
(A12/T? + Ayg/T® + Apu/T*)explAy60°10° + A50°

For the sake of completeness, the data of Douslin et al. (4) and
Lange and Stein (6) were included in the correlation. Given their
high quality, a statistical weight of two was ascribed to the data
of Douslin et al.
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The parameters of Equation 1 have been obtained using a
method based on the Maximum Likelihood Principle as described by
Anderson et al. (23). Values of the parameters are recorded in
Table I, as well as their estimated uncertainties. Figure 2 shows
the differences between experimental and calculated densities for
several isotherms. Deviation plots for the other isotherms follow
this same general trend: Equation 1 is able to represent the
experimental results within their estimated errors, except for the
low density region of a few isotherms. It is gratifying to note
the good agreement obtained for the 227.53 K isotherm, which is
very close to the critical one. Table II shows the density values
of CF, calculated at round values of pressure and temperature from
Equation 1.

In Figure 3 we compare the data of Douslin et al. (4) with the
values generated by Equation 1. The agreement is, in general,
within the combined errors of experiment and fitting. Martin and
Bhada (15) have also reported large differences for the 273 K iso-
therm, from the equation they proposed.

The agreement between the different sets of data can be
examined in Figure 4 where we plot the function By, defined by

B, = (Z-1)/p (2)
where Z is the compressibility factor, against pressure. As it has
been pointed out by Douslin et al. (4) this plot provides an excel-
lent test of the quality of the compressibility values, and the
extrapolation to P = o gives the second virial coefficient, B. In
the temperature range in which the three sets of results overlap,
the agreement is very good. This is very encouraging since our
experimental techniques were specially designed for high densities,
whereas the other investigators were primarily concerned with the
lower density region.

Equations of state and perturbation theory

With sixteen parameters Equation 1 is flexible enough to correlate
PVT data over wide ranges of temperature and density, even in
regions where (3P/3p)T is relatively large. It lacks sound theo-
retical foundation, although the format is that of an empirical
modification of the virial equation of state. Looking at equations
with a firmer theoretical basis is not only an intellectually
rewarding exercise but also a serious attempt to develop more reli-
able and universal equations and improve on our present predictive
abilities. The remainder of this paper will be devoted to an
analysis and comparison of some of the most successful semi-
empirical equations and theories proposed in the last few years.
The old Cartesian approach of dividing a complex problem into
simpler, more manageable parts is of relevance here. Perturbation
theory does just that. The reference or unperturbed system is a
simple model whose properties have been fairly well understood.
The real or complex system is recreated by adding successive layers
of complexity (the perturbing terms) to the initial reference
system. The genius or insight lies in finding a reference system

In Equations of State; Chao, K., € al.;
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Figure 2. Density deviation plots Ap = (pg - pc)/Pe X
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Density deviation plots for Douslin's
isotherms, Ap = (pg - pc)/Pe X 100. pg is
the experimental value and pc the calculated
value from Eq. (1): , 2713.15 K - - - -,
298.15K; — s 323.15K; -e-+- , 348.15K;
-ee-ee_  373.15K. Horizontal bars denote
the precision achieved by our results in the
different density regions.
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Figure 4. Values of By calculated from Equation 2: x,
this work; e , Douslin et al. (4); a , Lange
and Stein (6). The points at P = o are the
values of the second virial coefficient
recommended by Dymond and Smith (24).
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that is simple enough to allow its properties to be easily calcu-
lated, and yet close enough to the real system to avoid the need of
many perturbing terms. Most of the calculations have been made
using a spherical model (hard-sphere) as the reference system.
Obviously in this case a perturbation theory is feasible if the
molecules are not far from spherical. Recently Fischer (25) devel-
oped a perturbation theory which can effectively deal with aniso-
tropic molecules, namely those of the two-center type (later also
triangular, tetrahedral and octahedral molecules). The problem is
that strongly anisotropic molecules are also usually polar, and the
present theories are still unable to deal with both anisotropy and
polarity. CF, is fortunately non-polar, but despite its high
symmetry cannot be reasonably described as a spherical molecule.

It is now well established that thermodynamic properties are
markedly affected by the shape of the molecules.

Some of the more interesting equations of state can be obtain-
ed from perturbation theory. Indeed, the earliest of them, that
due to van der Waals, can be derived from first-order perturbation
theory with a reference system of hard-spheres (26). A common fea-
ture to many of these equations of state is its splitting, in true
perturbational fashion, into two or more terms, accounting for dif-
ferent levels and types of complexity. One of those terms is
usually built around a convex hard body. We will concentrate our
attention, however, on what may be called the second generation of
van der Waals - type equations. These are equations which retain a
good approximation for the repulsive part (1ike that given by the
Carnahan-Starling or Boublik-Nezbeda equations) while trying to
improve on the attractive part of the potential.

The Haar and Kohler equation of state

A few years ago Haar et al. proposed a new approach to calculating
P-V-T- data (27). The equation of state is split into two parts

P=Pg+Pp (3)

where Pg is the so-called base equation (in the sense that it is a
physically based expression) incorporating the effects of molecular
repulsion and attraction, and PR is a sum of residual terms, usual-
ly a series expansion in terms of p and T or some empirical func-
tion. For globular molecules a modified Carnahan-Starling equa-
tion is often used as Pg, but as many as twenty-six adjustable
parameters are sometimes needed for Pp (28).

Kohler and Haar (29) showed that PR would be a universal func-
tion for nonpolar fluids, provided that Pg takes into account the
shape of the molecule. Recently, Moritz and Kohler came out with
an empirical expression for Pp (30), leading to the following final
form for the compressibility factor Z

7 =1 3 Y 4 [vt e + W ex —EZZiES)Z b (8)
h~ RT v* v XP|- __7 P dy

Iy is the compressibility factor for a hard-convex body (a tetrahe-
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dron for CF,) 1ike that given by the Boublik-Nezbeda equation of
state (31), dy and d are universal constants (0.098 and 0.128,
respectively, according to reference 30) and y = v*p is the reduc-
ed density, with v* = NpaV*, V* being the volume of the hard-body
and Np Avogadro's number. ynq is the reduced density of the recti-
Tinear diameter prq (the arithmetic mean of the densities of the
orthobaric 1iquid and vapor)

Prg = (o + 05)/2 T<T, (5)

For T > T¢, ppq has a virtual value, obtained from the extrapola-
tion of the rectilinear diameter curve.

Equation 4 has four parameters a,, V', W and d (d/2 being the
thickness of the smooth hard layer added to the hard body). For
T<0.6 Tc, V' and W can be easily calculated from vapor-liquid
equilibria using the second virial coefficient; thus, only d and a,
(or ao/v*) need to be f1tted at each temperature. The ratio agy/v*
for (~33 kJ mo1-') is appreciably larger than for CH, (~20 kJ
mol-~ ), in qualitative agreement with the corresponding values of
the solubility parameter.

The hard-core volume v* is found to decrease with temperature,
as expected, but following a different dependence law than that
observed with the BACK equation (see later). Moritz and Kohler had
reached a similar conclusion for methane (30). The observed
density dependence for the van der Waals parameter a/v*

% = RT (2, - D)1y (6)

is also similar to that found for methane (30). Within the
estimated uncertainties, we found that it is possible to describe
the temperature dependence of all four parameters in Kohler's
equation of state for CF,, with simple functions incorporating only
a few adjustable constants.

Figure 5 compares the results obtained with Equations 4 and
1. It is obvious that Kohler's equation fits the data better than
the Strobridge equation below T, but the quality of the fitting
worsens dramatically above T.. This suggests that there is still
room for improvement in the density dependence of a/v*.

The Deiters equation of state

Another of the new, physically based equations of state is that
derived by Deiters (32) from a square-well potential model of depth

(-¢)
(7)

RT 4y - 2y? RbcT aw
P=— | 1+ccg y yd - — exp _——£Z1_ -1 I1(y)
Vv (1 -y) Vw(y) cT

The equation has three adjustable parameters: the characteristic
temperature a, the covolume b, and the correction factor for the
number of density dependent degrees of freedom, c.
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a = e/k (8)

o
]

= Ny a3 /v2 (9)

c can also be interpreted as a shape parameter (c = 1 for spherical
molecules); co = 0.6887 is a universal constant which accounts for
the deviation of the real pair potential from the rigid-core model.
I,(y) and w(y) are complicated functions of the density y and c,
derived from statistical mechanics. w(y) may be described as an
efficiency factor for the square well depth, and it takes into
account the fact that the structure of the fluid is more and more
determined by repulsive forces as density increases. The repulsive
part of the Carnahan-Starling equation (33) has been retained as a
good approximation for rigid spheres. Equation 7 can be modified,
to account for three-body forces, by intreducing an additive cor-
rection, Ap, to the reduced temperature, T = cT/a (32).

We have used Equation 7 as Pg in Equation 3 and allowed the
three parameters a, b and ¢ to be temperature dependent. Figure 5
compares the results obtained with the Deiters equation with those
given by Equations 1 and 4. For T < T. the highest deviations
occur in the low density region, where the isotherms are the steep-
est. The results usually fall between those obtained with the
Strobridge and Kohler equations.

Figures 6 and 7 show the fitted parameters of Deiters' equation
as a function of temperature. It is interesting to note that both
(c) and (a) are constant within their estimated errors, although
they take distinct values below and above the critical temperature.
0f course, the temperature dependence of any of the parameters is
not a simple function in the critical region, so we cannot extrap-
olate over this region. The behavior found for parameter (b) is
somewhat bizarre. In the range T < T., (b) follows the usual trend,
i.e. it decreases with temperature (34); no explanation has been
found for its apparent increase with temperature in the region
T > Tc. It should be noted that similar behaviour of the param-
eters a, b and ¢ has been found for trifluoromethane CHF3, whose
study is now under way.

The calculations were repeated using a constant value for (c)
throughout the entire temperature range (we used the more realistic
"high-temperature' value of Figure 6, ¢ = 1.08), but letting both
(a) and (b) float. Under these conditions parameter (a) is found
to decrease monotonically from a value of about 235 K at 100 K to
about 175 K at 400 K. Parameter (b) retains, however, the peculiar
behavior displayed in Figure 7. The quality of the overall fitting
also deteriorates when a constant value of (c) is used throughout,
perhaps because packing effects become important at higher
densities.

Using the Deiters equation as Pg (with the "constant" values
of a and c, and b fitted to a Morse-like function) and an expres-
sion for PR Tike that proposed by Haar et al. (27)

Po=fc . () p2(1-e e (10)
R n’j nj T
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We were unable, even with sixteen constants C,i, to describe the
whole set of P-V-T data with better accuracy tﬂan that provided by
Equation 1. This could be due to the inadequacy of the residual
terms used, but looking at Figure 5 suggests that an improvement in
the low-temperature range can be obtained by substituting the
Boublik-Nezbeda equation for the Carnahan-Starling equation in
Deiters' model. This is confirmed by setting V' = W = 0 in the
Kohler equation (4) (which uses the Boublik-Nezbeda equation as a
reference) and finding that it leads to a better correlation of the
experimental results than that obtained with the Deiters equation.
Even more important, perhaps, that substitution would allow the
separation of the contributions of external and internal degrees of
freedom in the Deiters equation. One should then use data for
molecules with vibrational degrees of freedom, instead of data on
argon, as Deiters did.

The BACK equation of state

One of the best equations of state based on the generalized van der
Waals model is the so-called BACK (from Boublik-Alder-Chen-
Kreglewski) equation (35). It is an augmented hard-core equation
which combines the Boublik expression for the repulsive part of the
compressibility factor, with the polynomial developed by Alder

et al. for the attractive part (36)

A

= 7 +1
RT h “a (11)
1+ (3vy - 2)y + (3v2 - 3y + 1)y2 - %3
7 - (3v - 2)y + (3v" - 3y + 1)y° - ¥ (12)
h (1-y)3
4 9 m
u n v
Zg=1 I mD (—) (—) (13)
nm nm kT )

Both the molecular hard core V* and the characteristic energy u are
decreasing functions of temperature

v = V00 [ 1 - ¢ exp (-3ukT)]3 (14)
u _ n
© et (15)

Chen and Kreglewski (35) gave rules for calculating C and n, so
tESt only three adjustable parameters remain in the BACK equation:
V'", vy and u”/k. The fitting of our experimental data led to the
following values: v°%=(0.0310 * 0.0001)dm®, vy = 1.099 * 0.013 and
u®/k = (225 t 2)K. The results are plotted in Figure 8. The
agreement is satisfactory in the critical region, but it goes
beyond the experimental error in the high density region. Besides,
the value of vy does not clearly respect the tetrahedral geometry of
the molecule, a fact which Moritz and Kohler also found for methane
(30). As mentioned before, the temperature dependence of the hard-
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Figure 8. Several isotherms for CF, (in reduced
variables). e, experimental data; , calcu-
lated from BACK equation; - - - , calculated
from lattice model; -+--- , coexistence
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core volume, as expressed by Equation 14, does not agree with the
corresponding dependence in Kohler's equation. Use of the correla-
tions proposed by Simnick et al. (37) for the calculation of param-
eters V%%, v and u/k leads to even poorer agreement with the
experimental results.

Taking the entire P-V-T range covered in this work, the
quality of the fitting obtained with the BACK equation is consider-
ably worse than that obtained with either the Kohler or Deiters
equations, but this result should be set against the very small
number of adjustable parameters utilized in the BACK equation.

Cell and Lattice Models

Although the cell and lattice models have been virtually abandoned
for 1iquids, mainly because they over-estimate the degree of order,
some of their modifications have been revived, with success, in the
thermodynamic treatment of polymers. Recently Nies et al. (38)
have shown that hole theories can be effective in reproducing the
P-V-T behavior of a relatively simple fluid, ethylene. In the low-
density region, they favor the lattice-gas model over the cell
theory.

Sanchez and Lacombe (39) developed a theory of r-mers based
upon a lattice model for 1iquids. They used a simplified Ising
model, and were led to a four-parameter equation of state which
successfully predicted a 1iquid-vapor phase transition. The four
parameters were the non-bonded mer-mer interaction energy, e*
(equivalent to a characteristic temperature), the close-packed -mer
volume, v*, the lattice coordination number z, and the number of
mers per r-mer, r. Later Costas and Sanctuary (40, 41) removed r
as an adjustable parameter and set it equal to the number of atoms,
other than hydrogen, in the molecule. Their equation of state, in
reduced variables, took the form

[0(1-0)/(1-¢p)1% + o + T [In(1-p) - (2/2) In(1-¢p)] = 0 (16)
where
o = (2/2) (1-1/r) (17)

Since they found that the calculated quantities were relatively
insensitive to changes in z between the values 8 and 14, they chose
to fix z equal to 12. Equation 16 became then a two-parametric
equation.

In this work we used the Costas-Sanctuary equation of state in
its three-parametric form. The adjusted values of the parameters
were found to be p*/bar = 3338 + 123, T*/K = 258 + 2 and v*/1 mol-!
= 0.0476 £ 0.0002. The results are plotted in Figure 8. It can be
observed that the BACK equation gives a better overall description
of the P-V-T properties of CF, than the Costas-Sanctuary equation,
especially near the critical region. At very high or very low
densities and pressures the two models give almost identical
results. For high densities and P. < 0.8 the agreement between the
experimental values and those calculated from the lattice model is
better than that obtained with the BACK equation, in particular
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near the coexistence curve. In the range 0.3 < pr < 1.8 the
densities calculated with the BACK equation are too low, whereas
those calculated from the Costas-Sanctuary equation are too high.
In agreement with Costas and Sanctuary we have found that these
conclusions still hold when the coordination number z changes from
8 to 12.

The VIM theory

In a previous paper we have already examined the ability of both
variational and perturbation (see next section) theories to
describe the thermodynamic properties of CF, (1). Here we repro-
duce the main conclusions in order to assess how these theories
fare in comparison with more empirical equations of state.

The variational inequality minimization (VIM) theory as
developed by Alem and Mansoori (42) led to a relatively simple
equation of state for non polar fluids. They use a reference
system of hard-sphere molecules whose diameter (o) has been chosen
in order to minimize the Helmholtz energy of the real system. The
configurational entropy is then given by

¢ = -Rype (4 - 3y,)/(1 - yuo)? (18)

Contrary to what Alem and Mansoori found for argon and methane,
where o was a linear function of density and inverse temperature,
for tetrafluoromethane second order terms were needed. This
reflects, perhaps, the higher anisotropy of CF,.

Fitting of the P-V-T data led to the following values of the
three adJustable parameters: e/k = (220 + 1) K; o/nm = 0.414 =
0.001 and 10%v/k = (8 * 1) nm3 K'1 (e, o) are the usual param-
eters in a Lennard-Jones type potent1al and v is the coefficient of
the Axilrod-Teller correction for the three-body potential (42).
The final results are compared with the experimental values in
Figure 9. The agreement is similar to that found by Alem and
Mansoori for argon, but it is worse than that for methane. The
theory underestimates the temperature coefficient of the density,
leading to poor agreement in the low temperature region.

Perturbation theory

The perturbation theory of Gray, Gubbins and coworkers (10) has
been extensively applied to molecular liquids and their mixtures.
Since it uses a spherically-symmetric reference system, it stands
the best chance of success when applied to molecules which exhibit
high symmetry. A previous study (43) proposed a model for CF,
which involved descriptions of the octopolar, anisotropic disper-
sion and charge overlap (shape) forces, in addition to a Lennard-
Jones (n,6) potential

(19)

(n,6)
u =u +u (336) +u (303 +033) +u (303 + 033)
CFy/CFy 0 QQ ov disp.
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Figure 9. Comparison of experimental density values (e)
with the predictions of the variational
equation of state (-+-+-) and perturbation
theory (- - - - ), as a function of pres-
sure, for different isotherms.
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The potential was found to be extremely hard, with a repulsive
exponent n = 20, perhaps reflecting the high electronegativity of
fluorine atoms. Best values of the intermolecular parameters were
e/k = 232 K and o = 0.4257 nm.

Use of the perturbation theory with the usual Padé approximant
(1) Ted to the calculated densities shown in Figure 9. The agree-
ment with experiment can be rated very good, the difference being,
at most, 2% even at the highest pressures, where the reduced densi-
ty is very close tg the 1imit of validity of the reference equation
(i.e. densities po® < 1.0).

Conclusions

The usual pattern is to have a new approach, be it an empirical
equation of state or molecular theory, tested against a variety of
systems, from pure fluids to mixtures, from simple molecules to
nasty ones (to borrow an expression from John Prausnitz). Here we
have followed a different route, viz. use the same body of experi-
mental data to assess the goodness of several semi-empirical equa-
tions and of some theoretically based treatments. Obviously this
latter approach can only be of value if the set of data is compre-
hensive enough to provide a strict test of the theory. In thermo-
dynamic terms this means data over wide ranges of temperature and
density, so that first order properties (temperature and pressure
coefficents, for instance) can also be checked.

The first attempt at a molecular understanding of the proper-
ties of a fluid was that of van der Waals, with his famous equa-
tion of state

= - + (20)
RT RTV 1-4y

Although the first (attractive) term was soon recognized as a good
approximation for the attractive field, the second was thought,
even by van der Waals, to be a poor representation of the repulsive
forces. In his Nobel address of 1910 he was still wondering if
there was "a better way" of doing it, adding that "this question
continually obsesses me, I can never free myself from it, it is
with me even in my dreams". The problem was only solved more than
fifty years later, when good approximations for the equation of
state of a system of hard spheres were proposed. In the meantime,
many people were busy trying to improve on the van der Waals equa-
tion by retaining its bad term while trying to correct the good
one. The Redlich - Kwong equation of state is perhaps the most
celebrated outcome of this approach.

PV a 1

(21)
RT (v+b)RT!.S 1-4y

No wonder it has generated over one hundred modifications, despite
its own successes. John Prausnitz has said that Equation 21 is to
applied thermodynamics what Helen of Troy has been to literature
"... the face that launched a thousand ships."

In Equations of State; Chao, K., € al.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1986.



Publication Date: March 24, 1986 | doi: 10.1021/bk-1986-0300.ch003

82 EQUATIONS OF STATE: THEORIES AND APPLICATIONS

In the 60's and 70's more successful members were added to the
family of van der Waals equations: these combined the attractive
part of the original Equation 20 or even Equation 21 with a good
hard-sphere equation of state. The Carnahan-Starling equation,
mentioned in this paper, is a good example.

In the last few years another type of equations of state has
begun to emerge. They usually have a statistical mechanics basis
and combine a good hard-sphere part (or some generalization to hard
convex bodies) with a more flexible and sophisticated representa-
tion of the attractive field than that provided by the van der
Waals equation. The Deiters and Kohler equations are good specimens
of this second generation of generalized van der Waals equations of
state.

Equations with a realistic molecular basis should be poten-
tially more universal in their applicability and thus better suited
to sound predictive methods.

There is obviously still room for progress. For instance, the
Deiters equation could profit from a better description of shape
effects, while the Kohler equation is perhaps deficient in its
depiction of the attractive field. Perturbation theory seems, at
present, to be more promising than the variational approach, espe-
cially if it succeeds in combining the ability to deal with polar-
ity with the ability to take shape into account.

In any science, understanding must be synonymous with good
quantitative agreement, and understanding really means the molecu-
lar level, even in chemical engineering. We owe it, after all, to
van der Waals who, in his Nobel address, said: "It will be perfect-
ly clear that in all my studies I was quite convinced of the real
existence of molecules, that I never regarded them as a figment of
my imagination". The road is long and arduous, but van der Waals
pointed the way.

Glossary of Symbols

Latin Alphabet

Aj (i =1 - 16) coefficients of the Strobridge Equation (1)

a, ag van der Waals parameters in Equation 4; charac-
tic temperature in Deiters Equation (7)
B = second virial coefficient
By = function defined by Equation 2
b = covolume
C = parameter in Equation 14
Cphj = constants in Equation 10
¢ = shape parameter in Deiters Equation (7)
Cg = universal constant in Deiters Equation (7)
d = twice the thickness of hard layer added to hard
convex core
dy,dy = wuniversal constants in Equation 4
I, (y) = a function of density in Deiters Equation (7)
k = Boltzmann's constant
Np = Avogadro's constant
P = pressure
R = gas constant
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r = number of mers per r-mer
S = entropy
T = absolute temperature
U = total energy
u, u’ = characteristic energy in Equations 13-15
V = volume
v = volume parameter in Equation 14
V' = parameter in Equation 4
v* = volume of one mole of hard bodies
V¥ = volume of hard body
W' = parameter in Equation 4
w(y) = efficiency factor for the square-well depth,
Equation 7
y = reduced density
Z = compressibility factor = PV/RT
z = Jlattice coordination number

Greek alphabet

a = coefficient in Equation 10

Yy = shape parameter in Boublik Equation (12)

e = intermolecular energy parameter (depth of
potential)

n = parameter in Equation 15

v = coefficient in Axilrod-Teller triple potential

p = molar density

o = intermolecular energy parameter (molecular
diameter); mean standard deviation

¢ = parameter defined by Equation 17

Subscripts, superscripts

attractive

base (physically based)
configurational; calculated
experimental

gaseous

hard convex

hard sphere

Liquid

Residual

reduced (by critical parameters)
rectilinear diameter

octopole

reduced (by characteristic parameters,
other than critical)
characteristic

:bwqxra:mmnmm
LT T T T T AT T T N T I | I T A 1}

*
|
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Phase Equilibria for the Propane-Propadiene System
from Total Pressure Measurements

Andy F. Burcham, Mark D. Trampe, Bruce E. Poling, and David B. Manley
Department of Chemical Engineering, University of Missouri-Rolla, Rolla, MO 65401

Total pressure measurements were made on the propane-
propadiene system from 253.15 to 353.15K. The data
were reduced using the Soave-Redlich-Kwong Equation of
state with modified mixing rules containing several
parameters. Corrections were made for the effects of
known chemical impurities in the experimental system,
and vapor pressures and relative volatilities were
calculated.

The phase equilibrium behavior of the propane-propadiene system was
studied using the total pressure method. This method has been
applied to a number of systems of close boiling light hydrocarbons at
the University of Missouri-Rolla (Steele et al., 1976; Martinez—Ortiz
and Manley, 1978; Flebbe et al., 1982; Barclay et. al., 1982). The
total pressure method consists of experimentally measuring the vapor
pressures and total volume of two-phase mixtures under varying
conditions of temperature and overall composition. These data were
then reduced using a thermodynamically consistent set of equations to
calculate phase compositions and densities.

In past studies, it has been necessary to use extremely pure
materials in order to produce accurate results. For practical
reasons this has limited the method to investigations concerning the
relatively few chemicals which are easily purified. However, magy
chemicals present in industrial process mixtures cannot be studied in
pure form because they react with themselves. In particular, light
hydrocarbon diolefins and acetylenes tend to dimerize at process
temperatures. One objective of this work was to extend the

0097-6156/86/0300-0086306.50/0
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previously developed technique to mixtures containing reactive
components. Propadiene was chosen because, among other reasons, it
is difficult to obtain in high purity; and it is moderately reactive.
Therefore, it provides a good test case for the development of the
necessary experimental and computational tools.

There are several ways to reduce the experimental total pressure
data. In this work we chose to fit the data with the Soave-Redlich-
Kwong (SRK) equation of state (Soave, 1972) with adjustable
interaction parameters. The SRK equation was chosen because it has
been used successfully for correlating hydrocarbon physical
properties and because it was necessary to predict some properties in
addition to correlating the observed pressures. Multicomponent
mixtures were prepared with propadiene which contained quantitatively
known impurities. The SRK interaction parameters for the minor
constituents were estimated from the literature, but the parameters
for the primary propane-propadiene binary were determined from the
measured data. It was necessary to add additional interaction
parameters in order to fit the data within the estimated experimental
error. To avoid errors in calculated pure component vapor pressures
and liquid densities, the SRK equation parameters were adjusted to
yield accurate pure component vapor pressures. The Costald
(Hankinson and Thompson, 1979) correlation was used to calculate the
saturated liquid densities in the volume balance equation. Pure
propadiene vapor pressures were estimated from the experimental data
simultaneously with the interaction parameters in an iterative
procedure.

Experiment

The equilibrium cell which holds about 6 cc of sample is shown in
Figure 1. The chemicals of known composition were volumetrically
metered into the evacuated cell, and their exact amounts were
determined (to within 0.0001 grams) on an analytical balance. The
cell was then placed in a thermostat controlled to within 0.01 °C,
and the pressure was determined by balancing the hydrocarbon vapor
pressure on the bottom of the stainless steel diaphragm with nitrogen
on the top. The differential pressure null was determined to within
0.02 psia by the displacement transformer which had been previously
calibrated. The nitrogen pressure was measured to within 0.01 psia
with a Ruska dead weight gauge and Princo barometer. The temperature
was measured to within 0.025 °C by a platinum resistance thermometer
and Mueller bridge. Detailed descriptions of the equipment,
operating procedures, and error analysis are given elsewhere
(Barclay, 1980; Burcham, 1981, Barclay et al., 1982).

Research grade propane was obtained from Phillips Petroleum
Company, which stated that infrared and mass spectrometer
determinations showed the purity to be 99.99 mole percent. After
careful degassing, the only impurity shown by gas chromatography was
a trace amount of ethane. The propadiene was purchased from Columbia
Inorganics Incorporated and had a stated purity of 99 weight percent.
After careful degassing, analysis by gas chromatography and mass
spectrometry identified the impurities as listed in Table I.
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Table I. Propadiene Analysis

Compound Mole %
Propadiene 96.84
Propene 2.11
Propyne 0.89
Propane 0.088
Ethene 0.047
Cyclopropane 0.031

Two cells were used, and a run consisted of filling the
evacuated cells 25 to 60 percent full with degassed chemicals,
inserting them into the bath, and measuring the pressure at different
temperatures. The first set of measurements started at 80°C,
proceeded down in 25°C steps to -20°C; a second set of measurements
was then made from -20°C to 80°C. Comparison of the duplicated
measurements provided a check on possible errors due to leaks,
reactions, or non-equilibrium conditions.

The experimental results after adjustment to exact temperatures
are given in Table II. The temperature adjustment procedure
accounted for the difference between the actual bath temperature and
the desired temperature. This was less than 0.15°C, and the
correction (done with the Antoine equation) contributed negligible
error,

Data Reduction

In order to compare with literature data the pure propane vapor
pressures were correlated with the Goodwin
equation (Goodwin, 1975).

3

P = P'EXP(AX + BX® + cx° + px(1-x)1+%) (1)

X

1 - T'/T)/(l—T'/Tc)

The constants given in Table III, are regressed from the data of this
study; and a comparison with recent literature data is shown in
Figure 2. The scatter is typical for light paraffin vapor pressure
data from different laboratories.

The thermodynamic state of a closed system at fixed temperature
and specific volume is completely determined. Pressure can be
measured, but not varied independently. Consequently, the pressure
measurements can be used to determine appropriate parameters in the
theoretical description of the system. This was accomplished by
forming a system of equations relating the known and unknown
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Table III, Goodwin Equation Constants for Propane and Propadiene

Propane Propadiene

A 3.26655 -1,57086
B 0.65753 9.00968
C -0.18930 -3.35329
D 0.56757 5.35825
p', psia 14.696 14.696
T', K 231.1 238.17
Tc, K 369.82 393.0
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Figure 2. Comparison for propane vapor pressure
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variables, and then solving for the unknown variables. For M
components these equations are:

M Component Mass Balances

N, -x.N_ -yN =0; i=1,...,M (2)
i ix iy

1 Total Volume Balance

VT-—NV—NV=0 (3)
X x yy
2 Summation Equations
1- } x, =0 1- 2 y, =0 (4)
I I
2 Equations of State
E(P,V_,T) = 0; E(P,V_,T) =0 (5)
X y
M Equilibrium Constraints
Fi(P'xi'T) - Fi(P‘yi’T) =0; i=1,...,M (6)

These equations contain only parameters and physically significant
variables. When VT, T, and Ni are known, and the parameters are

specified; the equations can be solved for the 2M + 5 unknowns X;

Yy P, Vx. Vy. Nx' Ny' Comparison of the measured and calculated
pressures provides verification of the specified parameters.

The SRK equation of state is:

P = RT/(V-b) - a/(V(V+b)) (7
where

a = 0 bRTF/Q (8)
a b

b = @ RT /P (9)
b "¢ "¢

8, = 0.42748 ' (10)

, = 0.08664 (11)
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where F is a parameter which forces equation 7 to reproduce pure
component vapor pressures. Equations 7 through 11 correspond to the
form described by Reid, et. al. (1977). 1Initially, the original
mixing rules with one interaction parameter

a ZZ x,x (a2 0 (1K, ) (12)

b = Z x;b, (13)

were applied; but, as described below, it was necessary to add
additional parameters in order to fit the experimental data within
its estimated uncertainty. Since the SRK equation predicts liquid
specific volumes poorly, the more accurate Costald correlation
(Hankinson and Thomson, 1979) was used in the total volume balance
equation only. Because this is an extensive constraint,
thermodynamic consistency is still satisfied.

At each temperature, pure component F parameters for equation
(8) were determined so that pure component vapor pressures were
accurately reproduced. For propane, the vapor pressure data of this
study were used. For the impurities propene, propane, cyclopropane,
and ethene, literature vapor pressure data were used (Bender, 1975;
Vohra et. al., 1962; Heisig and Hurd, 1933; Lin et. al., 1970;
Douslin and Harrison, 1968). The parameters are given in Table IV.

Interaction parameters, kij in Equation 12, for the minor

impurities were considered relatively unimportant and were assigned a
value of 0. The propene-propane parameter was determined from
literature data (Manley and Swift, 1970) to be 0.0085, and the
propene-propadiene parameter was estimated to be the same based on
experience with C4 hydrocarbon mixtures. The propane-propadiene

parameter was estimated to be 0.028 from the experimental mixture
data of this study.

Using the F parameters for all the components except propadiene,
and the estimated interaction parameters; the theoretical-model
equations were applied to the impure propadiene vapor pressure data.
Pure propadiene F parameters and vapor pressures were calculated.
The results are given in Table V. Goodwin equation parameters
determined by a least squares fit to the pure vapor pressures are
given in Table III, and a comparison with literature data is given in
Figure 3. The relatively large scatter for these data is probably
due to the difficulty in obtaining pure propadiene and in keeping it
from dimerizing. The effect of accounting for the 3.26 mole percent
impurity present in the propadiene used in this study was to reduce
the estimated pure propadiene vapor pressure by about 1.5%.

Next, the propane-propadiene interaction parameter, k12’ for

each data point was determinea. Each value of k12 is shown in Figure
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Table IV. SRK F Parameters, Critical Properties,
and Acentric Factors in this Study

Propane Propene Propyne Cyclopropane Ethene Propadiene

Parameter F in Equation 8
253,15 K 1.843929 1.798899 2.167369 2.032122 1.189297
278.15 K 1.596573 1.558492 1.870922 1.769849 1.024429
303.15 K 1.394985 1.362286 1.629764 1.554293 0.890463
328.15 K 1,227697 1.199187 1.430623 1,375080 0.779921
353,15 K 1.085501 1,059943 1.264037 1,223972 0,.687514

TQ,K 369.82 364.90 402,39 398.30 282.35 393.
Pc,psia 616.41 699.06 816,27 809.24 731.28 793.58
[} 0,152 0,148 0,218 0,132 0,086 0,1493

Table V. Propadiene Properties (Duplicate Data Points)

253,15 K 278,15 K 303,15 K 328,15 K 353,15 K
Impure Propadiene 26.505 63.163 128.864 234,883 393.683
Vapor Pressures 26,502 63.169 128.897 234,847 393,801

Pure Propadiene 2.017308 1.749740 1.532509 1.352641 1.201258
F Parameters 2.017349 1.749706 1,532417 1.352645 1.201152

Pure Propadiene 25.882 62.053 127.083 232,230 389,897
Vapor Pressures 25,879 62,059 127,117 232,193 390,019

10.0
9.0
8.0 v
7.0 v
b 6.0 n M a
g 5.0
S wo
@ 3.0 - Y
a 2.0 * . *
% 1.0 d * o
é 0.0 - 2 . ' o
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Figure 3. Comparison for propadiene vapor pressures
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4. At all five temperatures, k12 increased steadily as the mole
fraction propane increased. At each temperature, the value of k12

that minimized the sum of the squares of the pressure deviations was
also determined. A typical pressure deviation plot (for 303,15K with

k12 = 0,02792) is shown in Figure 5. This figure demonstrates a non-

random error pattern consistent with the non-random composition
dependence of k12. This indicated a need for additional parameter(s)

in the mixing rules for the SRK equation.

SRK Equation with Additional Interaction Parameters

Initially, a second parameter (B) was added to the standard SEK
mixing rule in the form

_ .0
ky, = kg, * Bx /V (14)

This equation introduces a linear composition dependence for the
parameter k12' The inverse volume factor was incorporated to force

the mixing rule to reduce to a quadratic form in the low density
limit. This is important if the equation is to be applied to the
vapor as well as the liquid phase. Equation 14 led to satisfactory
results, but two questions remained. How could equation 14 be
extended to multicomponent mixtures, and what similarities were there
between equation 14 and other recently proposed mixing rules?
Mathias and Copeman (1983) recently published a modification of the
Peng-Robinson equation (1976) with mixing<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>